Skip to main content

HIV-1 Integrase Drug Discovery Comes of Age

  • Chapter
  • First Online:
Therapy of Viral Infections

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 15))

Abstract

Insertion of the viral genome into host cell chromatin is a pivotal step in the replication cycle of the human immunodeficiency virus and other retroviruses. Blocking the viral integrase enzyme that catalyzes this reaction therefore provides an attractive therapeutic strategy. Nevertheless, many years lie between the initial discovery of integrase and the clinical approval of the first integrase strand transfer inhibitor, raltegravir, in 2007. Recently, elvitegravir was second to make it into the clinic, while dolutegravir, a second-generation integrase inhibitor, is close to receiving the green light as well. Viral resistance and cross-resistance among these strand transfer inhibitors however warrant the search for compounds targeting HIV integration through different mechanisms of action. The most advanced class of allosteric integrase inhibitors, coined LEDGINs or non-catalytic integrase inhibitors (NCINIs), has shown remarkable antiviral activity that extends beyond the viral integration step. Time will tell however if they will stand the test of clinical development. Notably, the development of LEDGINs and other integrase inhibitors is aided by recent structural and mechanistic insights into the retroviral integration apparatus. Here we provide an overview of the development of integrase strand transfer and allosteric inhibitors while exploring their mechanisms of action and patterns of viral resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1-LTR:

1-Long terminal repeat

2-LTR:

2-Long terminal repeats

3P:

3′-Processing

ADME:

Absorption distribution, metabolism, and excretion

AIDS:

Acquired immunodeficiency syndrome

ALLINI:

Allosteric integrase inhibitor

ART:

Antiretroviral therapy

ARV:

Antiretroviral

CC50 :

50% cytotoxic concentration

CCD:

Catalytic core domain

CCR5:

C–C chemokine receptor 5

CR:

Charged region

CTD:

C-terminal domain

DKA:

Diketo acid

DNA:

Deoxyribonucleic acid

EC50 :

50% Effective concentration

FDA:

Food and Drug Administration

HAART:

Highly active antiretroviral therapy

HCV:

Hepatitis C virus

HDGF:

Hepatoma-derived growth factor

HIV-1:

Human immunodeficiency virus type 1

HIV-2:

Human immunodeficiency virus type 2

HRP-2:

Hepatoma-derived growth factor-related protein 2

HSAB:

Hard and soft Lewis acids and bases

IBD:

Integrase-binding domain

IC50 :

50% inhibitory concentration

IN:

Integrase

INI:

Integrase inhibitor

IRBM:

Instituto di Ricerche di Biologia Moleculare

LEDGF/p75:

Lens epithelium-derived growth factor/p75

LTR:

Long terminal repeat

MACCS:

Molecular access system

mRNA:

Messenger ribonucleic acid

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NCINI:

Non-catalytic site integrase inhibitor

NLS:

Nuclear localization signal

NMR:

Nuclear magnetic resonance

NNRTI:

Non-nucleoside reverse transcriptase inhibitor

NRTI:

Nucleoside reverse transcriptase inhibitor

NTD:

N-terminal domain

PAEC50 :

Protein-adjusted 50% effective concentration

PAIC50 :

Protein-adjusted 50% inhibitory concentration

PFV:

Prototype foamy virus

PHAT:

Pseudo-HEAT analogous topology

PIC:

Pre-integration complex

PK:

Pharmacokinetic

PPI:

Protein–protein interaction

PR:

Protease

PrEP:

Preexposure prophylaxis

PWWP:

Pro–Trp–Trp–Pro domain

RNA:

Ribonucleic acid

RT:

Reverse transcriptase

SAR:

Structure–activity relationship

SIV:

Simian immunodeficiency virus

SPR:

Surface plasmon resonance

ST:

Strand transfer

STD-NMR:

Saturation transfer difference nuclear magnetic resonance

tDNA:

Target deoxyribonucleic acid

TRN-SR2:

Transportin-SR2

vDNA:

Viral deoxyribonucleic acid

WT:

Wild type

References

  1. Heeney JL, Dalgleish AG, Weiss RA (2006) Origins of HIV and the evolution of resistance to AIDS. Science 313:462–466

    CAS  Google Scholar 

  2. Centers for Disease Control (CDC) (1981) Pneumocystis pneumonia–Los Angeles. MMWR Morb Mortal Wkly Rep 30:250–252

    Google Scholar 

  3. Centers for Disease Control (CDC) (1981) Kaposi’s sarcoma and Pneumocystis pneumonia among homosexual men–New York City and California. MMWR Morb Mortal Wkly Rep 30:305–308

    Google Scholar 

  4. Barré-Sinoussi F, Chermann JC, Rey F et al (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871

    Google Scholar 

  5. Popovic M, Sarngadharan MG, Read E, Gallo RC (1984) Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224:497–500

    CAS  Google Scholar 

  6. UNAIDS JUNPOHA (2012) UNAIDS report on the global AIDS epidemic 2012. In: unaids.org. http://www.unaids.org/en/media/unaids/contentassets/documents/epidemiology/2012/gr2012/20121120_UNAIDS_Global_Report_2012_en.pdf. Accessed 21 Mar 2013

    Google Scholar 

  7. Engelman A, Cherepanov P (2012) The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol 10:279–290

    CAS  Google Scholar 

  8. De Clercq E (2009) The history of antiretrovirals: key discoveries over the past 25 years. Rev Med Virol 19:287–299

    Google Scholar 

  9. Jaskolski M, Alexandratos JN, Bujacz G, Wlodawer A (2009) Piecing together the structure of retroviral integrase, an important target in AIDS therapy. FEBS J 276:2926–2946

    CAS  Google Scholar 

  10. Cherepanov P, Maertens GN, Hare S (2011) Structural insights into the retroviral DNA integration apparatus. Curr Opin Struct Biol 21:249–256

    CAS  Google Scholar 

  11. Li X, Krishnan L, Cherepanov P, Engelman A (2011) Structural biology of retroviral DNA integration. Virology 411:194–205

    CAS  Google Scholar 

  12. Cai M, Zheng R, Caffrey M et al (1997) Solution structure of the N-terminal zinc binding domain of HIV-1 integrase. Nat Struct Biol 4:567–577

    CAS  Google Scholar 

  13. Eijkelenboom AP, van den Ent FM, Vos A et al (1997) The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc. Curr Biol 7:739–746

    CAS  Google Scholar 

  14. Nowotny M (2009) Retroviral integrase superfamily: the structural perspective. EMBO Rep 10:144–151

    CAS  Google Scholar 

  15. Dyda F, Hickman AB, Jenkins TM et al (1994) Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266:1981–1986

    CAS  Google Scholar 

  16. Eijkelenboom AP, Lutzke RA, Boelens R et al (1995) The DNA-binding domain of HIV-1 integrase has an SH3-like fold. Nat Struct Biol 2:807–810

    CAS  Google Scholar 

  17. Hare S, Gupta SS, Valkov E et al (2010) Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464:232–236

    CAS  Google Scholar 

  18. Maertens GN, Hare S, Cherepanov P (2010) The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468:326–329

    CAS  Google Scholar 

  19. Hare S, Maertens GN, Cherepanov P (2012) 3'-Processing and strand transfer catalysed by retroviral integrase in crystallo. EMBO J 31:3020–3028

    CAS  Google Scholar 

  20. Wu X, Li Y, Crise B et al (2005) Weak palindromic consensus sequences are a common feature found at the integration target sites of many retroviruses. J Virol 79:5211–5214

    CAS  Google Scholar 

  21. Holman AG, Coffin JM (2005) Symmetrical base preferences surrounding HIV-1, avian sarcoma/leukosis virus, and murine leukemia virus integration sites. Proc Natl Acad Sci U S A 102:6103–6107

    CAS  Google Scholar 

  22. Lewinski MK, Yamashita M, Emerman M et al (2006) Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2:e60

    Google Scholar 

  23. Ciuffi A, Llano M, Poeschla E et al (2005) A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11:1287–1289

    CAS  Google Scholar 

  24. Ge H, Si Y, Roeder RG (1998) Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J 17:6723–6729

    CAS  Google Scholar 

  25. Eidahl JO, Crowe BL, North JA et al (2013) Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res 41:3924–3936

    CAS  Google Scholar 

  26. Wu H, Zeng H, Lam R et al (2011) Structural and Histone Binding Ability Characterizations of Human PWWP Domains. PLoS One 6:e18919

    Google Scholar 

  27. Llano M, Vanegas M, Hutchins N et al (2006) Identification and characterization of the chromatin-binding domains of the HIV-1 integrase interactor LEDGF/p75. J Mol Biol 360:760–773

    CAS  Google Scholar 

  28. Maertens G, Cherepanov P, Debyser Z et al (2004) Identification and characterization of a functional nuclear localization signal in the HIV-1 integrase interactor LEDGF/p75. J Biol Chem 279:33421–33429

    CAS  Google Scholar 

  29. Tsutsui KM, Sano K, Hosoya O et al (2011) Nuclear protein LEDGF/p75 recognizes supercoiled DNA by a novel DNA-binding domain. Nucleic Acids Res 39:5067–5081

    CAS  Google Scholar 

  30. De Rijck J, Bartholomeeusen K, Ceulemans H et al (2010) High-resolution profiling of the LEDGF/p75 chromatin interaction in the ENCODE region. Nucleic Acids Res 38:6135–6147

    Google Scholar 

  31. Cherepanov P, Sun Z-YJ, Rahman S et al (2005) Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75. Nat Struct Mol Biol 12:526–532

    CAS  Google Scholar 

  32. Cherepanov P, Devroe E, Silver PA, Engelman A (2004) Identification of an evolutionarily conserved domain in human lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) that binds HIV-1 integrase. J Biol Chem 279:48883–48892

    CAS  Google Scholar 

  33. Schrijvers R, De Rijck J, Demeulemeester J et al (2012) LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs. PLoS Pathog 8:e1002558

    CAS  Google Scholar 

  34. Wang H, Jurado KA, Wu X et al (2012) HRP2 determines the efficiency and specificity of HIV-1 integration in LEDGF/p75 knockout cells but does not contribute to the antiviral activity of a potent LEDGF/p75-binding site integrase inhibitor. Nucleic Acids Res 40:11518

    CAS  Google Scholar 

  35. Cherepanov P, Maertens G, Proost P et al (2003) HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem 278:372–381

    CAS  Google Scholar 

  36. Emiliani S, Mousnier A, Busschots K et al (2005) Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication. J Biol Chem 280:25517–25523

    CAS  Google Scholar 

  37. Busschots K, Voet A, De Maeyer M et al (2007) Identification of the LEDGF/p75 binding site in HIV-1 integrase. J Mol Biol 365:1480–1492

    CAS  Google Scholar 

  38. Hombrouck A, De Rijck J, Hendrix J et al (2007) Virus evolution reveals an exclusive role for LEDGF/p75 in chromosomal tethering of HIV. PLoS Pathog 3:e47

    Google Scholar 

  39. Shun M-C, Raghavendra NK, Vandegraaff N et al (2007) LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev 21:1767–1778

    CAS  Google Scholar 

  40. Vandekerckhove L, Christ F, Van Maele B et al (2006) Transient and stable knockdown of the integrase cofactor LEDGF/p75 reveals its role in the replication cycle of human immunodeficiency virus. J Virol 80:1886–1896

    CAS  Google Scholar 

  41. Raghavendra NK, Engelman A (2007) LEDGF/p75 interferes with the formation of synaptic nucleoprotein complexes that catalyze full-site HIV-1 DNA integration in vitro: implications for the mechanism of viral cDNA integration. Virology 360:1–5

    CAS  Google Scholar 

  42. Llano M, Delgado S, Vanegas M, Poeschla EM (2004) Lens epithelium-derived growth factor/p75 prevents proteasomal degradation of HIV-1 integrase. J Biol Chem 279:55570–55577

    CAS  Google Scholar 

  43. Maertens G, Cherepanov P, Pluymers W et al (2003) LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J Biol Chem 278:33528–33539

    CAS  Google Scholar 

  44. Thys W, Bartholomeeusen K, Debyser Z (2011) Cellular cofactors of HIV integration. In: Neamati N (ed) HIV-1 integrase: mechanism and inhibitor design. Wiley, Hoboken, pp 105–130

    Google Scholar 

  45. Taltynov O, Desimmie BA, Demeulemeester J et al (2012) Cellular cofactors of Lentiviral integrase: from target validation to drug discovery. Mol Biol Int 2012:863405

    Google Scholar 

  46. Hazuda DJ, Hastings JC, Wolfe AL, Emini EA (1994) A novel assay for the DNA strand-transfer reaction of HIV-1 integrase. Nucleic Acids Res 22:1121–1122

    CAS  Google Scholar 

  47. Hazuda DJ, Felock P, Witmer M et al (2000) Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 287:646–650

    CAS  Google Scholar 

  48. Espeseth AS, Felock P, Wolfe A et al (2000) HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase. Proc Natl Acad Sci U S A 97:11244–11249

    CAS  Google Scholar 

  49. Fujishita T, Yoshinaga T, Sato A (2000) Aromatic heterocycle compounds having HIV integrase inhibiting activities. World patent WO 2000/039,086

    Google Scholar 

  50. Uenaka M, Kawata K, Nagai M, Endoh T (2000) Novel processes for the preparation of substituted propenone derivatives. World patent WO 2000/075,122

    Google Scholar 

  51. Marchand C, Zhang X, Pais GCG et al (2002) Structural determinants for HIV-1 integrase inhibition by beta-diketo acids. J Biol Chem 277:12596–12603

    CAS  Google Scholar 

  52. Goldgur Y, Craigie R, Cohen GH et al (1999) Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design. Proc Natl Acad Sci U S A 96:13040–13043

    CAS  Google Scholar 

  53. Yoshinaga T, Sato A, Fujishita T, Fujiwara T (2002) S-1360: in vitro activity of a new HIV-1 integrase inhibitor in clinical development. In: 9th Conference on retroviruses and opportunistic infections. Seattle, February 22–28 2002.

    Google Scholar 

  54. Grobler JA, Stillmock K, Hu B et al (2002) Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc Natl Acad Sci U S A 99:6661–6666

    CAS  Google Scholar 

  55. Rosemond MJC, St John-Williams L, Yamaguchi T et al (2004) Enzymology of a carbonyl reduction clearance pathway for the HIV integrase inhibitor, S-1360: role of human liver cytosolic aldo-keto reductases. Chem Biol Interact 147:129–139

    CAS  Google Scholar 

  56. Zhuang L, Wai JS, Embrey MW et al (2003) Design and synthesis of 8-hydroxy-[1, 6]naphthyridines as novel inhibitors of HIV-1 integrase in vitro and in infected cells. J Med Chem 46:453–456

    CAS  Google Scholar 

  57. Summa V, Petrocchi A, Pace P et al (2004) Discovery of alpha, gamma-diketo acids as potent selective and reversible inhibitors of hepatitis C virus NS5b RNA-dependent RNA polymerase. J Med Chem 47:14–17

    CAS  Google Scholar 

  58. Summa V, Petrocchi A, Matassa VG et al (2004) HCV NS5b RNA-dependent RNA polymerase inhibitors: from alpha, gamma-diketoacids to 4,5-dihydroxypyrimidine- or 3-methyl-5-hydroxypyrimidinonecarboxylic acids. Design and synthesis. J Med Chem 47:5336–5339

    CAS  Google Scholar 

  59. Petrocchi A, Koch U, Matassa VG et al (2007) From dihydroxypyrimidine carboxylic acids to carboxamide HIV-1 integrase inhibitors: SAR around the amide moiety. Bioorg Med Chem Lett 17:350–353

    CAS  Google Scholar 

  60. Summa V, Petrocchi A, Matassa VG et al (2006) 4,5-Dihydroxypyrimidine carboxamides and N-alkyl-5-hydroxypyrimidinone carboxamides are potent, selective HIV integrase inhibitors with good pharmacokinetic profiles in preclinical species. J Med Chem 49:6646–6649

    CAS  Google Scholar 

  61. Anthony NJ, Gomez RP, Young SD et al (2002) Aza- and polyaza-naphthalenyl carboxamides useful as HIV integrase inhibitors. World patent WO 2002/030,931

    Google Scholar 

  62. Hazuda DJ, Young SD, Guare JP et al (2004) Integrase inhibitors and cellular immunity suppress retroviral replication in rhesus macaques. Science 305:528–532

    CAS  Google Scholar 

  63. Little S, Drusano G, Schooley R et al (2005) Antiretroviral effect of L-000870810, a novel HIV-1 integrase inhibitor, in HIV-1-infected patients. In: 12th Conference on retroviruses and opportunistic infections. Boston, 22–25 February 2005

    Google Scholar 

  64. Egbertson MS, Moritz HM, Melamed JY et al (2007) A potent and orally active HIV-1 integrase inhibitor. Bioorg Med Chem Lett 17:1392–1398

    CAS  Google Scholar 

  65. Pace P, Di Francesco ME, Gardelli C et al (2007) Dihydroxypyrimidine-4-carboxamides as novel potent and selective HIV integrase inhibitors. J Med Chem 50:2225–2239

    CAS  Google Scholar 

  66. Summa V, Petrocchi A, Bonelli F et al (2008) Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J Med Chem 51:5843–5855

    CAS  Google Scholar 

  67. Markowitz M, Morales-Ramirez JO, Nguyen B-Y et al (2006) Antiretroviral activity, pharmacokinetics, and tolerability of MK-0518, a novel inhibitor of HIV-1 integrase, dosed as monotherapy for 10 days in treatment-naive HIV-1-infected individuals. J Acquir Immune Defic Syndr 43:509–515

    CAS  Google Scholar 

  68. Steigbigel RT, Cooper DA, Teppler H et al (2010) Long-term efficacy and safety of Raltegravir combined with optimized background therapy in treatment-experienced patients with drug-resistant HIV infection: week 96 results of the BENCHMRK 1 and 2 Phase III trials. Clin Infect Dis 50:605–612

    CAS  Google Scholar 

  69. Lennox JL, DeJesus E, Lazzarin A et al (2009) Safety and efficacy of raltegravir-based versus efavirenz-based combination therapy in treatment-naive patients with HIV-1 infection: a multicentre, double-blind randomised controlled trial. Lancet 374:796–806

    CAS  Google Scholar 

  70. Eron JJ, Young B, Cooper DA et al (2010) Switch to a raltegravir-based regimen versus continuation of a lopinavir-ritonavir-based regimen in stable HIV-infected patients with suppressed viraemia (SWITCHMRK 1 and 2): two multicentre, double-blind, randomised controlled trials. Lancet 375:396–407

    CAS  Google Scholar 

  71. Sato M, Motomura T, Aramaki H et al (2006) Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J Med Chem 49:1506–1508

    CAS  Google Scholar 

  72. Sato M, Kawakami H, Motomura T et al (2009) Quinolone carboxylic acids as a novel monoketo acid class of human immunodeficiency virus type 1 integrase inhibitors. J Med Chem 52:4869–4882

    CAS  Google Scholar 

  73. Shimura K, Kodama E, Sakagami Y et al (2008) Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol 82:764–774

    CAS  Google Scholar 

  74. Lepist E-I, Phan TK, Roy A et al (2012) Cobicistat boosts the intestinal absorption of transport substrates, including HIV protease inhibitors and GS-7340, in vitro. Antimicrob Agents Chemother 56:5409–5413

    CAS  Google Scholar 

  75. Sax PE, DeJesus E, Mills A et al (2012) Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus co-formulated efavirenz, emtricitabine, and tenofovir for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3 trial, analysis of results after 48 weeks. Lancet 379:2439–2448

    CAS  Google Scholar 

  76. DeJesus E, Rockstroh JK, Henry K et al (2012) Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir disoproxil fumarate versus ritonavir-boosted atazanavir plus co-formulated emtricitabine and tenofovir disoproxil fumarate for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3, non-inferiority trial. Lancet 379:2429–2438

    CAS  Google Scholar 

  77. Molina J-M, Lamarca A, Andrade-Villanueva J et al (2012) Efficacy and safety of once daily elvitegravir versus twice daily raltegravir in treatment-experienced patients with HIV-1 receiving a ritonavir-boosted protease inhibitor: randomised, double-blind, phase 3, non-inferiority study. Lancet Infect Dis 12:27–35

    CAS  Google Scholar 

  78. Valkov E, Gupta SS, Hare S et al (2009) Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Res 37:243–255

    CAS  Google Scholar 

  79. Hare S, Vos AM, Clayton RF et al (2010) Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci U S A 107:20057–20062

    CAS  Google Scholar 

  80. Dicker IB, Samanta HK, Li Z et al (2007) Changes to the HIV long terminal repeat and to HIV integrase differentially impact HIV integrase assembly, activity, and the binding of strand transfer inhibitors. J Biol Chem 282:31186–31196

    CAS  Google Scholar 

  81. Langley DR, Samanta HK, Lin Z et al (2008) The terminal (catalytic) adenosine of the HIV LTR controls the kinetics of binding and dissociation of HIV integrase strand transfer inhibitors. Biochemistry 47:13481–13488

    CAS  Google Scholar 

  82. Grobler JA, McKenna PM, Ly S et al (2009) Functionally irreversible inhibition of integration by slowly dissociating strand transfer inhibitors. In: 10th International workshop on clinical pharmacology of HIV therapy, Amsterdam, 15–17 April 2009

    Google Scholar 

  83. Hightower KE, Wang R, Deanda F et al (2011) Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than Raltegravir and Elvitegravir from wild type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes. Antimicrob Agents Chemother 55:4552–4559

    CAS  Google Scholar 

  84. Dicker I, Terry B, Protack T et al Longer integrase inhibitor dissociation half-lives induce persistent anti-HIV effects in cell culture. In: 18th Conference on retroviruses and opportunistic infections, Boston, 27 February–2 March 2011

    Google Scholar 

  85. Hare S, Smith SJ, Métifiot M et al (2011) Structural and functional analyses of the second-generation integrase strand transfer inhibitor dolutegravir (S/GSK1349572). Mol Pharmacol 80:565–572

    CAS  Google Scholar 

  86. Gatell JM, Katlama C, Grinsztejn B et al (2010) Long-term efficacy and safety of the HIV integrase inhibitor raltegravir in patients with limited treatment options in a Phase II study. J Acquir Immune Defic Syndr 53:456–463

    CAS  Google Scholar 

  87. Fransen S, Gupta S, Danovich R et al (2009) Loss of raltegravir susceptibility by human immunodeficiency virus type 1 is conferred via multiple nonoverlapping genetic pathways. J Virol 83:11440–11446

    CAS  Google Scholar 

  88. Hatano H, Lampiris H, Fransen S et al (2010) Evolution of integrase resistance during failure of integrase inhibitor-based antiretroviral therapy. J Acquir Immune Defic Syndr 54:389–393

    CAS  Google Scholar 

  89. Wittkop L, Breilh D, Da Silva D et al (2009) Virological and immunological response in HIV-1-infected patients with multiple treatment failures receiving raltegravir and optimized background therapy, ANRS CO3 Aquitaine Cohort. J Antimicrob Chemother 63:1251–1255

    CAS  Google Scholar 

  90. Armenia D, Vandenbroucke I, Fabeni L et al (2012) Study of genotypic and phenotypic HIV-1 dynamics of integrase mutations during raltegravir treatment: a refined analysis by ultra-deep 454 pyrosequencing. J Infect Dis 205:557–567

    CAS  Google Scholar 

  91. Cooper DA, Steigbigel RT, Gatell JM et al (2008) Subgroup and resistance analyses of raltegravir for resistant HIV-1 infection. N Engl J Med 359:355–365

    CAS  Google Scholar 

  92. Malet I, Delelis O, Valantin M-A et al (2008) Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro. Antimicrob Agents Chemother 52:1351–1358

    CAS  Google Scholar 

  93. Blanco J-L, Varghese V, Rhee S-Y et al (2011) HIV-1 integrase inhibitor resistance and its clinical implications. J Infect Dis 203:1204–1214

    CAS  Google Scholar 

  94. Métifiot M, Vandegraaff N, Maddali K et al (2011) Elvitegravir overcomes resistance to raltegravir induced by integrase mutation Y143. AIDS 25:1175–1178

    Google Scholar 

  95. Reuman EC, Bachmann MH, Varghese V et al (2010) Panel of prototypical raltegravir-resistant infectious molecular clones in a novel integrase-deleted cloning vector. Antimicrob Agents Chemother 54:934–936

    CAS  Google Scholar 

  96. Abram ME, Hluhanich RM, Goodman DD et al (2013) Impact of primary Elvitegravir resistance-associated mutations in HIV-1 integrase on drug susceptibility and viral replication fitness. Antimicrob Agents Chemother 57:2654–2663

    CAS  Google Scholar 

  97. Goethals O, Van Ginderen M, Vos A et al (2011) Resistance to raltegravir highlights integrase mutations at codon 148 in conferring cross-resistance to a second-generation HIV-1 integrase inhibitor. Antiviral Res 91:167–176

    CAS  Google Scholar 

  98. Goethals O, Clayton R, Van Ginderen M et al (2008) Resistance mutations in human immunodeficiency virus type 1 integrase selected with elvitegravir confer reduced susceptibility to a wide range of integrase inhibitors. J Virol 82:10366–10374

    CAS  Google Scholar 

  99. Malet I, Delelis O, Soulie C et al (2009) Quasispecies variant dynamics during emergence of resistance to raltegravir in HIV-1-infected patients. J Antimicrob Chemother 63:795–804

    CAS  Google Scholar 

  100. Winters MA, Lloyd RM, Shafer RW et al (2012) Development of elvitegravir resistance and linkage of integrase inhibitor mutations with protease and reverse transcriptase resistance mutations. PLoS One 7:e40514

    CAS  Google Scholar 

  101. Kobayashi M, Yoshinaga T, Seki T et al (2011) In vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob Agents Chemother 55:813–821

    CAS  Google Scholar 

  102. Canducci F, Ceresola ER, Boeri E et al (2011) Cross-resistance profile of the novel integrase inhibitor Dolutegravir (S/GSK1349572) using clonal viral variants selected in patients failing raltegravir. J Infect Dis 204:1811–1815

    CAS  Google Scholar 

  103. Nichols G, Mills A, Grossberg R et al (2012) Antiviral activity of dolutegravir in subjects with failure on an integrase inhibitor-based regimen: week 24 phase 3 results from VIKING-3. J Int AIDS Soc 15:18112

    Google Scholar 

  104. Johnson VA, Calvez V, Günthard HF et al (2013) Update of the drug resistance mutations in HIV-1: March 2013. Top Antivir Med 21:6–14

    Google Scholar 

  105. Krishnan L, Li X, Naraharisetty HL et al (2010) Structure-based modeling of the functional HIV-1 intasome and its inhibition. Proc Natl Acad Sci U S A 107:15910–15915

    CAS  Google Scholar 

  106. Nachega JB, Parienti J-J, Uthman O et al (2012) Regimen simplification in HIV infection toward once-daily dosing and fixed-dose combinations: a meta-analysis and sequential analysis of randomized controlled trials. In: XIX international AIDS conference, Washington, 22–27 July 2012

    Google Scholar 

  107. Thompson MA, Aberg JA, Cahn P et al (2010) Antiretroviral treatment of adult HIV infection: 2010 recommendations of the International AIDS Society-USA panel. JAMA 304:321–333

    CAS  Google Scholar 

  108. Marinello J, Marchand C, Mott BT et al (2008) Comparison of raltegravir and elvitegravir on HIV-1 integrase catalytic reactions and on a series of drug-resistant integrase mutants. Biochemistry 47:9345–9354

    CAS  Google Scholar 

  109. Kawasuji T, Johns BA, Yoshida H et al (2012) Carbamoyl pyridone HIV-1 integrase inhibitors. 1. Molecular design and establishment of an advanced two-metal binding pharmacophore. J Med Chem 55:8735–8744

    CAS  Google Scholar 

  110. Kawasuji T, Johns BA, Yoshida H et al (2013) Carbamoyl pyridone HIV-1 integrase inhibitors. 2. Bi- and tricyclic derivatives result in superior antiviral and pharmacokinetic profiles. J Med Chem 56:1124–1135

    CAS  Google Scholar 

  111. Johns BA, Kawasuji T, Weatherhead JG et al (2013) Carbamoyl Pyridone HIV-1 integrase inhibitors 3. A diastereomeric approach to chiral non-racemic tricyclic ring systems and the discovery of S/GSK1349572 (Dolutegravir) and S/GSK1265744. J Med Chem 56:5901–5916

    CAS  Google Scholar 

  112. Yoshinaga T, Kobayashi M, Seki T et al (2012) Antiviral characteristics of S/GSK1265744, an HIV Integrase Inhibitor (INI) dosed by oral or long-acting parenteral injection. In: 52nd interscience conference on antimicrobial agents and chemotherapy, San Francisco, 9–12 September 2012

    Google Scholar 

  113. Andrews C, Gettie A, Russell-Lodrigue K et al Long-acting parenteral formulation of GSK1265744 protects macaques against repeated intrarectal challenges with SHIV. In: 20th Conference on retroviruses and opportunistic infections, Atlanta, 3–6 March 2013

    Google Scholar 

  114. Spreen W, Ford SL, Chen S et al (2012) Pharmacokinetics, safety and tolerability of the HIV integrase inhibitor S/GSK1265744 long acting parenteral nanosuspension following single dose administration to healthy adults. In: XIX international AIDS conference, Washington, 22–27 July 2012

    Google Scholar 

  115. van Lunzen J, Maggiolo F, Arribas JR et al (2012) Once daily dolutegravir (S/GSK1349572) in combination therapy in antiretroviral-naive adults with HIV: planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial. Lancet Infect Dis 12:111–118

    Google Scholar 

  116. Raffi F, Rachlis A, Stellbrink H-J et al (2013) Once-daily dolutegravir versus raltegravir in antiretroviral-naive adults with HIV-1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING-2 study. Lancet 381:735–743

    CAS  Google Scholar 

  117. Stellbrink H-J, Reynes J, Lazzarin A et al (2012) Dolutegravir in combination therapy exhibits rapid and sustained antiviral response in ARV-naïve adults: 96-week results from SPRING-1. In: 19th conference on retroviruses and opportunistic infections. Seattle, 5–8 March 2012

    Google Scholar 

  118. Eron JJ, Clotet B, Durant J et al (2013) Safety and efficacy of Dolutegravir in treatment-experienced subjects with raltegravir-resistant HIV type 1 infection: 24-week results of the VIKING study. J Infect Dis 207:740–748

    CAS  Google Scholar 

  119. Garvey EP, Johns BA, Gartland MJ et al (2008) The naphthyridinone GSK364735 is a novel, potent human immunodeficiency virus type 1 integrase inhibitor and antiretroviral. Antimicrob Agents Chemother 52:901–908

    CAS  Google Scholar 

  120. Johns BA, Kawasuji T, Weatherhead JG et al (2013) Naphthyridinone (NTD) integrase inhibitors: N1 protio and methyl combination substituent effects with C3 amide groups. Bioorg Med Chem Lett 23:422–425

    CAS  Google Scholar 

  121. Boros EE, Edwards CE, Foster SA et al (2009) Synthesis and antiviral activity of 7-benzyl-4-hydroxy-1,5-naphthyridin-2(1H)-one HIV integrase inhibitors. J Med Chem 52:2754–2761

    CAS  Google Scholar 

  122. Reddy YS, Min SS, Borland J et al (2007) Safety and pharmacokinetics of GSK364735, a human immunodeficiency virus type 1 integrase inhibitor, following single and repeated administration in healthy adult subjects. Antimicrob Agents Chemother 51:4284–4289

    CAS  Google Scholar 

  123. Plewe MB, Butler SL, Dress KR et al (2009) Azaindole hydroxamic acids are potent HIV-1 integrase inhibitors. J Med Chem 52:7211–7219

    CAS  Google Scholar 

  124. Bauer L, Exner O (1974) The chemistry of hydroxamic acids and N-Hydroxyimides. Angew Chem Int Ed Engl 13:376–384

    Google Scholar 

  125. Tanis SP, Plewe MB, Johnson TW et al (2010) Azaindole N-methyl hydroxamic acids as HIV-1 integrase inhibitors-II. The impact of physicochemical properties on ADME and PK. Bioorg Med Chem Lett 20:7429–7434

    CAS  Google Scholar 

  126. Pryde DC, Webster R, Butler SL et al (2013) Discovery of an HIV integrase inhibitor with an excellent resistance profile. Med Chem Commun 4:709

    CAS  Google Scholar 

  127. Johnson TW, Tanis SP, Butler SL et al (2011) Design and synthesis of novel N-hydroxy-dihydronaphthyridinones as potent and orally bioavailable HIV-1 integrase inhibitors. J Med Chem 54:3393–3417

    CAS  Google Scholar 

  128. Jin H, Cai RZ, Schacherer L et al (2006) Design, synthesis, and SAR studies of novel and highly active tri-cyclic HIV integrase inhibitors. Bioorg Med Chem Lett 16:3989–3992

    CAS  Google Scholar 

  129. Metobo SE, Jin H, Tsiang M, Kim CU (2006) Design, synthesis, and biological evaluation of novel tricyclic HIV-1 integrase inhibitors by modification of its pyridine ring. Bioorg Med Chem Lett 16:3985–3988

    CAS  Google Scholar 

  130. Fardis M, Jin H, Jabri S et al (2006) Effect of substitution on novel tricyclic HIV-1 integrase inhibitors. Bioorg Med Chem Lett 16:4031–4035

    CAS  Google Scholar 

  131. Jin H, Wright M, Pastor R et al (2008) Tricyclic HIV integrase inhibitors: potent and orally bioavailable C5-aza analogs. Bioorg Med Chem Lett 18:1388–1391

    CAS  Google Scholar 

  132. Jin H, Metobo S, Jabri S et al (2009) Tricyclic HIV integrase inhibitors V. SAR studies on the benzyl moiety. Bioorg Med Chem Lett 19:2263–2265

    CAS  Google Scholar 

  133. Jones GS, Yu F, Zeynalzadegan A et al (2009) Preclinical evaluation of GS-9160, a novel inhibitor of human immunodeficiency virus type 1 integrase. Antimicrob Agents Chemother 53:1194–1203

    CAS  Google Scholar 

  134. Metobo S, Mish M, Jin H et al (2009) Tricyclic HIV integrase inhibitors: VI. SAR studies of “benzyl flipped” C3-substituted pyrroloquinolines. Bioorg Med Chem Lett 19:1187–1190

    CAS  Google Scholar 

  135. Wai JS, Kim B, Fisher TE et al (2007) Dihydroxypyridopyrazine-1,6-dione HIV-1 integrase inhibitors. Bioorg Med Chem Lett 17:5595–5599

    CAS  Google Scholar 

  136. Crescenzi B, Gardelli C, Muraglia E et al (2003) N-Substituted hydroxypyrimidinone carboxamide inhibitors of HIV integrase. World patent WO 2003/035,077

    Google Scholar 

  137. Egbertson MS, Wai JS, Cameron M, Hoerrner RS (2011) Discovery of MK-0536: a potential second-generation HIV-1 integrase strand transfer inhibitor with a high genetic barrier to mutation. In: (Kazmierski WM ed) Antiviral drugs from basic discovery through clinical trials. Wiley, Hoboken, pp 163–180

    Google Scholar 

  138. Métifiot M, Johnson B, Smith S et al (2011) MK-0536 inhibits HIV-1 integrases resistant to raltegravir. Antimicrob Agents Chemother 55:5127–5133

    Google Scholar 

  139. Fisher TE, Kim B, Staas DD et al (2007) 8-Hydroxy-3,4-dihydropyrrolo[1,2-a]pyrazine-1(2H)-one HIV-1 integrase inhibitors. Bioorg Med Chem Lett 17:6511–6515

    CAS  Google Scholar 

  140. Langford HM, Williams PD, Homnick CF et al (2008) Design and synthesis of substituted 4-oxo-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine-2-carboxamides, novel HIV-1 integrase inhibitors. Bioorg Med Chem Lett 18:721–725

    CAS  Google Scholar 

  141. Wiscount CM, Williams PD, Tran LO et al (2008) 10-Hydroxy-7,8-dihydropyrazino[1“,2”:1,5]pyrrolo[2,3-d]pyridazine-1,9(2H,6H)-diones: potent, orally bioavailable HIV-1 integrase strand-transfer inhibitors with activity against integrase mutants. Bioorg Med Chem Lett 18:4581–4583

    CAS  Google Scholar 

  142. Vacca J, Wai J, Fisher T et al (2007) Discovery of MK-2048: subtle changes confer unique resistance properties to a series of tricyclic hydroxypyrrole integrase strand transfer inhibitors. In: 4th IAS conference on HIV pathogenesis, treatment and prevention. Sydney, 22–25 July 2007

    Google Scholar 

  143. Van Wesenbeeck L, Rondelez E, Feyaerts M et al (2011) Cross-resistance profile determination of two second-generation HIV-1 integrase inhibitors using a panel of recombinant viruses derived from raltegravir-treated clinical isolates. Antimicrob Agents Chemother 55:321–325

    Google Scholar 

  144. Bar-Magen T, Sloan RD, Donahue DA et al (2010) Identification of novel mutations responsible for resistance to MK-2048, a second-generation HIV-1 integrase inhibitor. J Virol 84:9210–9216

    CAS  Google Scholar 

  145. Cotelle P (2011) 3-Hydroxy-6,7-dihydropyrimido[2,1-c][1,4]oxazin-4(9H)-ones as new HIV-1 integrase inhibitors WO2011/046,873 A1. Expert Opin Ther Pat 21:1799–1804

    CAS  Google Scholar 

  146. Naidu BN, Peese K, Dicker IB et al (2011) HIV integrase inhibitors. World patent WO 2011/046,873

    Google Scholar 

  147. Gardelli C, Nizi E, Muraglia E et al (2007) Discovery and synthesis of HIV integrase inhibitors: development of potent and orally bioavailable N-methyl pyrimidones. J Med Chem 50:4953–4975

    CAS  Google Scholar 

  148. Muraglia E, Kinzel O, Gardelli C et al (2008) Design and synthesis of bicyclic pyrimidinones as potent and orally bioavailable HIV-1 integrase inhibitors. J Med Chem 51:861–874

    CAS  Google Scholar 

  149. Donghi M, Kinzel OD, Summa V (2009) 3-Hydroxy-4-oxo-4H-pyrido[1,2-a]pyrimidine-2-carboxylates–a new class of HIV-1 integrase inhibitors. Bioorg Med Chem Lett 19:1930–1934

    CAS  Google Scholar 

  150. Jones ED, Vandegraaff N, Le G et al (2010) Design of a series of bicyclic HIV-1 integrase inhibitors. Part 1: selection of the scaffold. Bioorg Med Chem Lett 20:5913–5917

    CAS  Google Scholar 

  151. Jones ED, Coates JAV, Rhodes DI et al (2008) Bicyclic pyrimidinones and uses thereof. World patent WO 2008/077,188

    Google Scholar 

  152. Le G, Vandegraaff N, Rhodes DI et al (2010) Design of a series of bicyclic HIV-1 integrase inhibitors. Part 2: azoles: effective metal chelators. Bioorg Med Chem Lett 20:5909–5912

    CAS  Google Scholar 

  153. Le G, Vandegraaff N, Rhodes DI et al (2010) Discovery of potent HIV integrase inhibitors active against raltegravir resistant viruses. Bioorg Med Chem Lett 20:5013–5018

    CAS  Google Scholar 

  154. Billamboz M, Bailly F, Barreca ML et al (2008) Design, synthesis, and biological evaluation of a series of 2-hydroxyisoquinoline-1,3(2H,4H)-diones as dual inhibitors of human immunodeficiency virus type 1 integrase and the reverse transcriptase RNase H domain. J Med Chem 51:7717–7730

    CAS  Google Scholar 

  155. Bailly F, Billamboz M, Christ F et al (2012) 2-hydroxyisoquinoline-1,3(2h,4h)-diones and related compounds useful as HIV replication inhibitors. World patent WO 2012/085,003

    Google Scholar 

  156. Billamboz M, Suchaud V, Bailly F et al (2013) 4-substituted 2-hydroxyisoquinoline-1,3(2H,4H)-diones as a novel class of HIV-1 integrase inhibitors. ACS Med Chem Lett 4:606–611

    CAS  Google Scholar 

  157. Desimmie BA, Demeulemeester J, Suchaud V et al (2013) 2-Hydroxyisoquinoline-1,3(2H,4H)-diones (HIDs), novel inhibitors of HIV integrase with a high barrier to resistance. ACS Chem Biol 8:1187–1194

    CAS  Google Scholar 

  158. Zhao XZ, Semenova EA, Vu BC et al (2008) 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one-based HIV-1 integrase inhibitors. J Med Chem 51:251–259

    CAS  Google Scholar 

  159. Zhao XZ, Maddali K, Marchand C et al (2009) Diketoacid-genre HIV-1 integrase inhibitors containing enantiomeric arylamide functionality. Bioorg Med Chem 17:5318–5324

    CAS  Google Scholar 

  160. Métifiot M, Maddali K, Johnson BC et al (2013) Activities, crystal structures, and molecular dynamics of dihydro-1H-isoindole derivatives, inhibitors of HIV-1 integrase. ACS Chem Biol 8:209–217

    Google Scholar 

  161. Agrawal A, Desoto J, Fullagar JL et al (2012) Probing chelation motifs in HIV integrase inhibitors. Proc Natl Acad Sci U S A 109:2251–2256

    CAS  Google Scholar 

  162. Al-Mawsawi LQ, Neamati N (2011) Allosteric inhibitor development targeting HIV-1 integrase. ChemMedChem 6:228–241

    CAS  Google Scholar 

  163. Demeulemeester J, Christ F, De Maeyer M, Debyser Z (2012) Fueling HIV-1 integrase drug design with structural insights. Drug Discov Today Technol 9:e205–e212

    CAS  Google Scholar 

  164. Engelman A, Kessl JJ, Kvaratskhelia M (2013) Allosteric inhibition of HIV-1 integrase activity. Curr Opin Chem Biol 17:339–345

    CAS  Google Scholar 

  165. Wielens J, Headey SJ, Deadman JJ et al (2011) Fragment-based design of ligands targeting a novel site on the integrase enzyme of human immunodeficiency virus 1. ChemMedChem 6:258–261

    CAS  Google Scholar 

  166. Wielens J, Headey SJ, Rhodes DI et al (2013) Parallel screening of low molecular weight fragment libraries: do differences in methodology affect hit identification? J Biomol Screen 18:147–159

    Google Scholar 

  167. Rhodes DI, Peat TS, Vandegraaff N et al (2011) Structural basis for a new mechanism of inhibition of HIV-1 integrase identified by fragment screening and structure-based design. Antivir Chem Chemother 21:155–168

    CAS  Google Scholar 

  168. Peat TS, Rhodes DI, Vandegraaff N et al (2012) Small molecule inhibitors of the LEDGF site of human immunodeficiency virus integrase identified by fragment screening and structure based design. PLoS One 7:e40147

    CAS  Google Scholar 

  169. Wielens J, Headey SJ, Jeevarajah D et al (2010) Crystal structure of the HIV-1 integrase core domain in complex with sucrose reveals details of an allosteric inhibitory binding site. FEBS Lett 584:1455–1462

    CAS  Google Scholar 

  170. Kessl JJ, Eidahl JO, Shkriabai N et al (2009) An allosteric mechanism for inhibiting HIV-1 integrase with a small molecule. Mol Pharmacol 76:824–832

    CAS  Google Scholar 

  171. Shkriabai N, Patil SS, Hess S et al (2004) Identification of an inhibitor-binding site to HIV-1 integrase with affinity acetylation and mass spectrometry. Proc Natl Acad Sci U S A 101:6894–6899

    CAS  Google Scholar 

  172. Du L, Zhao Y-X, Yang L-M et al (2008) Symmetrical 1-pyrrolidineacetamide showing anti-HIV activity through a new binding site on HIV-1 integrase. Acta Pharmacol Sin 29:1261–1267

    CAS  Google Scholar 

  173. Christ F, Voet A, Marchand A et al (2010) Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 6:442–448

    CAS  Google Scholar 

  174. Cherepanov P, Ambrosio ALB, Rahman S et al (2005) Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci U S A 102:17308–17313

    CAS  Google Scholar 

  175. Llano M, Saenz DT, Meehan A et al (2006) An essential role for LEDGF/p75 in HIV integration. Science 314:461–464

    CAS  Google Scholar 

  176. De Rijck J, Vandekerckhove L, Gijsbers R et al (2006) Overexpression of the lens epithelium-derived growth factor/p75 integrase binding domain inhibits human immunodeficiency virus replication. J Virol 80:11498–11509

    Google Scholar 

  177. Hayouka Z, Rosenbluh J, Levin A et al (2007) Inhibiting HIV-1 integrase by shifting its oligomerization equilibrium. Proc Natl Acad Sci U S A 104:8316–8321

    CAS  Google Scholar 

  178. Hou Y, McGuinness DE, Prongay AJ et al (2008) Screening for antiviral inhibitors of the HIV integrase-LEDGF/p75 interaction using the AlphaScreen luminescent proximity assay. J Biomol Screen 13:406–414

    CAS  Google Scholar 

  179. Du L, Zhao Y, Chen J et al (2008) D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75. Biochem Biophys Res Commun 375:139–144

    CAS  Google Scholar 

  180. De Luca L, Barreca ML, Ferro S et al (2009) Pharmacophore-based discovery of small-molecule inhibitors of protein-protein interactions between HIV-1 integrase and cellular cofactor LEDGF/p75. ChemMedChem 4:1311–1316

    Google Scholar 

  181. Fan X, Zhang F-H, Al-Safi RI et al (2011) Design of HIV-1 integrase inhibitors targeting the catalytic domain as well as its interaction with LEDGF/p75: a scaffold hopping approach using salicylate and catechol groups. Bioorg Med Chem 19:4935–4952

    CAS  Google Scholar 

  182. De Luca L, Ferro S, Gitto R et al (2010) Small molecules targeting the interaction between HIV-1 integrase and LEDGF/p75 cofactor. Bioorg Med Chem 18:7515–7521

    Google Scholar 

  183. Molteni V, Greenwald J, Rhodes D et al (2001) Identification of a small-molecule binding site at the dimer interface of the HIV integrase catalytic domain. Acta Crystallogr D Biol Crystallogr 57:536–544

    CAS  Google Scholar 

  184. Maignan S, Guilloteau JP, Zhou-Liu Q et al (1998) Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. J Mol Biol 282:359–368

    CAS  Google Scholar 

  185. Christ F, Shaw S, Demeulemeester J et al (2012) Small-molecule inhibitors of the LEDGF/p75 binding site of integrase block HIV replication and modulate integrase multimerization. Antimicrob Agents Chemother 56:4365–4374

    CAS  Google Scholar 

  186. Bardiot D, Chaltin P, Christ F et al (2010) Thieno [2, 3-B] pyridine derivatives as viral replication inhibitors. World patent WO 2010/130,842

    Google Scholar 

  187. Bell AS, Gardner IB, Pryde DC et al (2012) Inhibitors of HIV replication. World patent WO 2012/066,442

    Google Scholar 

  188. Chaltin P, Christ F, Debyser Z et al (2012) Novel antiviral compounds. World patent WO 2012/065,963

    Google Scholar 

  189. Chaltin P, Debyser Z, De Maeyer M et al (2011) Novel viral replication inhibitors. World patent 2011/015,641

    Google Scholar 

  190. Carlens G, Chaltin P, Christ F et al (2011) Novel antiviral compounds. World patent WO 2011/076,765

    Google Scholar 

  191. Fenwick C, Bethell R, Bonneau P et al (2011) Identification of BI-C, a novel HIV-1 non-catalytic site integrase inhibitor. 18th Conference on retroviruses and opportunistic infections, Boston, 27 February–2 March 2011

    Google Scholar 

  192. Kessl JJ, Jena N, Koh Y et al (2012) Multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors. J Biol Chem 287:16801–16811

    CAS  Google Scholar 

  193. Tsantrizos YS, Boes M, Brochu C et al (2007) Inhibitors of human immunodeficiency virus replication. World patent WO 2007/131350

    Google Scholar 

  194. Tsantrizos YS, Bailey MD, Bilodeau F et al (2009) Inhibitors of human immunodeficiency virus replication. World patent WO 2009/062,285

    Google Scholar 

  195. Carson R, Fader L, Kawai S et al (2009) Inhibitors of human immunodeficiency virus replication. World patent WO 2009/062,288

    Google Scholar 

  196. Yoakim C, Bailey MD, Bilodeau F et al (2010) Inhibitors of human immunodeficiency virus Replication. World patent WO 2010/130,034

    Google Scholar 

  197. Fukuhara N, Fernandez E, Ebert J et al (2004) Conformational variability of nucleo-cytoplasmic transport factors. J Biol Chem 279:2176–2181

    CAS  Google Scholar 

  198. Fenwick C, Bethell R, Cordingley M (2011) BI 224436, a non-catalytic site integrase inhibitor, is a potent inhibitor of the replication of treatment-naive and raltegravir-resistant clinical isolates of HIV-1. In: 51st Interscience conference on antimicrobial agents and chemotherapy, Chicago, 17–20 September 2011

    Google Scholar 

  199. Brown A, McSharry J, Kulawy R (2011) Pharmacodynamics of BI 224436 for HIV-1 in an in vitro hollow fiber infection model system. 51st Interscience conference on antimicrobial agents and chemotherapy, Chicago, 17–20 September 2011

    Google Scholar 

  200. Yoakim C, Amad M, Bailey M (2011) Preclinical profile of BI 224436, a novel HIV-1 non-catalytic site integrase inhibitor. In: 51st Interscience conference on antimicrobial agents and chemotherapy, Chicago, 17–20 September 2011

    Google Scholar 

  201. Aslanyan S, Ballow C, Sabo J (2011) Safety and pharmacokinetics (PK) of single rising oral doses of a novel HIV integrase inhibitor in healthy volunteers. In: 51st Interscience conference on antimicrobial agents and chemotherapy, Chicago, 17–20 September 2011

    Google Scholar 

  202. Tsiang M, Jones GS, Niedziela-Majka A et al (2012) New class of HIV-1 integrase (IN) inhibitors with a dual mode of action. J Biol Chem 287:21189–21203

    CAS  Google Scholar 

  203. Babaoglu K, Bjornson K, Guo H et al (2012) 2-Quinolinyl- acetic acid derivatives as HIV antiviral compounds. World patent WO 2012/003,498

    Google Scholar 

  204. Babaoglu K, Bjornson K, Guo H et al (2012) Napht- 2 -Ylacetic acid derivatives to treat Aids. World patent WO 2012/003497

    Google Scholar 

  205. Mitchell ML, Roethle PA, Xu L et al (2012) Benzothiazole compounds and their pharmaceutical use. World patent WO 2012/145,728

    Google Scholar 

  206. Li W, De Croos P, Fandrick KR et al (2012) Process for the preparation of an HIV integrase inhibitor. World patent WO 2012/138670

    Google Scholar 

  207. Li ZJ, Li Z, Luo L et al (2012) Solid state forms of HIV inhibitor. World patent WO 2012/138,669

    Google Scholar 

  208. Jurado KA, Wang H, Slaughter A et al (2013) Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. Proc Natl Acad Sci U S A 110:8690–8695

    CAS  Google Scholar 

  209. Feng L, Sharma A, Slaughter A et al (2013) The A128T resistance mutation reveals aberrant protein multimerization as the primary mechanism of action of allosteric HIV-1 integrase inhibitors. J Biol Chem 288:15813–15820

    CAS  Google Scholar 

  210. Kessl JJ, Li M, Ignatov M et al (2011) FRET analysis reveals distinct conformations of IN tetramers in the presence of viral DNA or LEDGF/p75. Nucleic Acids Res 39:9009–9022

    CAS  Google Scholar 

  211. McKee CJ, Kessl JJ, Shkriabai N et al (2008) Dynamic modulation of HIV-1 integrase structure and function by cellular lens epithelium-derived growth factor (LEDGF) protein. J Biol Chem 283:31802–31812

    CAS  Google Scholar 

  212. Schrijvers R, Demeulemeester J, De Rijck J et al (2012) Characterization of rare LEDGF/p75 genetic variants identified in HIV-1 long-term non-progressors. AIDS 27:539–543

    Google Scholar 

  213. Demeulemeester J, Tintori C, Botta M et al (2012) Development of an alphascreen-based HIV-1 integrase dimerization assay for discovery of novel allosteric inhibitors. J Biomol Screen 17:618–628

    CAS  Google Scholar 

  214. Tsiang M, Jones GS, Hung M et al (2011) Dithiothreitol causes HIV-1 integrase dimer dissociation while agents interacting with the integrase dimer interface promote dimer formation. Biochemistry 50:1567–1581

    CAS  Google Scholar 

  215. Engelman A, Englund G, Orenstein JM et al (1995) Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol 69:2729–2736

    CAS  Google Scholar 

  216. Desimmie BA, Schrijvers R, Demeulemeester J et al (2013) LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. Retrovirology 10:57

    Google Scholar 

  217. Desimmie B, Schrijvers R, Vets S et al (2013) Incorporation of LEDGF/p75 in viral particles is crucial for HIV infectivity. In: 20th Conference on retroviruses and opportunistic infections, Atlanta, 3–6 March 2013

    Google Scholar 

  218. Desimmie BA, Humbert M, Lescrinier E et al (2012) Phage display-directed discovery of LEDGF/p75 binding cyclic peptide inhibitors of HIV replication. Mol Ther 20:2064–2075

    CAS  Google Scholar 

  219. Shen L, Rabi SA, Sedaghat AR et al (2011) A critical subset model provides a conceptual basis for the high antiviral activity of major HIV drugs. Sci Transl Med 3:91ra63

    CAS  Google Scholar 

  220. Fenwick CW, Tremblay S, Wardrop E et al Resistance studies with HIV-1 non-catalytic site integrase inhibitors. In: International workshop on HIV & hepatitis virus drug resistance and curative strategies. Cabo, 7–11 June 2011

    Google Scholar 

  221. Pendri A, Li G, Gerritz S et al (2012) Inhibitors of human immunodeficiency virus replication. World patent WO 2012/033,735

    Google Scholar 

  222. Naidu BN, Patel M (2013) Inhibitors of human immunodeficiency virus replication. World patent WO 2013/025584

    Google Scholar 

  223. Haydar SN, Johns BA, Velthuisen EJ (2013) Pyrrolopyridinone compounds and methods for treating HIV. World patent WO 2013/043,553

    Google Scholar 

  224. La Rosa De MA, Haydar SN, Johns BA, Velthuisen EJ (2012) Isoquinoline compounds and methods for treating HIV. World patent WO 2012/102,985

    Google Scholar 

  225. La Rosa De MA, Johns BA, Samano V et al (2013) Azaindole compounds and methods for treating HIV. World patent WO 2013/012,649

    Google Scholar 

  226. Hattori K, Kurihara N, Iwaki T et al (2013) HIV replication inhibitor. World patent WO 2013/002,357

    Google Scholar 

  227. Iwaki T, Tomita K (2013) HIV replication inhibitor. World patent WO 2013/062,028

    Google Scholar 

  228. Chasset S, Chevreuil F, Ledoussal B et al (2012) Inhibitors of viral replication, their process of preparation and their therapeutical uses. World patent WO 2012/140,243

    Google Scholar 

  229. Chasset S, Chevreuil F, Ledoussal B et al (2012) Inhibitors of viral replication, their process of preparation and their therapeutical uses. World patent WO 2012/137,181

    Google Scholar 

  230. Son JC, Kim BJ, Kim JH et al (2013) Novel antiviral pyrrolopyridine derivative and a production method for same. World patent WO 2013/073,875

    Google Scholar 

  231. Rhodes DI, Peat TS, Vandegraaff N et al (2011) Crystal structures of novel allosteric peptide inhibitors of HIV integrase identify new interactions at the LEDGF binding site. Chembiochem 12:2311–2315

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Demeulemeester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demeulemeester, J., De Maeyer, M., Debyser, Z. (2013). HIV-1 Integrase Drug Discovery Comes of Age. In: Diederich, W., Steuber, H. (eds) Therapy of Viral Infections. Topics in Medicinal Chemistry, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7355_2013_33

Download citation

Publish with us

Policies and ethics