Skip to main content

Sleep and Synaptic Plasticity in the Developing and Adult Brain

  • Chapter
  • First Online:
Sleep, Neuronal Plasticity and Brain Function

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 25))

Abstract

Sleep is hypothesized to play an integral role in brain plasticity. This has traditionally been investigated using behavioral assays. In the last 10–15 years, studies combining sleep measurements with in vitro and in vivo models of synaptic plasticity have provided exciting new insights into how sleep alters synaptic strength. In addition, new theories have been proposed that integrate older ideas about sleep function and recent discoveries in the field of synaptic plasticity. There remain, however, important challenges and unanswered questions. For example, sleep does not appear to have a single effect on synaptic strength. An unbiased review of the literature indicates that the effects of sleep vary widely depending on ontogenetic stage, the type of waking experience (or stimulation protocols) that precede sleep and the type of neuronal synapse under examination. In this review, I discuss these key findings in the context of current theories that posit different roles for sleep in synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghajanian GK, Bloom FE (1967) The formation of synaptic junctions in developing rat brain: a quantitative electron microscopic study. Brain Res 6:716–727

    CAS  PubMed  Google Scholar 

  • Albensi BC, Oliver DR, Toupin J, Odero G (2007) Electrical stimulation protocols for hippocampal synaptic plasticity and neuronal hyper-excitability: are they effective or relevant? Exp Neurol 204:1–13

    PubMed  Google Scholar 

  • Alfoldi P, Tobler I, Borbely AA (1990) Sleep regulation in rats during early development. Am J Physiol 258:R634–R644

    CAS  PubMed  Google Scholar 

  • Arrigoni E, Lu J, Vetrivelan R, Saper CB (2009) Long-term synaptic plasticity is impaired in rats with lesions of the ventrolateral preoptic nucleus. Eur J Neurosci 30:2112–2120

    PubMed Central  PubMed  Google Scholar 

  • Aton SJ, Broussard C, Dumoulin M, Seibt J, Watson A, Coleman T, Frank MG (2013) Visual experience and subsequent sleep induce sequential plastic changes in putative inhibitory and excitatory cortical neurons. Proc Natl Acad Sci USA 110:3101–3106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aton SJ, Seibt J, Dumoulin M, Jha SK, Steinmetz N, Coleman T, Naidoo N, Frank MG (2009) Mechanisms of sleep-dependent consolidation of cortical plasticity. Neuron 61:454–466

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aton SJ, Suresh A, Broussard C, Frank MG (2014) Sleep promotes cortical response potentiation following visual experience. Sleep (in press)

    Google Scholar 

  • Battaglia FP, Sutherland GR, McNaughton BL (2004) Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions. Learn Mem 11:697–704

    PubMed Central  PubMed  Google Scholar 

  • Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4:389–399

    CAS  PubMed  Google Scholar 

  • Bendor D, Wilson MA (2012) Biasing the content of hippocampal replay during sleep. Nat Neurosci 15:1439–1444

    PubMed Central  CAS  PubMed  Google Scholar 

  • Benington JH, Frank MG (2003) Cellular and molecular connections between sleep and synaptic plasticity. Prog Neurobiol 69:77–101

    Google Scholar 

  • Benington JH, Heller HC (1994) Does the function of REM sleep concern non-REM sleep or waking? Prog Neurobiol 44:433–449

    CAS  PubMed  Google Scholar 

  • Bittar P, Muller D (1993) Time-dependent reversal of long-term potentiation by brief cooling shocks in rat hippocampal slices. Brain Res 620:181–188

    CAS  PubMed  Google Scholar 

  • Buisseret P, Imbert M (1976) Visual cortical cells: their developmental properties in normal and dark reared kittens. J Physiol 255:511–525

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buzsaki G (1996) The hippocampo-neocortical dialogue. Cereb Cortex 6:81–92

    CAS  PubMed  Google Scholar 

  • Campbell IG, Guinan MJ, Horowitz JM (2002) Sleep deprivation impairs long-term potentiation in the rat hippocampal slices. J Neurophysiol 88:1073–1076

    CAS  PubMed  Google Scholar 

  • Chauvette S, Seigneur J, Timofeev I (2012) Sleep oscillations in the thalamocortical system induce long-term neuronal plasticity. Neuron 75:1105–1113

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen C, Hardy M, Zhang J, LaHoste GJ, Bazan NG (2006) Altered NMDA receptor trafficking contributes to sleep deprivation-induced hippocampal synaptic and cognitive impairments. Biochem Biophys Res Commun 340:435–440

    CAS  PubMed  Google Scholar 

  • Conboy L, Sandi C (2009) Stress at learning facilitates memory formation by regulating AMPA receptor trafficking through a glucocorticoid action. Neuropsychopharmacology 35:674–685

    PubMed Central  PubMed  Google Scholar 

  • Cooke SF, Bear MF (2010) Visual experience induces long-term potentiation in the primary visual cortex. J Neurosci 30:16304–16313

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crair MC, Ruthazer ES, Gillespie DC, Stryker MP (1997) Relationship between the ocular dominance and orientation maps in visual cortex of monocularly deprived cats. Neuron 19:307–318

    CAS  PubMed  Google Scholar 

  • Crick F, Mitchison G (1983) The function of dream sleep. Nature 304:111–114

    CAS  PubMed  Google Scholar 

  • Crick F, Mitchison G (1995) REM sleep and neural nets. Behav Brain Res 69:147–155

    CAS  PubMed  Google Scholar 

  • Dadvand L, Stryker MP, Frank MG (2006) Sleep does not enhance the recovery of deprived eye responses in developing visual cortex. Neuroscience 143:815–826

    PubMed Central  CAS  PubMed  Google Scholar 

  • Daftary SS, Panksepp J, Dong Y, Saal DB (2009) Stress-induced, glucocorticoid-dependent strengthening of glutamatergic synaptic transmission in midbrain dopamine neurons. Neurosci Lett 452:273–276

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dave AS, Margoliash D (2000) Song replay during sleep and computational rules of sensorimotor vocal learning. Science 290:812–816

    CAS  PubMed  Google Scholar 

  • Davis CJ, Harding JW, Wright JW (2003) REM sleep deprivation-induced deficits in the latency-to-peak induction and maintenance of long-term potentiation within the CA1 region of the hippocampus. Brain Res 973:293–297

    CAS  PubMed  Google Scholar 

  • Davis CJ, Meighan PC, Taishi P, Krueger JM, Harding JW, Wright JW (2006) REM sleep deprivation attenuates actin-binding protein cortactin: a link between sleep and hippocampal plasticity. Neurosci Lett 400:191–196

    CAS  PubMed  Google Scholar 

  • Daw NW, Sato H, Fox K, Carmichael T, Gingerich R (1991) Cortisol reduces plasticity in the kitten visual cortex. J Neurobiol 22:158–168

    CAS  PubMed  Google Scholar 

  • de Villers-Sidani E, Merzenich MM (2011) Chapter 8—Lifelong plasticity in the rat auditory cortex: basic mechanisms and role of sensory experience. In: Chapman CE, Kalaska JF, Green AM, Franco L (eds) Progress in brain research, Elsevier, pp 119–131

    Google Scholar 

  • Deuker L, Olligs J, Fell J, Kranz TA, Mormann F, Montag C, Reuter M, Elger CE, Axmacher N (2013) Memory consolidation by replay of stimulus-specific neural activity. J Neurosci 33:19373–19383

    CAS  PubMed  Google Scholar 

  • Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11:114–126

    CAS  PubMed  Google Scholar 

  • Donlea JM, Thimgan MS, Suzuki Y, Gottschalk L, Shaw PJ (2011) Inducing sleep by remote control facilitates memory consolidation in Drosophila. Science 332:1571–1576

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dumoulin MC, Aton S, Watson A, Coleman T, Frank MG (2013) ERK activity during sleep is necessary for the consolidation of cortical plasticity. Cerebral cortex (in press)

    Google Scholar 

  • Ego-Stengel V, Wilson MA (2010) Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20:1–10

    PubMed Central  PubMed  Google Scholar 

  • Espinosa JS, Stryker MP (2012) Development and plasticity of the primary visual cortex. Neuron 75:230–249

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fagiolini M, Pizzorusso T, Berardi N, Domenici L, Maffei L (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res 34:709–720

    CAS  PubMed  Google Scholar 

  • Faraguna U, Nelson A, Vyazovskiy VV, Cirelli C, Tononi G (2010) Unilateral cortical spreading depression affects sleep need and induces molecular and electrophysiological signs of synaptic potentiation in vivo. Cereb Cortex 20:2939–2947

    PubMed Central  PubMed  Google Scholar 

  • Faraguna U, Vyazovskiy VV, Nelson AB, Tononi G, Cirelli C (2008) A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci 28:4088–4095

    CAS  PubMed  Google Scholar 

  • Florian CD, Vecsey CG, Halassa MM, Haydon PG, Abel T (2011) Astrocyte-derived adenosine and A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice. J Neurosci 31:6956–6962

    Google Scholar 

  • Foeller E, Feldman DE (2004) Synaptic basis for developmental plasticity in somatosensory cortex. Curr Opin Neurobiol 14:89–95

    CAS  PubMed  Google Scholar 

  • Foster DJ, Wilson MA (2006) Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440:680–683

    CAS  PubMed  Google Scholar 

  • Frank MG (2007) Hippocampal dreams, cortical wishes: a closer look at neuronal replay and the hippocampal-neocortical dialogue during sleep. Cell Sci Rev 3:161–171

    Google Scholar 

  • Frank MG (2011) Sleep and developmental brain plasticity: not just for kids. Prog Brain Res 193:221–232

    PubMed  Google Scholar 

  • Frank MG (2012) Erasing synapses in sleep: is it time to be SHY? Neural Plasticity 2012:264–378

    Google Scholar 

  • Frank MG (2013) Why I’m not SHY: a reply to Tononi and Cirelli. Neural plasticity 2013:394–946

    Google Scholar 

  • Frank MG, Benington J (2006) The role of sleep in brain plasticity: dream or reality? Neurosci 12:477–488

    Google Scholar 

  • Frank MG, Heller HC (1997) Development of REM and slow wave sleep in the rat. Am J Physiol 272:R1792–R1799

    CAS  PubMed  Google Scholar 

  • Frank MG, Issa NP, Stryker MP (2001) Sleep enhances plasticity in the developing visual cortex. Neuron 30:275–287

    CAS  PubMed  Google Scholar 

  • Frank MG, Jha SK, Coleman T (2006) Blockade of postsynaptic activity in sleep inhibits developmental plasticity in visual cortex. NeuroReport 17:1459–1463

    PubMed  Google Scholar 

  • Frank MG, Morrissette R, Heller HC (1998) Effects of sleep deprivation in neonatal rats. Am J Physiol 275:R148–R157

    CAS  PubMed  Google Scholar 

  • Franken P, Dijk DJ, Tobler I, Borbely AA (1991) Sleep deprivation in rats: effects on EEG power spectra, vigilance states, and cortical temperature. Am J Physiol 261:R198–R208

    CAS  PubMed  Google Scholar 

  • Franken P, Tobler I, Borbely AA (1993) Effects of 12-h sleep deprivation and of 12-h cold exposure on sleep regulation and cortical temperature in the rat. Physiolo Behav 54:885–894

    CAS  Google Scholar 

  • Genzel L, Kroes MCW, Dresler M, Battaglia FP (2014) Light sleep versus slow wave sleep in memory consolidation: a question of global versus local processes? Trends Neurosci 37:10–19

    CAS  PubMed  Google Scholar 

  • Girardeau G, Benchenane K, Wiener SI, Buzsaki G, Zugaro MB (2009) Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci 12:1222–1223

    CAS  PubMed  Google Scholar 

  • Girardeau G, Zugaro M (2011) Hippocampal ripples and memory consolidation. Curr Opin Neurobiol 252:452–459

    Google Scholar 

  • Giuditta A (1995) The sequential hypothesis of the function of sleep. Behav Brain Res 69:157–166

    CAS  PubMed  Google Scholar 

  • Glotzbach SF, Heller HC (2000) Temperature regulation. In: Roth C, Kryger M, Dement WC (eds) Principles and practice of sleep medicine. Saunders, Philadelphia, pp 289–304

    Google Scholar 

  • Graves L, Pack A, Abel T (2001) Sleep and memory: a molecular perspective. Trends Neurosci 24:237–243

    CAS  PubMed  Google Scholar 

  • Groc L, Choquet D, Chaouloff F (2008) The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation. Nat Neurosci 11:868–870

    CAS  PubMed  Google Scholar 

  • Guzman-Marin R, Ying Z, Suntsova N, Methippara M, Bashir T, Szymusiak R, Gomez-Pinilla F, McGinty D (2006) Suppression of hippocampal plasticity-related gene expression by sleep deprivation. J Physiol (Lond) 575:807–819

    CAS  Google Scholar 

  • Hanlon EC, Vyazovskiy VV, Faraguna U, Tononi G, Cirelli C (2011) Synaptic potentiation and sleep need: clues from molecular and electrophysiological studies. Curr Top Med Chem 11:2472–2482

    CAS  PubMed  Google Scholar 

  • Hasselmo ME (1999) Neuromodulation: acetylcholine and memory consolidation. Trends Cogn Sci 3:351–359

    PubMed  Google Scholar 

  • Heinrich B (1974) Thermoregulation in endothermic insects. Science 185:747–756

    CAS  PubMed  Google Scholar 

  • Hengen KB, Lambo ME, Van Hooser SD, Katz DB, Turrigiano GG (2013) Firing rate homeostasis in visual cortex of freely behaving rodents. Neuron 80:335–342

    CAS  PubMed  Google Scholar 

  • Hennevin E, Huetz C, Edeline J-M (2007) Neural representations during sleep: from sensory processing to memory traces. Neurobiol Learn Mem 87:416–440

    PubMed  Google Scholar 

  • Hoffman KL, McNaughton BL (2002) Coordinated reactivation of distributed memory traces in primate cortex. Science 297:2070–2073

    CAS  PubMed  Google Scholar 

  • Holscher C (1999) Synaptic plasticity and learning and memory: LTP and beyond. J Neurosci Res 58:62–75

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 206:419–436

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huber R (2007) TMS-induced cortical potentiation during wakefulness locally increases slow wave activity during sleep. PLoS ONE 2:e276

    PubMed Central  PubMed  Google Scholar 

  • Ishikawa A, Kanayama Y, Matsumura H, Tsuchimochi H, Ishida Y, Nakamura S (2006) Selective rapid eye movement sleep deprivation impairs the maintenance of long-term potentiation in the rat hippocampus. Eur J Neurosci 24:243–248

    PubMed  Google Scholar 

  • Jha SK, Jones BE, Coleman T, Steinmetz N, Law C, Griffin G, Hawk J, Frank MG (2005) Sleep-dependent plasticity requires cortical activity. J Neurosci 25:9266–9274

    CAS  PubMed  Google Scholar 

  • Ji D, Wilson MA (2007) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10:100–106

    CAS  PubMed  Google Scholar 

  • Joels M, Krugers H, Karst H (2008) Stress-induced changes in hippocampal function. Prog Brain Res 167:3–15

    CAS  PubMed  Google Scholar 

  • Jouvet-Mounier D, Astic L, Lacote D (1970) Ontogenesis of the states of sleep in rat, cat and guinea pig during the first postnatal month. Dev Psychobiol 2:216–239

    CAS  PubMed  Google Scholar 

  • Karst H, Joels M (2005) Corticosterone slowly enhances miniature excitatory postsynaptic current amplitude in mice CA1 hippocampal cells. J Neurophysiol 94:3479–3486

    CAS  PubMed  Google Scholar 

  • Khazipov R, Sirota A, Leinekugel X, Holmes GL, Ben-Ari Y, Buzsaki G (2004) Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432:758–761

    CAS  PubMed  Google Scholar 

  • Kim E, Mahmoud GS, Grover LM (2005) REM sleep deprivation inhibits LTP in vivo in area CA1 of rat hippocampus. Neurosci Lett 388:163–167

    CAS  PubMed  Google Scholar 

  • Kirkwood A, Lee HK, Bear MF (1995) Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex. Nature 375:328–331

    CAS  PubMed  Google Scholar 

  • Komatsuzaki Y, Hatanaka Y, Murakami G, Mukai H, Hojo Y, Saito M, Kimoto T, Kawato S (2012) Corticosterone induces rapid spinogenesis via synaptic glucocorticoid receptors and kinase networks in hippocampus. PLoS ONE 7:e34124

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kopp C, Longordo F, Nicholson JR, Luthi A (2006) Insufficient sleep reversibly alters bidirectional synaptic plasticity and NMDA receptor function. J Neurosci 26:12456–12465

    CAS  PubMed  Google Scholar 

  • Kudrimoti HS, Barnes CA, McNaughton BL (1999) Reactivation of hippocampal cell assemblies: effects of behavioral state, experience and EEG dynamics. J Neurosci 19:4090–4101

    CAS  PubMed  Google Scholar 

  • Lee AK, Wilson MA (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36:1183–1194

    CAS  PubMed  Google Scholar 

  • Liston C, Cichon JM, Jeanneteau F, Jia Z, Chao MV, Gan W-B (2013) Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nat Neurosci 16:698–705

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu W, Yuen EY, Yan Z (2010) The stress hormone corticosterone increases synaptic amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors via serum- and glucocorticoid-inducible kinase (SGK) regulation of the GDI-Rab4 complex. J Biol Chem 285:6101–6108

    Google Scholar 

  • Longordo F, Kopp C, Mishina M, Lujan R, Luthi A (2009) NR2A at CA1 synapses is obligatory for the susceptibility of hippocampal plasticity to sleep loss. J Neurosci 29:9026–9041

    PubMed Central  CAS  PubMed  Google Scholar 

  • Louie K, Wilson MA (2001) Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29:145–156

    CAS  PubMed  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    CAS  PubMed  Google Scholar 

  • Maquet P, Laureys S, Peigneux P, Fuchs S, Petiau C, Phillips C, Aerts J, Del Fiore G, Degueldre C, Meulemans T, Luxen A, Franck G, Van Der Linden M, Smith C, Cleeremans A (2000) Experience-dependent changes in cerebral activation during human REM sleep. Nat Neurosci 3:831–836

    CAS  PubMed  Google Scholar 

  • Maret S, Faraguna U, Nelson AB, Cirelli C, Tononi G (2011) Sleep and waking modulate spine turnover in the adolescent mouse cortex. Nat Neurosci (advance online publication)

    Google Scholar 

  • Markram H, Gerstner W, Sjostrom PJ (2011) A history of spike-timing-dependent plasticity. Front Synaptic Neurosci 3:1–24

    Google Scholar 

  • Marks CA, Wayner MJ (2005) Effects of sleep disruption on rat dentate granule cell LTP in vivo. Brain Res Bull 66:114–119

    PubMed  Google Scholar 

  • McDermott CM, Hardy MN, Bazan NG, Magee JC (2005) Sleep-deprivation induced alterations in excitatory synaptic transmission in the CA1 region of the rat hippocampus J Physiol (Lond). doi: 10.1113/jphysiol.2005.093781

  • McDermott CM, Hardy MN, Bazan NG, Magee JC (2006) Sleep deprivation-induced alterations in excitatory synaptic transmission in the CA1 region of the rat hippocampus. J Physiol (Lond) 570:553–565

    CAS  Google Scholar 

  • McDermott CM, LaHoste GJ, Chen C, Musto A, Bazan NG, Magee JC (2003) Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci 23:9687–9695

    CAS  PubMed  Google Scholar 

  • Mioche L, Singer W (1989) Chronic recordings from single sites of kitten striate cortex during experience-dependent modifications of receptive-field properties. J Neurophysiol 62:185–197

    CAS  PubMed  Google Scholar 

  • Miyamoto H, Katagiri H, Hensch T (2003) Experience-dependent slow-wave sleep development. Nat Neurosci 6:553–554

    CAS  PubMed  Google Scholar 

  • Mongrain V, Hernandez SA, Pradervand S, Dorsaz S, Curie T, Hagiwara G, Gip P, Heller HC, Franken P (2010) Separating the contribution of glucocorticoids and wakefulness to the molecular and electrophysiological correlates of sleep homeostasis. Sleep 33:1147–1157

    PubMed Central  PubMed  Google Scholar 

  • Moser E, Mathiesen I, Andersen P (1993) Association between brain temperature and dentate field potentials in exploring and swimming rats. Science 259:1324–1326

    CAS  PubMed  Google Scholar 

  • O’Neill J, Senior T, Csicsvari J (2006) Place-selective firing of CA1 pyramidal cells during sharp wave/ripple network patterns in exploratory behavior. Neuron 49:143–155

    PubMed  Google Scholar 

  • Olijslagers JE, de Kloet ER, Elgersma Y, van Woerden GM, Joels M, Karst H (2008) Rapid changes in hippocampal CA1 pyramidal cell function via pre- as well as postsynaptic membrane mineralocorticoid receptors. Eur J Neurosci 27:2542–2550

    CAS  PubMed  Google Scholar 

  • Olson C, Freeman RD (1975) Progressive changes in kitten striate cortex during monocular deprivation. J Neurophysiol 38:26–32

    CAS  PubMed  Google Scholar 

  • Olson C, Freeman RD (1980) Profile of the sensitive period for monocular deprivation in kittens. Exp Brain Res 39:17–21

    CAS  PubMed  Google Scholar 

  • Pavlides C, Winson J (1989) Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep. J Neurosci 9:2907–2918

    CAS  PubMed  Google Scholar 

  • Peigneux P, Laureys S, Fuchs S, Collette F, Perrin F, Reggers J, Phillips C, Degueldre C, Del Fiore G, Aerts J, Luxen A, Maquet P (2004) Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron 44:535–545

    CAS  PubMed  Google Scholar 

  • Peng IF, Berke BA, Zhu Y, Lee W-H, Chen W, Wu C-F (2007) Temperature-dependent developmental plasticity of drosophila neurons: cell-autonomous roles of membrane excitability, Ca2+ influx, and cAMP signaling. J Neurosci 27:12611–12622

    CAS  PubMed  Google Scholar 

  • Pennartz CMA, Lee E, Verheul J, Lipa P, Barnes CA, McNaughton BL (2004) The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples. J Neurosci 24:6446–6456

    CAS  PubMed  Google Scholar 

  • Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP (2009) Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat Neurosci 12:919–926

    CAS  PubMed  Google Scholar 

  • Poe GR, Nitz DA, McNaughton BL, Barnes CA (2000) Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep. Brain Res 855:176–180

    CAS  PubMed  Google Scholar 

  • Pozo K, Goda Y (2010) Unraveling mechanisms of homeostatic synaptic plasticity. Neuron 66:337–351

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qin YL, McNaughton BL, Skaggs WE, Barnes CA (1997) Memory reprocessing in cortiocortical and hippocampalcortical neuronal ensembles. Philos Trans R Soc Lond B Biol Sci 352:1525–1533

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ravassard P, Pachoud B, Comte J, Gay N, Touret M, Luppi P, Salin PA (2006) Paradoxical sleep amount modulates neuronal plasticity in adult rat hippocampus. J Sleep Res 15:191

    Google Scholar 

  • Ravassard P, Pachoud B, Comte JC, Mejia-Perez C, Scote-Blachon C, Gay N, Claustrat B, Touret M, Luppi PH, Salin PA (2009) Paradoxical (REM) sleep deprivation causes a large and rapidly reversible decrease in long-term potentiation, synaptic transmission, glutamate receptor protein levels, and ERK/MAPK activation in the dorsal hippocampus. Sleep 32:227–240

    PubMed Central  PubMed  Google Scholar 

  • Redondo RL, Okuno H, Spooner PA, Frenguelli BG, Bito H, Morris RGM (2010) Synaptic tagging and capture: differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation. J Neurosci 30:4981–4989

    CAS  PubMed  Google Scholar 

  • Ribeiro S (2004) Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas. PLoS Biol 2:e24

    PubMed Central  PubMed  Google Scholar 

  • Ribeiro S (2007) Novel experience induces persistent sleep-dependent plasticity in the cortex but not in the hippocampus. Front Neurosci 1:43–55

    PubMed Central  PubMed  Google Scholar 

  • Ribeiro S (2011) Sleep and plasticity. Pflugers Archiv Eur J Physiol 1–10

    Google Scholar 

  • Roelandse M, Matus A (2004) Hypothermia-associated loss of dendritic spines. J Neurosci 24:7843–7847

    CAS  PubMed  Google Scholar 

  • Roffwarg HP, Muzio JN, Dement WC (1966) Ontogenetic development of the human sleep-dream cycle. Science 152:604–619

    CAS  PubMed  Google Scholar 

  • Romcy-Pereira R, Pavlides C (2004) Distinct modulatory effects of sleep on the maintenance of hippocampal and medial prefrontal cortex LTP. Eur J Neurosci 20:3453–3462

    PubMed  Google Scholar 

  • Sato M, Stryker MP (2008) Distinctive features of adult ocular dominance plasticity. J Neurosci 28:10278–10286

    PubMed Central  CAS  PubMed  Google Scholar 

  • Satoh E, Shimeki S (2010) Acute restraint stress enhances calcium mobilization and glutamate exocytosis in cerebrocortical synaptosomes from mice. Neurochem Res 35:693–701

    CAS  PubMed  Google Scholar 

  • Sawtell NB, Frenkel MY, Philpot BD, Nakazawa K, Tonegawa S, Bear MF (2003) NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38:977–985

    CAS  PubMed  Google Scholar 

  • Schönauer M, Geisler T, Gais S (2013) Strengthening procedural memories by reactivation in sleep. J Cogn Neurosci 26:143–153

    PubMed  Google Scholar 

  • Schwindel DC, McNaughton B (2011) Hippocampal-cortical interactions and the dynamics of memory trace activation. Prog Brain Res 193:163–177

    PubMed  Google Scholar 

  • Seibt J, Dumoulin M, Aton SJ, Naidoo J, Watson A, Coleman T, Frank MG (2012) Protein synthesis during sleep consolidates cortical plasticity in vivo. Curr Biol 22:676–682

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seibt J, Frank MG (2012) Translation regulation in sleep: making experience last. Communicative and integrative biology (in Press)

    Google Scholar 

  • Sengpiel F, Godecke I, Stawinski P, Hubener M, Lowel S, Bonhoffer T (1998) Intrinsic and environmental factors in the development of functional maps in cat visual cortex. Neuropharmacology 37:607–621

    CAS  PubMed  Google Scholar 

  • Shaffery JP, Lopez J, Bissette G, Roffwarg HP (2005) Rapid eye movement sleep deprivation revives a form of developmentally regulated synaptic plasticity in the visual cortex of post-critical period rats. Neurosci Lett 391:131–135

    Google Scholar 

  • Shaffery JP, Lopez J, Roffwarg HP (2012) Brain-derived neurotrophic factor (BDNF) reverses the effects of rapid eye movement sleep deprivation (REMSD) on developmentally regulated, long-term potentiation (LTP) in visual cortex slices. Neurosci Lett 513:84–88

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shaffery JP, Roffwarg HP (2003) Rapid eye-movement sleep deprivation does not ‘rescue’ developmentally regulated long-term potentiation in visual cortex of mature rats. Neurosci Lett 342:196–200

    CAS  PubMed  Google Scholar 

  • Shaffery JP, Sinton CM, Bissette G, Roffwarg HP, Marks GA (2002) Rapid eye movement sleep deprivation modifies expression of long-term potentiation in visual cortex of immature rats. Neuroscience 110:431–443

    CAS  PubMed  Google Scholar 

  • Siapas AG, Wilson MA (1998) Coordinated interations between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21:1123–1128

    CAS  PubMed  Google Scholar 

  • Simkus CRL, Stricker C (2002) Properties of mEPSCs recorded in layer II neurones of rat barrel cortex. J Physiol 545:509–520

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singer W (1979) Neuronal mechanisms in experience dependent modification of visual cortex function. In: Cuenod M, Kreutzberg GW, Bloom FE (eds) Development and chemical sensitivity of neurons. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 457–477

    Google Scholar 

  • Sirota A, Csicsvari J, Buhl D, Buzsaki G (2003) Communication between neocortex and hippocampus during sleep in rodents. PNAS 100:2065–2069

    PubMed Central  CAS  PubMed  Google Scholar 

  • Skaggs WE, McNaughton BL (1996) Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271:1870–1873

    CAS  PubMed  Google Scholar 

  • Steriade M, Timofeev I (2003) Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron 37:563–576

    CAS  PubMed  Google Scholar 

  • Stevenson RD (1985) Body size and limits to the daily range of body temperature in terrestrial ectotherms. Am Nat 125:102–117

    Google Scholar 

  • Sur M, Leamey CA (2001) Development and plasticity of cortical areas and networks. Nat Rev Neurosci 2:251–262

    CAS  PubMed  Google Scholar 

  • Tartar JL, Ward CP, McKenna JT, Thakkar M, Arrigoni E, McCarley RW, Brown RE, Strecker RE (2006) Hippocampal synaptic plasticity and spatial learning are impaired in a rat model of sleep fragmentation. Eur J Neurosci 23:2739–2748

    PubMed Central  PubMed  Google Scholar 

  • Tatsuno M, Lipa P, McNaughton BL (2006) Methodological considerations on the use of template matching to study long-lasting memory trace replay. J Neurosci 26:10727–10742

    CAS  PubMed  Google Scholar 

  • Thurber A, Jha SK, Coleman T, Frank MG (2008) A preliminary study of sleep ontogenesis in the ferret (Mustela putorius furo). Behav Brain Res 189:41–51

    PubMed Central  PubMed  Google Scholar 

  • Tiriac A, Uitermarkt BD, Fanning AS, Sokoloff G, Blumberg MS (2012) Rapid whisker movements in sleeping newborn rats. Curr Biol 22:2075–2080

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tononi G (2009) Slow wave homeostasis and synaptic plasticity. J Clin Sleep Med 5:S16–S19

    PubMed Central  PubMed  Google Scholar 

  • Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62:143–150

    PubMed  Google Scholar 

  • Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10:49–62

    PubMed  Google Scholar 

  • Tononi G, Cirelli C (2012) Time to be SHY? some comments on sleep and synaptic homeostasis. Neural plasticity (in press)

    Google Scholar 

  • Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81:12–34

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tropea D, Van Wart A, Sur M (2009) Molecular mechanisms of experience-dependent plasticity in visual cortex. Philos Trans R Soc B Biol Sci 364:341–355

    Google Scholar 

  • Tsanov M, Manahan-Vaughan D (2007) The adult visual cortex expresses dynamic synaptic plasticity that is driven by the light/dark cycle. J Neurosci 27:8414–8421

    CAS  PubMed  Google Scholar 

  • Tse YC, Bagot RC, Wong TP (2012) Dynamic regulation of NMDAR function in the adult brain by the stress hormone corticosterone. Front Cell Neurosci 6:9

    PubMed Central  CAS  PubMed  Google Scholar 

  • Turrigiano G (2007) Homeostatic signaling: the positive side of negative feedback. In: Cull-Candy S, Klein R (eds) Curr Opin Neurobiol Signal mech 17:318–324

    Google Scholar 

  • Turrigiano GG (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22:221–227

    CAS  PubMed  Google Scholar 

  • Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135:422–435

    PubMed Central  CAS  PubMed  Google Scholar 

  • Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892–896

    CAS  PubMed  Google Scholar 

  • Turrigiano GG, Nelson SB (2000) Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol 10:358–364

    CAS  PubMed  Google Scholar 

  • Van Cauter E (2005) Endocrine physiology. In: Kryger M, Roth T, Dement WC (eds) Principles and practice of sleep medicine. Elsevier, Philadelphia, pp 266–282

    Google Scholar 

  • Vanin S, Bhutani S, Montelli S, Menegazzi P, Green EW, Pegoraro M, Sandrelli F, Costa R, Kyriacou CP (2012) Unexpected features of Drosophila circadian behavioural rhythms under natural conditions. Nature 484:371–375

    CAS  PubMed  Google Scholar 

  • Vecsey CG, Baillie GS, Jaganath D, Havekes R, Daniels A, Wimmer M, Huang T, Brown KM, Li X-Y, Descalzi G, Kim SS, Chen T, Shang Y-Z, Zhuo M, Houslay MD, Abel T (2009) Sleep deprivation impairs cAMP signalling in the hippocampus. Nature 461:1122–1125

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vyazovskiy VV, Cirelli C, Pfister-Genskow M, Faraguna U, Tononi G (2008) Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci 11:200–208

    CAS  PubMed  Google Scholar 

  • Wiesel TN, Hubel DH (1963) Single cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 28:1029–1040

    Google Scholar 

  • Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265:676–682

    CAS  PubMed  Google Scholar 

  • Yang G, Gan W.-B (2011) Sleep contributes to dendritic spine formation and elimination in the developing mouse somatosensory cortex. Dev Neurobiol 72:1391–1398

    Google Scholar 

  • Yuen EY, Liu W, Karatsoreos IN, Ren Y, Feng J, McEwen BS, Yan Z (2011) Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory. Mol Psychiatry 16:156–170

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhong Y, Wu C-F (2004) Neuronal activity and adenylyl cyclase in environment-dependent plasticity of axonal outgrowth in Drosophila. J Neurosci 24:1439–1445

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos G. Frank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frank, M.G. (2014). Sleep and Synaptic Plasticity in the Developing and Adult Brain. In: Meerlo, P., Benca, R., Abel, T. (eds) Sleep, Neuronal Plasticity and Brain Function. Current Topics in Behavioral Neurosciences, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2014_305

Download citation

Publish with us

Policies and ethics