Skip to main content

Mitotic Spindle Assembly and Function

  • Chapter
  • First Online:
Cell Division Control in Plants

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 9))

Abstract

The ability of plant mitotic spindles to form and function with robust accuracy, in the absenceof centrosomes, underscores the importance and prevalence of centrosome-independent pathways of spindleassembly. This work includes overviews of plant mitotic spindle structure and formation, microtubule-associatedproteins involved in plant mitosis, and the multiple pathways used by plants to promote robust spindleassembly and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aist JR, Bayles CJ, Tao W, Berns MW (1991) Direct experimental evidence for the existence, structural basis and function of astral forces during anaphase B in vivo. J Cell Sci 100:279–288

    PubMed  Google Scholar 

  • Allen RD, Bajer A, Lafountain J (1969) Poleward migration of particles or states in spindle fiber filaments during mitosis in Haemanthus. J Cell Biol 43:4a

    Google Scholar 

  • Ambrose JC, Cyr R (2007) The Kinesin ATK5 Functions in Early Spindle Assembly in Arabidopsis. Plant Cell 19:226–236

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ambrose JC, Li W, Marcus A, Ma H, Cyr R (2005) A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol Biol Cell 16:1584–1592

    PubMed  PubMed Central  CAS  Google Scholar 

  • Asada T, Kuriyama R, Shibaoka H (1997) TKRP125, a kinesin-related protein involved in the centrosome-independent organization of the cytokinetic apparatus in tobacco BY-2 cells. J Cell Sci 110:179–189

    PubMed  CAS  Google Scholar 

  • Bajer A (1957) Cine-micrographic studies on mitosis in endosperm. III. The origin of the mitotic spindle. Exp Cell Res 13:493–502

    PubMed  CAS  Google Scholar 

  • Bajer A (1967) Notes on ultrastructure and some properties of transport within living mitotic spindle. J Cell Biol 33:713–720

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bajer A (1968) Behavior and fine structure of spindle fibers during mitosis in endosperm. Chromosoma 25:249–281

    Google Scholar 

  • Bajer A, Molè-Bajer J (1969) Formation of spindle fibers, kinetochore orientation, and behaviour of the nuclear envelope during mitosis in endosperm. Fine structural and in vitro studies. Chromosoma 27:448–484

    Google Scholar 

  • Bajer AS (1987) Substructure of the kinetochore and reorganization of kinetochore microtubules during early prometaphase in Haemanthus endosperm. Eur J Cell Biol 43:23–34

    Google Scholar 

  • Bajer AS, Molè-Bajer J (1972) Spindle dynamics and chromosome movements. Int Rev Cytol—A Survey of Cell Biology, pp 1–255

    Google Scholar 

  • Bajer AS, Molè-Bajer J (1986) Reorganization of microtubules in endosperm cells and cell fragments of the higher-plant Haemanthus in vivo. J Cell Biol 102:263–281

    PubMed  CAS  Google Scholar 

  • Bakhuizen R, van Spronsen PC, Sluiman-den Hertog FAJ, Venverloo CJ, Goosen-de Roo L (1985) Nuclear envelope radiating microtubules in plant cells during interphase mitosis transition. Protoplasma 128:43–51

    Google Scholar 

  • Baluska F, Barlow PW, Parker JS, Volkmann D (1996) Symmetric reorganizations of radiating microtubules around pre- and post-mitotic nuclei of dividing cells organized within intact root meristems. J Plant Physiol 149:119–128

    Google Scholar 

  • Barroso C, Chan J, Allan V, Doonan J, Hussey P, Lloyd C (2000) Two kinesin-related proteins associated with the cold-stable cytoskeleton of carrot cells: characterization of a novel kinesin, DcKRP120–2. Plant J 24:859–868

    PubMed  CAS  Google Scholar 

  • Baskin TI, Cande WZ (1990) The structure and function of the mitotic spindle in flowering plants. Ann Rev Plant Physiol Plant Mol Biol 41:277–315

    Google Scholar 

  • Burgess J (1970) Interactions between microtubules and the nuclear envelope during mitosis in a fern. Protoplasma 71:77–89

    Google Scholar 

  • Burgess J, Northcote D (1967) A function of preprophase band of microtubules in Phleum pratense. Planta 75:319–326

    PubMed  CAS  Google Scholar 

  • Camilleri C, Azimzadeh J, Pastuglia M, Bellini C, Grandjean O, Bouchez D (2002) The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell 14:833–845

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chan J, Calder GM, Doonan JH, Lloyd CW (2003) EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nat Cell Biol 5:967–971

    PubMed  CAS  Google Scholar 

  • Chan J, Calder G, Fox S, Lloyd C (2005) Localization of the microtubule end binding protein EB1 reveals alternative pathways of spindle development in Arabidopsis suspension cells. Plant Cell 17:1737–1748

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chan J, Jensen CG, Jensen LC, Bush M, Lloyd CW (1999) The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc Natl Acad Sci USA 96:14931–14936

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chang HY, Smertenko AP, Igarashi H, Dixon DP, Hussey PJ (2005) Dynamic interaction of NtMAP65–1a with microtubules in vivo. J Cell Sci 118:3195–3201

    PubMed  CAS  Google Scholar 

  • Chen C, Marcus A, Li W, Hu Y, Calzada JP, Grossniklaus U, Cyr RJ, Ma H (2002) The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development 129:2401–2409

    PubMed  CAS  Google Scholar 

  • Cleary AL, Hardham AR (1988) Depolymerization of microtubule arrays in root-tip cells by oryzalin their recovery with modified nucleation patterns. Can J Bot 66:2353–2366

    CAS  Google Scholar 

  • Cleary AL, Smith LG (1998) The Tangled1 gene is required for spatial control of cytoskeletal arrays associated with cell division during maize leaf development. Plant Cell 10:1875–1888

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dagenbach EM, Endow SA (2004) A new kinesin tree. J Cell Sci 117:3–7

    PubMed  CAS  Google Scholar 

  • De Mey J, Lambert AM, Bajer AS, Moeremans M, De Brabander M (1982) Visualization of microtubules in interphase and mitotic plant cells of Haemanthus endosperm with the immuno-gold staining method. Proc Natl Acad Sci USA 79:1898–1902

    PubMed  PubMed Central  Google Scholar 

  • Dhonukshe P, Vischer N, Gadella TWJ (2006) Contribution of microtubule growth polarity and flux to spindle assembly and functioning in plant cells. J Cell Sci 119:3193–3205

    PubMed  CAS  Google Scholar 

  • Dhonukshe P, Mathur J, Hulskamp M, Gadella TW Jr (2005) Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biol 3:11

    PubMed  PubMed Central  Google Scholar 

  • Dixit R, Chang E, Cyr R (2006) Establishment of Polarity during Organization of the Acentrosomal Plant Cortical Microtubule Array. Mol Biol Cell 17:1298–1305

    PubMed  PubMed Central  CAS  Google Scholar 

  • Eleftheriou EP, Palevitz BA (1992) The effect of cytochalasin-D on preprophase band organization in root-tip cells of Allium. J Cell Sci 103:989–998

    CAS  Google Scholar 

  • Eleftheriou EP, Baskin TI, Hepler PK (2005) Aberrant cell plate formation in the Arabidopsis thaliana microtubule organization 1 mutant. Plant Cell Physiol 46:671–675

    PubMed  CAS  Google Scholar 

  • Ems-McClung SC, Zheng YX, Walczak CE (2004) Importin alpha/beta and Ran-GTP regulate XCTK2 microtubule binding through a bipartite nuclear localization signal. Mol Biol Cell 15:46–57

    PubMed  PubMed Central  CAS  Google Scholar 

  • Erhardt M, Stoppin-Mellet V, Campagne S, Canaday J, Mutterer J, Fabian T, Sauter M, Muller T, Peter C, Lambert AM, Schmit AC (2002) The plant Spc98p homologue colocalizes with gamma-tubulin at microtubule nucleation sites and is required for microtubule nucleation. J Cell Sci 115:2423–2431

    PubMed  CAS  Google Scholar 

  • Euteneuer U, McIntosh JR (1980) Polarity of midbody and phragmoplast microtubules. J Cell Biol 87:509–515

    PubMed  CAS  Google Scholar 

  • Euteneuer U, Jackson WT, McIntosh JR (1982) Polarity of spindle microtubules in Haemanthus endosperm. J Cell Biol 94:644–653

    PubMed  CAS  Google Scholar 

  • Falconer M, Donaldson G, Seagull R (1988) MTOCs in higher plant cells: an immunofluorescent study of microtubule assembly sites following depolymerization by APM. Protoplasma 144:46–55

    Google Scholar 

  • Fowke LC (1993) Microtubules in dividing root cells of the conifer Pinus radiata and the cycad Zamia furfuracea. Cell Biol Int 17:143–151

    Google Scholar 

  • Funabiki H, Murray AW (2000) The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102:411–424

    PubMed  CAS  Google Scholar 

  • Furutani I, Watanabe Y, Prieto R, Masukawa M, Suzuki K, Naoi K, Thitamadee S, Shikanai T, Hashimoto T (2000) The SPIRAL genes are required for directional central of cell elongation in Arabidopsis thaliana. Development 127:4443–4453

    PubMed  CAS  Google Scholar 

  • Fuseler JW (1975) Mitosis in Tilia americana endosperm. J Cell Biol 64:159–171

    PubMed  CAS  Google Scholar 

  • Gadde S, Heald R (2004) Mechanisms and molecules of the mitotic spindle. Curr Biol 14:R797–R805

    PubMed  CAS  Google Scholar 

  • Gaglio T, Dionne MA, Compton DA (1997) Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes. J Cell Biol 138:1055–1066

    PubMed  PubMed Central  CAS  Google Scholar 

  • Galatis B, Apostolakos P (1991) Patterns of microtubule reappearance in root-cells of Vigna-sinensis recovering from a colchicine treatment. Protoplasma 160:131–143

    Google Scholar 

  • Goodbody KC, Venverloo CJ, Lloyd CW (1991) Laser microsurgery demonstrates that cytoplasmic strands anchoring the nucleus across the vacuole of premitotic plant-cells are under tension—implications for division plane alignment. Development 113:931–939

    Google Scholar 

  • Goshima G, Vale RD (2003) The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J Cell Biol 162:1003–1016

    PubMed  PubMed Central  CAS  Google Scholar 

  • Goshima G, Vale RD (2005) Cell cycle-dependent dynamics and regulation of mitotic kinesins in Drosophila S2 cells. Mol Biol Cell 16:3896–3907

    PubMed  PubMed Central  CAS  Google Scholar 

  • Goshima G, Wollman R, Stuurman N, Scholey JM, Vale RD (2005) Length control of the metaphase spindle. Curr Biol 15:1979–1988

    PubMed  CAS  Google Scholar 

  • Granger C, Cyr R (2001) Use of abnormal preprophase bands to decipher division plane determination. J Cell Sci 114:599–607

    PubMed  CAS  Google Scholar 

  • Hahne G, Hoffman F (1984) The effect of laser microsurgery on cytoplasmic strands and cytoplasmic streaming in isolated plant protoplasts. Eur J Cell Biol 33:175–179

    PubMed  CAS  Google Scholar 

  • Hamada T, Igarashi H, Itoh TJ, Shimmen T, Sonobe S (2004) Characterization of a 200 kDa microtubule-associated protein of tobacco BY-2 cells, a member of the XMAP215/MOR1 family. Plant Cell Physiol 45:1233–1242

    PubMed  CAS  Google Scholar 

  • Hanzely L, Schjeide OA (1973) Structural and functional aspects of anastral mitotic spindle in Allium sativum root tip cells. Cytobios 7:147–162

    Google Scholar 

  • Hard R, Allen RD (1977) Behavior of kinetochore fibers in Haemanthus katherinae during anaphase movements of chromosomes. J Cell Sci 27:47–56

    PubMed  CAS  Google Scholar 

  • Hardham AR, Gunning BES (1978) Structure of cortical microtubule arrays in plant-cells. J Cell Biol 77:14–34

    PubMed  CAS  Google Scholar 

  • Harris P, Bajer A (1965) Fine structure studies on mitosis in endosperm metaphase of Haemanthus katherinae Bak. Chromosoma 16:624–636

    Google Scholar 

  • Heald R, Tournebize R, Habermann A, Karsenti E, Hyman A (1997) Spindle assembly in Xenopus egg extracts: Respective roles of centrosomes and microtubule self-organization. J Cell Biol 138:615–628

    PubMed  PubMed Central  CAS  Google Scholar 

  • Heald R, Tournebize R, Blank T, Sandaltzopoulos R, Becker P, Hyman A, Karsenti E (1996) Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382:420–425

    PubMed  CAS  Google Scholar 

  • Hepler PK, Jackson WT (1968) Microtubules and early stages of cell-plate formation in the endosperm of Haemanthus katherinae Baker. J Cell Biol 38:437–446

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hoffman GH.a.F. (1984) The effect of laser microsurgery on cytoplasmic strands and cytoplasmic streaming in isolated plant protoplasts. Eur J Cell Biol 33:175–179

    Google Scholar 

  • Hoyt MA, He L, Totis L, Saunders WS (1993) Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations. Genetics 135:35–44

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hush JM, Wadsworth P, Callaham DA, Hepler PK (1994) Quantification of microtubule dynamics in living plant-cells using fluorescence redistribution after photobleaching. J Cell Sci 107:775–784

    PubMed  Google Scholar 

  • Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol Biol 50:915–924

    PubMed  CAS  Google Scholar 

  • Huyett A, Kahana J, Silver P, Zeng X, Saunders WS (1998) The Kar3p and Kip2p motors function antagonistically at the spindle poles to influence cytoplasmic microtubule numbers. J Cell Sci 111:295–301

    PubMed  CAS  Google Scholar 

  • Igarashi H, Orii H, Mori H, Shimmen T, Sonobe S (2000) Isolation of a novel 190 kDa protein from tobacco BY-2 cells: Possible involvement in the interaction between actin filaments and microtubules. Plant Cell Physiol 41:920–931

    PubMed  CAS  Google Scholar 

  • Inoue S, Bajer A (1961) Birefringence in endosperm mitosis. Chromosoma 12:48–63

    PubMed  CAS  Google Scholar 

  • Jensen C, Bajer AS (1973) Spindle dynamics and arrangement of microtubules. Chromosoma 44:73–89

    Google Scholar 

  • Kapoor TM, Lampson MA, Hergert P, Cameron L, Cimini D, Salmon ED, McEwen BF, Khodjakov A (2006) Chromosomes can congress to the metaphase plate before biorientation. Science 311:388–391

    PubMed  PubMed Central  CAS  Google Scholar 

  • Katsuta J, Hashiguchi Y, Shibaoka H (1990) The role of the cytoskeleton in positioning of the nuclues in premitotic tobacco BY-2 cells. J Cell Sci 95:413–422

    Google Scholar 

  • Kawamura E, Himmelspach R, Rashbrooke MC, Whittington AT, Gale KR, Collings DA, Wasteneys GO (2006) MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiol 140:102–114

    PubMed  PubMed Central  CAS  Google Scholar 

  • Khodjakov A, Rieder CL (2001) Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J Cell Biol 153:237–242

    PubMed  PubMed Central  CAS  Google Scholar 

  • Khodjakov A, Cole RW, Oakley BR, Rieder CL (2000) Centrosome-independent mitotic spindle formation in vertebrates. Curr Biol 10:59–67

    PubMed  CAS  Google Scholar 

  • Kirschner M, Mitchison T (1986) Beyond self-assembly: from microtubules to morphogenesis. Cell 45:329–342

    PubMed  CAS  Google Scholar 

  • Kline-Smith SL, Walczak CE (2004) Mitotic spindle assembly and chromosome segregation: Refocusing on microtubule dynamics. Mol Cell 15:317–327

    PubMed  CAS  Google Scholar 

  • Kong LJ, Hanley-Bowdoin L (2002) A geminivirus replication protein interacts with a protein kinase and a motor protein that display different expression patterns during plant development and infection. Plant Cell 14:1817–1832

    PubMed  PubMed Central  CAS  Google Scholar 

  • Korolev AV, Chan J, Naldrett MJ, Doonan JH, Lloyd CW (2005) Identification of a novel family of 70 kDa microtubule-associated proteins in Arabidopsis cells. Plant J 42:547–555

    PubMed  CAS  Google Scholar 

  • Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J, Malmberg RL, McIntosh JR, Miki H, Mitchison TJ, Okada Y, Reddy AS, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L (2004) A standardized kinesin nomenclature. J Cell Biol 167:19–22

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu B, Cyr RJ, Palevitz BA (1996) A kinesin-like protein, KatAp, in the cells of arabidopsis and other plants. Plant Cell 8:119–132

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu B, Marc J, Joshi HC, Palevitz BA (1993) A gamma-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J Cell Sci 104:1217–1228

    PubMed  CAS  Google Scholar 

  • Lloyd C, Chan J (2006) Not so divided: the common basis of plant and animal cell division. Nat Rev Mol Cell Biol 7:147–152

    PubMed  CAS  Google Scholar 

  • Lloyd CW, Traas JA (1988) The role of F-actin in determining the division plane of carrot suspension cells. Drug studies. Development 102:211–221

    CAS  Google Scholar 

  • Maddox PS, Bloom KS, Salmon ED (2000) The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae. Nat Cell Biol 2:36–41

    PubMed  PubMed Central  CAS  Google Scholar 

  • Maiato H, Rieder CL, Khodjakov A (2004) Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J Cell Biol 167:831–840

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mallavarapu A, Sawin K, Mitchison T (1999) A switch in microtubule dynamics at the onset of anaphase B in the mitotic spindle of Schizosaccharomyces pombe. Curr Biol 9:1423–1426

    PubMed  CAS  Google Scholar 

  • Manandhar G, Apostolakos P, Galatis B (1996) Cell division of binuclear cells induced by caffeine: Spindle organization and determination of division plane. J Plant Res 109:265–275

    CAS  Google Scholar 

  • Mao G, Chan J, Calder G, Doonan JH, Lloyd CW (2005) Modulated targeting of GFP-AtMAP65–1 to central spindle microtubules during division. Plant J 43:469–478

    PubMed  CAS  Google Scholar 

  • Marc J, Gunning BES (1988) Monoclonal antibodies to a fern spermatozoid detect novel components of the mitotic and cytokinetic apparatus in higher plant cells. Protoplasma 142:15–24

    Google Scholar 

  • Marcus AI, Li W, Ma H, Cyr RJ (2003) A kinesin mutant with an atypical bipolar spindle undergoes normal mitosis. Mol Biol Cell 14:1717–1726

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mathur J, Mathur N, Kernebeck B, Srinivas BP, Hulskamp M (2003) A novel localization pattern for an EB1-like protein links microtubule dynamics to endomembrane organization. Curr Biol 13:1991–1997

    PubMed  CAS  Google Scholar 

  • Megraw TL, Kao LR, Kaufman TC (2001) Zygotic development without functional mitotic centrosomes. Curr Biol 11:116–120

    PubMed  CAS  Google Scholar 

  • Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15:467–476

    PubMed  CAS  Google Scholar 

  • Mineyuki Y (1999) The preprophase band of microtubules: Its function as a cytokinetic apparatus in higher plants. Int Rev Cytol 187:1–49

    Google Scholar 

  • Mineyuki Y, Furuya M (1986) Involvement of colchicine-sensitive cytoplasmic element in premitotic nuclear positioning of Adiantum protenemata. Protoplasma 130:83–90

    Google Scholar 

  • Mineyuki Y, Palevitz BA (1990) Relationship between Preprophase Band Organization, F-Actin and the Division Site in Allium - Fluorescence and Morphometric Studies on Cytochalasin-Treated Cells. J Cell Sci 97:283–295

    CAS  Google Scholar 

  • Mineyuki Y, Marc J, Palevitz BA (1991) Relationship between the preprophase band, nucleus and spindle in dividing Allium cotyledon cells. J Plant Physiol 138:640–649

    Google Scholar 

  • Mineyuki Y, Iida H, Anraku Y (1994) Loss of microtubules in the interphase cells of onion (Allium-cepa L) root-tips from the cell cortex and their appearance in the cytoplasm after treatment with cycloheximide. Plant Physiol 104:281–284

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    PubMed  CAS  Google Scholar 

  • Mitchison TJ (2005) Mechanism and function of poleward flux in Xenopus extract meiotic spindles. Philos Trans R Soc Lond B Biol Sci 360:623–629

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchison TJ, Kirschner MW (1985) Properties of the kinetochore in vitro. II. Microtubule capture and ATP-dependent translocation. J Cell Biol 101:766–777

    PubMed  CAS  Google Scholar 

  • Molchan TM, Valster AH, Hepler PK (2002) Actomyosin promotes cell plate alignment and late lateral expansion in Tradescantia stamen hair cells. Planta 214:683–693

    PubMed  CAS  Google Scholar 

  • Molè-Bajer J, Bajer AS (1982) Modification of microtubule arrangements in the mitotic spindle of Haemanthus endosperm under the Influence of taxol. J Cell Biol 95:A308–A308

    Google Scholar 

  • Molè-Bajer J, Bajer AS (1983) Action of taxol on mitosis— modification of microtubule arrangements and function of the mitotic spindle in Haemanthus endosperm. J Cell Biol 96:527–540

    PubMed  Google Scholar 

  • Mollinari C, Kleman JP, Jiang W, Schoehn G, Hunter T, Margolis RL (2002) PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. J Cell Biol 157:1175–1186

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mountain V, Simerly C, Howard L, Ando A, Schatten G, Compton DA (1999) The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J Cell Biol 147:351–366

    PubMed  PubMed Central  CAS  Google Scholar 

  • Muller S, Smertenko A, Wagner V, Heinrich M, Hussey PJ, Hauser MT (2004) The plant microtubule-associated protein AtMAP65–3/PLE is essential for cytokinetic phragmoplast function. Curr Biol 14:412–417

    PubMed  PubMed Central  CAS  Google Scholar 

  • Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, Horio T, Hasebe M (2005) Microtubule-dependent microtubule nucleation based on recruitment of gamma-tubulin in higher plants. Nat Cell Biol 7:961–968

    PubMed  CAS  Google Scholar 

  • Nakajima K, Furutani I, Tachimoto H, Matsubara H, Hashimoto T (2004) SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell 16:1178–1190

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nogami A, Mineyuki Y (1999) Loosening of a preprophase band of microtubules in onion (Allium cepa L.) root tip cells by kinase inhibitors. Cell Struct Func 24:419–424

    CAS  Google Scholar 

  • Nogami A, Suzaki T, Shigenaka Y, Nagahama Y, Mineyuki Y (1996) Effects of cycloheximide on preprophase bands and prophase spindles in onion (Allium cepa L) root tip cells. Protoplasma 192:109–121

    CAS  Google Scholar 

  • O'Connell MJ, Meluh PB, Rose MD, Morris NR (1993) Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesin-like protein in Aspergillus nidulans. J Cell Biol 120:153–162

    PubMed  CAS  Google Scholar 

  • Ota T (1961) Role of cytoplasm in cytokinesis of plant cells. Cytologia 26:428–447

    Google Scholar 

  • Palevitz BA (1988) Microtubular Fir-Trees in Mitotic Spindles of Onion Roots. Protoplasma 142:74–78

    Google Scholar 

  • Panteris E, Galatis B, Apostolakos P (1991) Patterns of cortical and perinuclear microtubule organization in meristematic root-cells of Adiantum-Capillus-Veneris. Protoplasma 165:173–188

    Google Scholar 

  • Panteris E, Apostolakos P, Galatis B (1995) The effect of taxol on Triticum preprophase root-cells—preprophase microtubule band organization seems to depend on new microtubule assembly. Protoplasma 186:72–78

    CAS  Google Scholar 

  • Panteris E, Apostolakos P, Galatis B (2006) Cytoskeletal asymmetry in Zea mays subsidiary cell mother cells: a monopolar prophase microtubule half-spindle anchors the nucleus to its polar position. Cell Motil Cytoskeleton 63:696–709

    PubMed  CAS  Google Scholar 

  • Phalle BD, Sullivan W (1998) Spindle assembly and mitosis without centrosomes in parthenogenetic Sciara embryos. J Cell Biol 141:1383–1391

    Google Scholar 

  • Pickett-Heaps J (1969) Preprophase microtubules and stomatal differentiation; some effects of centrifugation on symmetrical and asymmetrical cell division. J Ultrastruct Res 27:24–44

    PubMed  Google Scholar 

  • Pickett-Heaps JD, Northcote DH (1966) Organization of microtubules and endoplasmic reticulum during mitosis and cytokinesis in wheat meristems. J Cell Sci 1:109–120

    PubMed  CAS  Google Scholar 

  • Pickett-Heaps JD, Spurck T, Tippit D (1984) Chromosome motion and the spindle matrix. J Cell Biol 99:S137–S143

    Google Scholar 

  • Reddy AS (2001) Molecular motors and their functions in plants. Int Rev Cytol 204:97–178

    PubMed  CAS  Google Scholar 

  • Reddy AS, Day IS (2001) Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2:2

    PubMed  PubMed Central  CAS  Google Scholar 

  • Richardson DN, Simmons MP, Reddy AS (2006) Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genomics 7:18

    PubMed  PubMed Central  Google Scholar 

  • Robyns W (1929) La figure achromatique sur materiel frais dans les divisions somatiques des phanerogames. La Cellule 39:85–117

    Google Scholar 

  • Ryan KG (1983) Prometaphase and anaphase chromosome movements in living pollen mother cells. Protoplasma 116:24–33

    Google Scholar 

  • Sakai A (1969) Electron microscopy of dividing cells. II. Microtubules and formation of the spindle in root tip cells of higher plants. Cytologia 34:57–70

    Google Scholar 

  • Savoian MS, Gatt MK, Riparbelli MG, Callaini G, Glover DM (2004) Drosophila Klp67A is required for proper chromosome congression and segregation during meiosis I. J Cell Sci 117:3669–3677

    PubMed  CAS  Google Scholar 

  • Schaar BT, Chan GK, Maddox P, Salmon ED, Yen TJ (1997) CENP-E function at kinetochores is essential for chromosome alignment. J Cell Biol 139:1373–1382

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schmit AC (2002) Acentrosomal microtubule nucleation in higher plants. Int Rev Cytol 220:257–289

    PubMed  CAS  Google Scholar 

  • Schmit AC, Vantard M, de Mey J, Lambert A (1983) Aster-like microtubule centers establish spindle polarity during interphase-mitosis transition in higher plant cells. Plant Cell Rep 2:285–288

    PubMed  CAS  Google Scholar 

  • Schuyler SC, Liu JY, Pellman D (2003) The molecular function of Ase1p: evidence for a MAP-dependent midzone-specific spindle matrix. Microtubule-associated proteins. J Cell Biol 160:517–528

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sedbrook JC, Ehrhardt DW, Fisher SE, Scheible WR, Somerville CR (2004) The Arabidopsis SKU6/SPIRAL1 gene encodes a plus end-localized microtubule-interacting protein involved in directional cell expansion. Plant Cell 16:1506–1520

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sharp DJ, Mennella V, Buster DW (2005) KLP10A and KLP59C: the dynamic duo of microtubule depolymerization. Cell Cycle 4:1482–1485

    PubMed  CAS  Google Scholar 

  • Sharp DJ, Yu KR, Sisson JC, Sullivan W, Scholey JM (1999) Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nat Cell Biol 1:51–54

    PubMed  CAS  Google Scholar 

  • Sharp DJ, Brown HM, Kwon M, Rogers GC, Holland G, Scholey JM (2000) Functional coordination of three mitotic motors in Drosophila embryos. Mol Biol Cell 11:241–253

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sinnott EW, Bloch R (1940) Cytoplasmic behavior during division of vacuolate plant cells. Proc Natl Acad Sci USA 26:223–227

    PubMed  PubMed Central  CAS  Google Scholar 

  • Smirnova EA (1998) Organization of the mitotic spindle in higher plant cells. Russ J Plant Physiol 45:165–173

    CAS  Google Scholar 

  • Smirnova EA, Bajer AS (1992) Spindle poles in higher-plant mitosis. Cell Motil Cytoskel 23:1–7

    CAS  Google Scholar 

  • Smirnova EA, Bajer AS (1994) Microtubule converging centers and reorganization of the interphase cytoskeleton and the mitotic spindle in higher plant Haemanthus. Cell Motil Cytoskeleton 27:219–233

    PubMed  CAS  Google Scholar 

  • Smirnova EA, Reddy AS, Bowser J, Bajer AS (1998) Minus end-directed kinesin-like motor protein, Kcbp, localizes to anaphase spindle poles in Haemanthus endosperm. Cell Motil Cytoskeleton 41:271–280

    PubMed  CAS  Google Scholar 

  • Smith LG, Gerttula SM, Han SC, Levy J (2001) TANGLED1: A microtubule binding protein required for the spatial control of cytokinesis in maize. J Cell Biol 152:231–236

    PubMed  PubMed Central  CAS  Google Scholar 

  • Staiger CJ, Cande WZ (1991) Microfilament distribution in maize meiotic mutants correlates with microtubule organization. Plant Cell 3:637–644

    PubMed  PubMed Central  Google Scholar 

  • Stoppin V, Vantard M, Schmit A-C, Lambert A-M (1994) Isolated plant nuclei nucleate microtubule assembly: The nuclear surface in higher plants has centrosome-like activity. Plant Cell 6:1099–1106

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tirnauer JS, Salmon ED, Mitchison TJ (2004) Microtubule plus-end dynamics in Xenopus egg extract spindles. Mol Biol Cell 15:1776–1784

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tirnauer JS, Canman JC, Salmon ED, Mitchison TJ (2002) EB1 targets to kinetochores with attached, polymerizing microtubules. Mol Biol Cell 13:4308–4316

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tournebize R, Popov A, Kinoshita K, Ashford AJ, Rybina S, Pozniakovsky A, Mayer TU, Walczak CE, Karsenti E, Hyman AA (2000) Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nat Cell Biol 2:13–19

    PubMed  CAS  Google Scholar 

  • Traas JA, Doonan JH, Rawlins DJ, Shaw PJ, Watts J, Lloyd CW (1987) An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the nucleus. J Cell Biol 105:387–395

    PubMed  CAS  Google Scholar 

  • Tulu US, Fagerstrom C, Ferenz NP, Wadsworth P (2006) Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr Biol 16:536–541

    PubMed  PubMed Central  CAS  Google Scholar 

  • Valiron O, Caudron N, Job D (2001) Microtubule dynamics. Cell Mol Life Sci 58:2069–2084

    PubMed  CAS  Google Scholar 

  • Van Damme D, Bouget FY, Van Poucke K, Inze D, Geelen D (2004a) Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. Plant J 40:386–398

    PubMed  Google Scholar 

  • Van Damme D, Van Poucke K, Boutant E, Ritzenthaler C, Inze D, Geelen D (2004b) In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol 136:3956–3967

    PubMed  PubMed Central  Google Scholar 

  • Vanstraelen M, Torres Acosta JA, De Veylder L, Inze D, Geelen D (2004) A plant-specific subclass of C-terminal kinesins contains a conserved a-type cyclin-dependent kinase site implicated in folding and dimerization. Plant Physiol 135:1417–1429

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vanstraelen M, Inze D, Geelen D (2006) Mitosis-specific kinesins in Arabidopsis. Trends Plant Sci 11:167–175

    PubMed  CAS  Google Scholar 

  • Venverloo CJ, Libbenga KR (1987) Regulation of the plane of cell division in vacuolated cells. I. The function of nuclear positioning and phragmosome formation. J Plant Physiol 131:267–284

    Google Scholar 

  • Vos JW, Dogterom M, Emons AMC (2004) Microtubules become more dynamic but not shorter during preprophase band formation: A possible search-and-capture mechanism for microtubule translocation. Cell Motil Cytoskel 57:246–258

    Google Scholar 

  • Vos JW, Safadi F, Reddy AS, Hepler PK (2000) The kinesin-like calmodulin binding protein is differentially involved in cell division. Plant Cell 12:979–990

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wadsworth P, Khodjakov A (2004) E pluribus unum: towards a universal mechanism for spindle assembly. Trends Cell Biol 14:413–419

    PubMed  CAS  Google Scholar 

  • Walczak CE, Vernos I, Mitchison TJ, Karsenti E, Heald R (1998) A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr Biol 8:903–913

    PubMed  CAS  Google Scholar 

  • Wang H, Cutler AJ, Fowke LC (1991) Microtubule organization in Cultured Soybean and Black Spruce Cells: Interphase-mitosis Transition and Spindle Morphology. Protoplasma 162:46–54

    Google Scholar 

  • West RR, Malmstrom T, Troxell CL, McIntosh JR (2001) Two related kinesins, klp5+ and klp6+, foster microtubule disassembly and are required for meiosis in fission yeast. Mol Biol Cell 12:3919–3932

    PubMed  PubMed Central  CAS  Google Scholar 

  • Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411:610–613

    PubMed  CAS  Google Scholar 

  • Wick S (2000) Plant microtubules meet their MAPs and mimics. Nat Cell Biol 2:E204–206

    PubMed  CAS  Google Scholar 

  • Wick S, Duniec J (1984) Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. II. Transition between the pre-prophase band and the mitotic spindle. Protoplasma 122:45–55

    Google Scholar 

  • Wick SM, Duniec J (1983) Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. I. Preprophase band development and concomitant appearance of nuclear envelope-associated tubulin. J Cell Biol 97:235–243

    PubMed  CAS  Google Scholar 

  • Wilde A, Zheng YX (1999) Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284:1359–1362

    PubMed  CAS  Google Scholar 

  • Wittmann T, Hyman A, Desai A (2001) The spindle: a dynamic assembly of microtubules and motors. Nat Cell Biol 3:E28–E34

    PubMed  CAS  Google Scholar 

  • Yajima J, Edamatsu M, Watai-Nishii J, Tokai-Nishizumi N, Yamamoto T, Toyoshima YY (2003) The human chromokinesin Kid is a plus end-directed microtubule-based motor. EMBO J 22:1067–1074

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yasuhara H, Muraoka M, Shogaki H, Mori H, Sonobe S (2002) TMBP200, a microtubule bundling polypeptide isolated from telophase tobacco BY-2 cells is a MOR1 homologue. Plant Cell Physiol 43:595–603

    PubMed  CAS  Google Scholar 

  • Yen TJ, Compton DA, Wise D, Zinkowski RP, Brinkley BR, Earnshaw WC, Cleveland DW (1991) CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J 10:1245–1254

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yoneda A, Akatsuka M, Hoshino H, Kumagai F, Hasezawa S (2005) Decision of spindle poles division plane by double preprophase bands in a BY-2 cell line expressing GFP-tubulin. Plant Cell Physiol 46:531–538

    PubMed  CAS  Google Scholar 

  • Zhu C, Jiang W (2005) Cell cycle-dependent translocation of PRC1 on the spindle by Kif4 is essential for midzone formation and cytokinesis. Proc Natl Acad Sci USA 102:343–348

    PubMed  CAS  Google Scholar 

  • Zhu C, Zhao J, Bibikova M, Leverson JD, Bossy-Wetzel E, Fan JB, Abraham RT, Jiang W (2005) Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell 16:3187–3199

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Cyr .

Editor information

Desh Pal S. Verma Zonglie Hong

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ambrose, J.C., Cyr, R. (2007). Mitotic Spindle Assembly and Function. In: Verma, D.P.S., Hong, Z. (eds) Cell Division Control in Plants. Plant Cell Monographs, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2007_126

Download citation

Publish with us

Policies and ethics