Skip to main content

Brachypodium and the Abiotic Environment

  • Chapter
  • First Online:
Genetics and Genomics of Brachypodium

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 18))

Abstract

Brachypodium distachyon and its congeners are found in diverse environments throughout the temperate regions of the world. Brachypodium species also show considerable variation in life history strategy, with species representing short-season annual habits and other species persisting for multiple years. This variation in ecological setting and life history suggests the existence of considerable genetic diversity in adaptation to the abiotic environment, both in constitutive tolerance to local conditions and in the capacity of single genotypes to acclimate to changing or unpredictable conditions. We review the limited but growing empirical literature on the physiology, development, and molecular biology of the interaction of Brachypodium with the abiotic environment. We highlight how these findings inform studies of ecologically and agriculturally-important plant species, and identify areas of future research that will extend the utility of Brachypodium as a model genetic system for understanding plant-environment interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P. Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res. 2008;98(1–3):541–50.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong JK, Huenneke LF. Spatial and temporal variation in species composition in California grasslands: the interaction of drought and substratum. The vegetation of ultramafic (Serpentine) soils: Proceedings of the First International Conference on Serpentine Ecology. Andover, Hampshire: Intercept Ltd; 1993.

    Google Scholar 

  • Aronson J, Kigel J, Shmida A, Klein J. Adaptive phenology of desert and Mediterranean populations of annual plants grown with and without water stress. Oecologia. 1992;89:17–26.

    Article  Google Scholar 

  • Bertolini E, Verelst W, Horner DS, Gianfranceschi L, Piccolo V, Inze D, et al. Addressing the role of microRNAs in reprogramming leaf growth during drought stress in Brachypodium distachyon. Mol Plant. 2013;6(2):423–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boden SA, Kavanova M, Finnegan EJ, Wigge PA. Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes. Genome Biol. 2013;14(6):R65.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bradshaw AD, Putwain PD. Life history variation in Poa annua. Evolution. 1972;31:233–46.

    Google Scholar 

  • Bragg JN, Wu J, Gordon SP, Guttman ME, Thilmony R, Lazo GR, et al. Generation and characterization of the Western Regional Research Center Brachypodium T-DNA insertional mutant collection. PLoS One. 2012;7(9):e41916.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brkljacic J, Grotewold E, Scholl R, Mockler T, Garvin DF, Vain P, et al. Brachypodium as a model for the grasses: today and the future. Plant Physiol. 2011;157(1):3–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Budak H, Akpinar A. Dehydration stress-responsive miRNA in Brachypodium distachyon: evident by genome-wide screening of microRNAs expression. OMICS. 2011;15(11):791–9.

    Article  CAS  PubMed  Google Scholar 

  • Catalan P, Muller J, Hasterok R, Jenkins G, Mur LA, Langdon T, et al. Evolution and taxonomic split of the model grass Brachypodium distachyon. Ann Bot. 2012;109(2):385–405.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Catalan P, Olmstead RG. Phylogenetic reconstruction of the genus Brachypodium P. Beauv (Poaceae) from combined sequences of chloroplast ndhF and nuclear ITS. Plant Syst Evol. 2000;220:1–19.

    Article  CAS  Google Scholar 

  • Chaves MM. How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot. 2002;89(7):907–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chochois V, Vogel J, Rebetzke GJ, Watt M. Variation in adult plant phenotypes and partitioning among seed and stem-borne roots across Brachypodium distachyon accessions to exploit in breeding cereals for well-watered and drought environments. Plant Physiol. 2015;168(3):953–67.

    Article  PubMed Central  PubMed  Google Scholar 

  • Colton-Gagnon K, Ali-Benali MA, Mayer BF, Dionne R, Bertrand A, Do Carmo S, et al. Comparative analysis of the cold acclimation and freezing tolerance capacities of seven diploid Brachypodium distachyon accessions. Ann Bot. 2014;113(4):681–93.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dalmais M, Antelme S, Ho-Yue-Kuang S, Wang Y, Darracq O, d’Yvoire MB, et al. A TILLING platform for functional genomics in Brachypodium distachyon. PLoS One. 2013;8(6):e65503.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dell’Acqua M, Zuccolo A, Tuna M, Gianfranceschi L, Pe ME. Targeting environmental adaptation in the monocot model Brachypodium distachyon: a multi-faceted approach. BMC Genomics. 2014;15:801.

    Article  PubMed Central  PubMed  Google Scholar 

  • Des Marais DL, Hernandez KH, Juenger TE. Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment. Annu Rev Ecol Evol Syst. 2013;44:5–29.

    Article  Google Scholar 

  • Des Marais DL, McKay JK, Richards JH, Sen S, Wayne T, Juenger TE. Physiological genomics of response to soil drying in diverse Arabidopsis accessions. Plant Cell. 2012;24(3):893–914.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fischer RA. Wheat physiology: a review of recent developments. Crop Pasture Sci. 2011;62:95–114.

    Article  Google Scholar 

  • Fowler S, Cook D, Thomashow MF. The CBF cold-response pathway. In: Jenks MA, Hasegawa PM, editors. Plant abiotic stress. Chichester: Wiley-Blackwell; 2007. p. 71–99.

    Google Scholar 

  • Glover JD, Reganold JP, Bell LW, Borevitz J, Brummer EC, Buckler ES, et al. Agriculture. Increased food and ecosystem security via perennial grains. Science. 2010;328(5986):1638–9.

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Priest H, Des Marais DL, Schackwitz W, Figueroa M, Martin J, et al. Genome diversity in Brachypodium distachyon: Deep sequencing of highly diverse inbred lines. Plant J. 2014;79:361–74.

    Article  CAS  PubMed  Google Scholar 

  • Hall AJ, Richards RA. Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crop Res. 2013;143:18–33.

    Article  Google Scholar 

  • Hammami R, Jouve N, Soler C, Frieiro E, González JM. Genetic diversity of SSR and ISSR markers in wild populations of Brachypodium distachyon and its close relatives B. stacei and B. hybridum (Poaceae). Plant Syst Evol. 2014;300(9):2029–40.

    Article  Google Scholar 

  • Han Y, Zhang X, Wang Y, Ming F. The suppression of WRKY44 by GIGANTEA-miR172 pathway is involved in drought response of Arabidopsis thaliana. PLoS One. 2013;8(11):e73541.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25(15):1965–78.

    Article  Google Scholar 

  • Hincha DK, Hellwege EM, Heyer AG, Crowe JH. Plant fructans stabilize phosphatidylcholine liposomes during freeze-drying. Eur J Biochem. 2000;267:535–40.

    Article  CAS  PubMed  Google Scholar 

  • Initiative TIB. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010;463:763–8.

    Article  Google Scholar 

  • Juenger TE. Natural variation and genetic constraints on drought tolerance. Curr Opin Plant Biol. 2013;16:274–81.

    Article  CAS  PubMed  Google Scholar 

  • Kenny A, McKay J, Richards JH, Juenger T. Direct and indirect section on flowering time, water-use efficiency (deltaC13), and their plasticty to drought in Arabidopsis thaliana. Ecol Evol. 2014;43:4505–21.

    Article  Google Scholar 

  • Khan MA. Biosystematic studies in Brachypodium (Poaceae). Leicester: University of Leicester; 1984.

    Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, et al. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 2007;50(2):347–63.

    Article  CAS  PubMed  Google Scholar 

  • Kumar SV, Wigge PA. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell. 2010;140:136–47.

    Article  CAS  PubMed  Google Scholar 

  • Lasky JR, Des Marais DL, Lowry DB, Povolotskaya I, McKay J, Richards JH, et al. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana. Mol Biol Evol. 2014;31:2283–96.

    Article  PubMed Central  PubMed  Google Scholar 

  • Li C, Rudi H, Stockinger EJ, Cheng H, Cao M, Fox SE, et al. Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses. BMC Plant Biol. 2012;12:65.

    Article  PubMed Central  PubMed  Google Scholar 

  • López-Alvarez D, Manzaneda AJ, Rey PJ, Giraldo P, Benavente E, Allainguillaume J, et al. Environmental niche variation and evolutionary diversification of the Brachypodium distachyon grass complex species in their native circum-Mediterranean range. Am J Bot. 2015;102(7):1073–88.

    Article  PubMed  Google Scholar 

  • Lovell JT, Juenger TE, Michaels SD, Lasky JR, Platt A, Richards JH, et al. Pleiotropy of FRIGIDA enhances the potential for multivariate adaptation. Proc Biol Sci. 2013;280(1763):20131043.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ludlow MM. Strategies of response to water stress. In: Kreeb KH, Richter H, Hinckley TM, editors. Structural and functional responses to environmental stresses. The Hague: SPB Academic; 1989. p. 269–81.

    Google Scholar 

  • Luo N, Liu J, Yu X, Jiang Y. Natural variation of drought response in Brachypodium distachyon. Physiol Plant. 2011;141:19–29.

    Article  CAS  PubMed  Google Scholar 

  • Makumburage GB, Stapleton AE. Phenotype uniformity in combined-stress environments has a different genetic architecture than in single-stress treatments. Front Plant Sci. 2011;2:12.

    Article  PubMed Central  PubMed  Google Scholar 

  • Manzaneda AJ, Rey PJ, Bastida JM, Weiss-Lehman C, Raskin E, Mitchell-Olds T. Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytol. 2012;193:797–805.

    Article  PubMed Central  PubMed  Google Scholar 

  • Marchand G, Huynh-Thu VA, Kane NC, Arribat S, Vares D, Rengel D, et al. Bridging physiological and evolutionary time-scales in a gene regulatory network. New Phytol. 2014;203(2):685–96.

    Article  CAS  PubMed  Google Scholar 

  • McKay JK, Richards JH, Mitchell-Olds T. Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits. Mol Ecol. 2003;12:1137–51.

    Article  CAS  PubMed  Google Scholar 

  • Mendez-Vigo B, Pico FX, Martinez-Zapater JM, Alonso-Blanco C. Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis. Plant Physiol. 2011;157:1942–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E. Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol. 2010;61:443–62.

    Article  CAS  PubMed  Google Scholar 

  • Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. In silico analysis of transcription factor repertoires and prediction of stress-responsive transcription factors from six major gramineae plants. DNA Res. 2011;18(5):321–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, et al. Assessing species vulnerability to climate change. Nat Clim Change. 2015;5(3):215–24.

    Article  Google Scholar 

  • Partridge RB, Harvey PH. The ecological context of life history evolution. Science. 1988;241:1449–55.

    Article  CAS  PubMed  Google Scholar 

  • Prasch CM, Sonnewald U. Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol. 2013;162(4):1849–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Priest HD, Fox SE, Rowley ER, Murray JR, Michael TP, Mockler TC. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress. PLoS One. 2014;9(1):e87499.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ream TS, Woods DP, Schwartz CJ, Sanabria CP, Mahoy JA, Walters EM, et al. Interaction of photoperiod and vernalization determines flowering time of Brachypodium distachyon. Plant Physiol. 2014;164(2):694–709.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rebetzke GJ, Condon AG, Farquhar GD, Appels R, Richards RA. Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations. Theor Appl Genet. 2008;118:123–37.

    Article  CAS  PubMed  Google Scholar 

  • Rengel D, Arribat S, Maury P, Martin-Magniette ML, Hourlier T, Laporte M, et al. A gene-phenotype network based on genetic variability for drought responses reveals key physiological processes in controlled and natural environments. PLoS One. 2012;7(10):e45249.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 2004;134:1683–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schippmann U. Revision der europaischen Arten der Gattung Brachypodium Palisot de Beauvois (Poaceae). Boissiera. 1991;45:1–250.

    Google Scholar 

  • Schmalenbach I, Zhang L, Reymond M, Jimenez-Gomez JM. The relationship between flowering time and growth responses to drought in the Arabidopsis Landsberg erecta x Antwerp-1 population. Front Plant Sci. 2014;5:609.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwartz CJ, Doyle MR, Manzaneda AJ, Rey PJ, Mitchell-Olds T, Amasino RM. Natural variation of flowering time and vernalization responsiveness in Brachypodium distachyon. Bioenergy Res. 2010;3:38–46.

    Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot. 2007;58(2):221–7.

    Article  CAS  PubMed  Google Scholar 

  • Sidebottom C, Buckley S, Pudney P, Twigg S, Jarman C, Holt C, et al. Phytochemistry: heat-stable antifreeze protein from grass. Nature. 2000;406:256.

    Article  CAS  PubMed  Google Scholar 

  • Steinwand MA, Young HA, Bragg JN, Tobias CM, Vogel JP. Brachypodium sylvaticum, a model for perennial grasses: transformation and inbred line development. PLoS One. 2013;8(9):e75180.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun J, Hu W, Zhou R, Wang L, Wang X, Wang Q, et al. The Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants. Plant Cell Rep. 2014;34(1):23–35.

    Article  CAS  PubMed  Google Scholar 

  • Tripathi P, Rabara RC, Langum TJ, Boken AK, Rushton DL, Boomsma DD, et al. The WRKY transcription factor family in Brachypodium distachyon. BMC Genomics. 2012;13:270.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verelst W, Bertolini E, De Bodt S, Vandepoele K, Demeulenaere M, Pe ME, et al. Molecular and physiological analysis of growth-limiting drought stress in Brachypodium distachyon leaves. Mol Plant. 2013;6(2):311–22.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler T, von Braun J. Climate change impacts on global food security. Science. 2013;341(6145):508–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Jesse Lasky for generating Fig. 1. T.E.J. is supported by the DOE Office of Science, Office of Biological and Environmental Research (BER), grant no. DE-SC0008451 and NSF funding through the Plant Genome Research Program (IOS-0922457).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David L. Des Marais or Thomas E. Juenger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Des Marais, D.L., Juenger, T.E. (2015). Brachypodium and the Abiotic Environment. In: Vogel, J. (eds) Genetics and Genomics of Brachypodium. Plant Genetics and Genomics: Crops and Models, vol 18. Springer, Cham. https://doi.org/10.1007/7397_2015_13

Download citation

Publish with us

Policies and ethics