Skip to main content

Endosomal PTH Receptor Signaling Through cAMP and Its Consequence for Human Medicine

  • Chapter
  • First Online:
Structure and Function of GPCRs

Abstract

The parathyroid hormone (PTH) type 1 receptor (PTHR) is a medically important G protein-coupled receptor (GPCR) that triggers the cAMP/PKA signaling pathway in kidney and bone cells to regulate calcium ion homeostasis and bone turnover. It has been generally assumed that the production of cAMP mediated by GPCR and its termination take place exclusively at the plasma membrane. Recent studies reveal that the PTHR does not always follow this conventional paradigm. In the new model, PTH induces a prolonged cAMP response that is derived from the internalized ligand–PTHR complex located within endosomes. This model has been recognized as a new paradigm of GPCR signaling for peptide hormones, and the PTHR is a prototypical example. In this chapter we discuss molecular, structural, and cellular mechanisms responsible for this unexpected signaling process and its biological consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Juppner H, Abou-Samra AB, Freeman M, Kong XF, Schipani E, Richards J, Kolakowski LF Jr, Hock J, Potts JT Jr, Kronenberg HM et al (1991) A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 254:1024–1026

    Article  CAS  Google Scholar 

  2. Gardella TJ, Vilardaga JP (2015) International Union of Basic and Clinical Pharmacology. XCIII. The parathyroid hormone receptors – family B G protein-coupled receptors. Pharmacol Rev 67:310–337

    Article  CAS  Google Scholar 

  3. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441

    Article  CAS  Google Scholar 

  4. Ferrandon S, Feinstein TN, Castro M, Wang B, Bouley R, Potts JT, Gardella TJ, Vilardaga JP (2009) Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat Chem Biol 5:734–742

    Article  CAS  Google Scholar 

  5. Dean T, Vilardaga JP, Potts JT Jr, Gardella TJ (2008) Altered selectivity of parathyroid hormone (PTH) and PTH-related protein (PTHrP) for distinct conformations of the PTH/PTHrP receptor. Mol Endocrinol 22:156–166

    Article  CAS  Google Scholar 

  6. Hoare SR, Sullivan SK, Pahuja A, Ling N, Crowe PD, Grigoriadis DE (2003) Conformational states of the corticotropin releasing factor 1 (CRF1) receptor: detection, and pharmacological evaluation by peptide ligands. Peptides 24:1881–1897

    Article  CAS  Google Scholar 

  7. Vilardaga JP, Gardella TJ, Wehbi VL, Feinstein TN (2012) Non-canonical signaling of the PTH receptor. Trends Pharmacol Sci 33:423–431

    Article  CAS  Google Scholar 

  8. Feinstein TN, Yui N, Webber MJ, Wehbi VL, Stevenson HP, King JD Jr, Hallows KR, Brown D, Bouley R, Vilardaga JP (2013) Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin. J Biol Chem 288:27849–27860

    Article  CAS  Google Scholar 

  9. Marx UC, Austermann S, Bayer P, Adermann K, Ejchart A, Sticht H, Walter S, Schmid FX, Jaenicke R, Forssmann WG et al (1995) Structure of human parathyroid hormone 1-37 in solution. J Biol Chem 270:15194–15202

    Article  CAS  Google Scholar 

  10. Weidler M, Marx UC, Seidel G, Schafer W, Hoffmann E, Esswein A, Rosch P (1999) The structure of human parathyroid hormone-related protein(1-34) in near-physiological solution. FEBS Lett 444:239–244

    Article  CAS  Google Scholar 

  11. Pioszak AA, Parker NR, Gardella TJ, Xu HE (2009) Structural basis for parathyroid hormone-related protein binding to the parathyroid hormone receptor and design of conformation-selective peptides. J Biol Chem 284:28382–28391

    Article  CAS  Google Scholar 

  12. Pioszak AA, Xu HE (2008) Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proc Natl Acad Sci U S A 105:5034–5039

    Article  CAS  Google Scholar 

  13. Bisello A, Adams AE, Mierke DF, Pellegrini M, Rosenblatt M, Suva LJ, Chorev M (1998) Parathyroid hormone-receptor interactions identified directly by photocross-linking and molecular modeling studies. J Biol Chem 273:22498–22505

    Article  CAS  Google Scholar 

  14. Adams AE, Bisello A, Chorev M, Rosenblatt M, Suva LJ (1998) Arginine 186 in the extracellular N-terminal region of the human parathyroid hormone 1 receptor is essential for contact with position 13 of the hormone. Mol Endocrinol 12:1673–1683

    Article  CAS  Google Scholar 

  15. Behar V, Bisello A, Bitan G, Rosenblatt M, Chorev M (2000) Photoaffinity cross-linking identifies differences in the interactions of an agonist and an antagonist with the parathyroid hormone/parathyroid hormone-related protein receptor. J Biol Chem 275:9–17

    Article  CAS  Google Scholar 

  16. Shimizu M, Carter PH, Gardella TJ (2000) Autoactivation of type-1 parathyroid hormone receptors containing a tethered ligand. J Biol Chem 275:19456–19460

    Article  CAS  Google Scholar 

  17. Gensure RC, Carter PH, Petroni BD, Juppner H, Gardella TJ (2001) Identification of determinants of inverse agonism in a constitutively active parathyroid hormone/parathyroid hormone-related peptide receptor by photoaffinity cross-linking and mutational analysis. J Biol Chem 276:42692–42699

    Article  CAS  Google Scholar 

  18. Gensure RC, Gardella TJ, Juppner H (2001) Multiple sites of contact between the carboxyl-terminal binding domain of PTHrP-(1–36) analogs and the amino-terminal extracellular domain of the PTH/PTHrP receptor identified by photoaffinity cross-linking. J Biol Chem 276:28650–28658

    Article  CAS  Google Scholar 

  19. Siu FY, He M, de Graaf C, Han GW, Yang D, Zhang Z, Zhou C, Xu Q, Wacker D, Joseph JS, Liu W, Lau J, Cherezov V, Katritch V, Wang MW, Stevens RC (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499:444–449

    Article  CAS  Google Scholar 

  20. Hollenstein K, Kean J, Bortolato A, Cheng RK, Dore AS, Jazayeri A, Cooke RM, Weir M, Marshall FH (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499:438–443

    Article  CAS  Google Scholar 

  21. Jin L, Briggs SL, Chandrasekhar S, Chirgadze NY, Clawson DK, Schevitz RW, Smiley DL, Tashjian AH, Zhang F (2000) Crystal structure of human parathyroid hormone 1-34 at 0.9-A resolution. J Biol Chem 275:27238–27244

    CAS  PubMed  Google Scholar 

  22. Shimizu N, Guo J, Gardella TJ (2001) Parathyroid hormone (PTH)-(1-14) and -(1-11) analogs conformationally constrained by alpha-aminoisobutyric acid mediate full agonist responses via the juxtamembrane region of the PTH-1 receptor. J Biol Chem 276:49003–49012

    Article  CAS  Google Scholar 

  23. Tsomaia N, Pellegrini M, Hyde K, Gardella TJ, Mierke DF (2004) Toward parathyroid hormone minimization: conformational studies of cyclic PTH(1-14) analogues. Biochemistry 43:690–699

    Article  CAS  Google Scholar 

  24. Barazza A, Wittelsberger A, Fiori N, Schievano E, Mammi S, Toniolo C, Alexander JM, Rosenblatt M, Peggion E, Chorev M (2005) Bioactive N-terminal undecapeptides derived from parathyroid hormone: the role of alpha-helicity. J Pept Res 65:23–35

    Article  CAS  Google Scholar 

  25. Fiori N, Caporale A, Schievano E, Mammi S, Geyer A, Tremmel P, Wittelsberger A, Woznica I, Chorev M, Peggion E (2007) Structure-function relationship studies of PTH(1-11) analogues containing sterically hindered dipeptide mimetics. J Pept Sci 13:504–512

    Article  CAS  Google Scholar 

  26. Caporale A, Biondi B, Schievano E, Wittelsberger A, Mammi S, Peggion E (2009) Structure-function relationship studies of PTH(1-11) analogues containing D-amino acids. Eur J Pharmacol 611:1–7

    Article  CAS  Google Scholar 

  27. Caporale A, Fiori N, Schievano E, Wittelsberger A, Mammi S, Chorev M, Peggion E (2009) Structure-function relationship study of parathyroid hormone (1-11) analogues containing D-AA. Adv Exp Med Biol 611:113–114

    Article  CAS  Google Scholar 

  28. Caporale A, Sturlese M, Gesiot L, Zanta F, Wittelsberger A, Cabrele C (2010) Side chain cyclization based on serine residues: synthesis, structure, and activity of a novel cyclic analogue of the parathyroid hormone fragment 1-11. J Med Chem 53:8072–8079

    Article  CAS  Google Scholar 

  29. Cupp ME, Song B, Kibler P, Raghavender US, Nayak SK, Thomsen W, Galande AK (2013) Investigating hydrophobic ligand-receptor interactions in parathyroid hormone receptor using peptide probes. J Pept Sci 19:337–344

    Article  CAS  Google Scholar 

  30. Chorev M, Goldman ME, McKee RL, Roubini E, Levy JJ, Gay CT, Reagan JE, Fisher JE, Caporale LH, Golub EE et al (1990) Modifications of position 12 in parathyroid hormone and parathyroid hormone related protein: toward the design of highly potent antagonists. Biochemistry 29:1580–1586

    Article  Google Scholar 

  31. Yang L, Yang D, de Graaf C, Moeller A, West GM, Dharmarajan V, Wang C, Siu FY, Song G, Reedtz-Runge S, Pascal BD, Wu B, Potter CS, Zhou H, Griffin PR, Carragher B, Yang H, Wang MW, Stevens RC, Jiang H (2015) Conformational states of the full-length glucagon receptor. Nat Commun 6:7859

    Article  CAS  Google Scholar 

  32. Dean T, Linglart A, Mahon MJ, Bastepe M, Juppner H, Potts JT Jr, Gardella TJ (2006) Mechanisms of ligand binding to the parathyroid hormone (PTH)/PTH-related protein receptor: selectivity of a modified PTH(1-15) radioligand for GalphaS-coupled receptor conformations. Mol Endocrinol 20:931–943

    Article  CAS  Google Scholar 

  33. Feinstein TN, Wehbi VL, Ardura JA, Wheeler DS, Ferrandon S, Gardella TJ, Vilardaga JP (2011) Retromer terminates the generation of cAMP by internalized PTH receptors. Nat Chem Biol 7:278–284

    Article  CAS  Google Scholar 

  34. Wehbi VL, Stevenson HP, Feinstein TN, Calero G, Romero G, Vilardaga JP (2013) Noncanonical GPCR signaling arising from a PTH receptor-arrestin-Gbetagamma complex. Proc Natl Acad Sci U S A 110:1530–1535

    Article  CAS  Google Scholar 

  35. Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW, Xu Q, de Waal PW, Ke J, Tan MH, Zhang C, Moeller A, West GM, Pascal BD, Van Eps N, Caro LN, Vishnivetskiy SA, Lee RJ, Suino-Powell KM, Gu X, Pal K, Ma J, Zhi X, Boutet S, Williams GJ, Messerschmidt M, Gati C, Zatsepin NA, Wang D, James D, Basu S, Roy-Chowdhury S, Conrad CE, Coe J, Liu H, Lisova S, Kupitz C, Grotjohann I, Fromme R, Jiang Y, Tan M, Yang H, Li J, Wang M, Zheng Z, Li D, Howe N, Zhao Y, Standfuss J, Diederichs K, Dong Y, Potter CS, Carragher B, Caffrey M, Jiang H, Chapman HN, Spence JC, Fromme P, Weierstall U, Ernst OP, Katritch V, Gurevich VV, Griffin PR, Hubbell WL, Stevens RC, Cherezov V, Melcher K, Xu HE (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567

    Article  CAS  Google Scholar 

  36. Burda P, Padilla SM, Sarkar S, Emr SD (2002) Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J Cell Sci 115:3889–3900

    Article  CAS  Google Scholar 

  37. Collins BM (2008) The structure and function of the retromer protein complex. Traffic 9:1811–1822

    Article  CAS  Google Scholar 

  38. Temkin P, Lauffer B, Jager S, Cimermancic P, Krogan NJ, von Zastrow M (2011) SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol 13:715–721

    Article  Google Scholar 

  39. Shi H, Rojas R, Bonifacino JS, Hurley JH (2006) The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain. Nat Struct Mol Biol 13:540–548

    Article  CAS  Google Scholar 

  40. Gidon A, Al-Bataineh MM, Jean-Alphonse FG, Stevenson HP, Watanabe T, Louet C, Khatri A, Calero G, Pastor-Soler NM, Gardella TJ, Vilardaga JP (2014) Endosomal GPCR signaling turned off by negative feedback actions of PKA and v-ATPase. Nat Chem Biol 10:707–709

    Article  CAS  Google Scholar 

  41. Okazaki M, Ferrandon S, Vilardaga JP, Bouxsein ML, Potts JT Jr, Gardella TJ (2008) Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation. Proc Natl Acad Sci U S A 105:16525–16530

    Article  CAS  Google Scholar 

  42. National Center for Advancing Translational Sciences (2014) Long-acting parathyroid hormone analogs for treatment of hypoparathyroidism. http://www.ncats.nih.gov/research/reengineering/bridgs/projects/parathyroid.html

  43. Hattersley G, Dean T, Corbin BA, Bahar H, Gardella TJ (2015) Binding selectivity of abaloparatide for PTH-type-1-receptor conformations and effects on downstream signaling. Endocrinology 157(1):141–149

    Article  Google Scholar 

  44. Vilardaga JP, Jean-Alphonse FG, Gardella TJ (2014) Endosomal generation of cAMP in GPCR signaling. Nat Chem Biol 10:700–706

    Article  CAS  Google Scholar 

  45. Kotowski SJ, Hopf FW, Seif T, Bonci A, von Zastrow M (2011) Endocytosis promotes rapid dopaminergic signaling. Neuron 71:278–290

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH) under Award numbers R01 DK087688 and R01 DK102495 (JPV), and the Cotswold Foundation Fellowship Award (FJA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Vilardaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sutkeviciute, I., Jean-Alphonse, F.G., Vilardaga, JP. (2017). Endosomal PTH Receptor Signaling Through cAMP and Its Consequence for Human Medicine. In: Lebon, G. (eds) Structure and Function of GPCRs. Topics in Medicinal Chemistry, vol 30. Springer, Cham. https://doi.org/10.1007/7355_2017_1

Download citation

Publish with us

Policies and ethics