Skip to main content

Modelling MS: Chronic-Relapsing EAE in the NOD/Lt Mouse Strain

  • Chapter
  • First Online:
Emerging and Evolving Topics in Multiple Sclerosis Pathogenesis and Treatments

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 26))

Abstract

Modelling complex disorders presents considerable challenges, and multiple sclerosis (MS) is no exception to this rule. The aetiology of MS is unknown, and its pathophysiology is poorly understood. Moreover, the last two decades have witnessed a dramatic revision of the long-held view of MS as an inflammatory demyelinating white matter disease. Instead, it is now regarded as a global central nervous system (CNS) disorder with a neurodegenerative component. Currently, there is no animal model recapitulating MS immunopathogenesis. Available models are based on autoimmune-mediated demyelination, denoted experimental autoimmune encephalomyelitis (EAE ) or virally or chemically induced demyelination. Of these, the EAE model has been the most commonly used. It has been extensively improved since its first description and now exists as a number of variants, including genetically modified and humanized versions. Nonetheless, EAE is a distinct disease, and each variant models only certain facets of MS. Whilst the search for more refined MS models must continue, it is important to further explore where mechanisms underlying EAE provide proof-of-principle for those driving MS pathogenesis. EAE variants generated with the myelin component myelin oligodendrocyte glycoprotein (MOG ) have emerged as the preferred ones, because in this particular variant disease is associated with both T- and B-cell effector mechanisms, together with demyelination. MOG-induced EAE in the non-obese diabetic (NOD) mouse strain exhibits a chronic-relapsing EAE clinical profile and high disease incidence. We describe the generation of this variant, its contribution to the understanding of MS immune and pathogenetic mechanisms and potential for evaluation of candidate therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Majid K-B, Jirholt J, Stadelmann C, Stefferl A, Kjellen P, Wallstrom E, Holmdahl R, Lassmann H, Olsson T, Harris RA (2000) Screening of several H-2 congenic mouse strains identified H-2q mice as highly susceptible to MOG-induced EAE with minimal adjuvant requirement. J Neuroimmunol 111:23–33

    Article  CAS  PubMed  Google Scholar 

  • Amiguet P, Gardinier MV, Zanetta J-P, Matthieu J-M (1992) Purification and partial structural and functional characterization of mouse myelin oligodendrocyte glycoprotein. J Neurochem 58:1676–1682

    Article  CAS  PubMed  Google Scholar 

  • Amor S, Groome N, Linington C, Morris MM, Dornmair K, Gardinier M, Matthieu J-M, Baker D (1994) Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental autoimmune encephalomyelitis in SJL/J and Biozzi AB/H mice. J Immunol 153:4349–4356

    CAS  PubMed  Google Scholar 

  • Anderson AC, Chandwaksar R, Lee DH, Sullivan JM, Solomon A, Rodriguez-Manzanet R, Greve B, Sobel RA, Kuchroo VK (2012) A transgenic model of central nervous system autoimmunity mediated by CD4+ and CD8+ Tcells. J Immunol 188(5):2084–2092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aoki CA, Borchers AT, Ridgway WM, Keen CL, Ansari AA, Gershwin ME (2005) NOD mice and autoimmunity. Autoimmun Rev 4:373–379

    Article  CAS  PubMed  Google Scholar 

  • Arai H, Munoz JJ (1981) Crystallization of pertussisgen from Bordetella pertussis. Infect Immun 31:495–499

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ayers MM, Hazelwood LJ, Catmull DV, Wang D, McKormack Q, Bernard C, Orian JM (2004) Early glial responses in murine models of multiple sclerosis. Neurochem Int 45:409–419

    Article  CAS  PubMed  Google Scholar 

  • Baker D, Gerritsen W, Rundle J, Amor S (2011) Critical appraisal of animal models of multiple sclerosis. Mult Scler J 17(6):647–657

    Article  Google Scholar 

  • Basso AS, Frenkel D, Quintana FJ, Costa-Pinto FA, Petrovic-Stojkovi S, Puckett L, Monsonegro A, Bar-Shir A, Engel Y, Gozin M, Weiner HL (2008) Reversal of axonal loss and disability in a mouse mocel of progressive multiple sclerosis. J Clin Invest 118(4):1532–1543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baxter AG (2007) The origins and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 7:904–912

    Article  CAS  PubMed  Google Scholar 

  • Ben-Nun A, Wekerle H, Cohen IR (1981) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 11(3):195–199

    Article  CAS  PubMed  Google Scholar 

  • Ben-Nun A, Kaushansky N, Kawakami N, Krishnamoorthy G, Berer K, Liblau R, Hohlfeld R, Wekerle H (2014) From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development. J Autoimmun 54:33–50

    Article  CAS  PubMed  Google Scholar 

  • Berard JL, Wolak K, Fournier S, David S (2010) Characterization of relapsing-remitting and chronic forms of experimental autoimmune encephalomyelitis in C58Bl/6 mice. Glia 58:434–445

    Article  PubMed  Google Scholar 

  • Berger T, Rubner P, Schautzer F, Egg R, Ulmer H, Mayringer I, Dilitz E, Deisenhammer F, Reindl M (2003) Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med 349:139–145

    Article  CAS  PubMed  Google Scholar 

  • Bergman R, Munoz J, Portis J (1978) Vascular permeability changes in the central nervous system of rats with hyperacute experimental allergic encephalomyelitis induced with the aid of a substance from Bordetella pertussis. Infect Immun 21:627–637

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bernard C, Johns TG, Slavin A, Ichikawa M, Ewing C, Liu J, Bettadapura J (1998) Myelin oligodendrocyte glycoprotein: a novel candidate autoantigen in multiple sclerosis. J Mol Med 75:77–88

    Article  Google Scholar 

  • Bettelli E (2007) Building different mouse models for human MS. Ann NY Acad Sci 1103:11–18

    Article  CAS  PubMed  Google Scholar 

  • Blakemore WF, Franklin RJ (2008) Remyelination in experimental models of toxin-induced demyelination. Curr Top Microbiol Immunol 318:193–212

    CAS  PubMed  Google Scholar 

  • Boyton RJ, Davies S, Marden C, Fantino C, Reynolds C, Portugal K, Dewchand H, Altmann DM (2005) Stat4-null non-obese diabetic mice: protection from diabetes and experimental autoimmune encephalomyelitis, but with concomitant epitope spread. Int Immunol 17(9):1157–1165

    Article  CAS  PubMed  Google Scholar 

  • Brok HPM, Uccelli A, Kerlero de Rosbo N, Bontrop RE, Roccatogliata L, de Groot NG, Capello E, Laman HD, Nicolay K, Ben-Nun A, ’t Hart BA (2000) Myelin/oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis in common marmosets: the encephalitogenic T cell epitope MOG24-36 is presented by a monomorphic MHC Class II molecule. J Immunol 165:1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Brok HPM, Bauer J, Jonker M, Blezer E, Amor S, Bontrop RE, Laman JD, ’t Hart BA (2001) Non-human models of multiple sclerosis. Immunol Rev 183:173–185

    Article  CAS  PubMed  Google Scholar 

  • BÓ§ L, Vedeler C, Nyland H, Trapp B, MÓ§rk S (2003a) Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol 62:723–732

    Google Scholar 

  • BÓ§ L, Vedeler C, Nyland H, Trapp B, MÓ§rk S (2003b) Intracortical cortical lesions are not associated with increased lymphocyte infiltration. Mult Scler 9:323–331

    Article  Google Scholar 

  • Cannon J, Collins A, Mody P, Balachandran D, Henriksen K, Smith C, Tong J, Clay B, Miller S, Sperling A (2008) CD43 regulatesTh2 differentiation and inflammation. J Immunol 180(11):7385–7393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chard D, Miller D (2009) Grey matter pathology in clinically early multiple sclerosis: evidence from magnetic resonance imaging. J Neurol Sci 282:5–11

    Article  PubMed  Google Scholar 

  • Chen X, Winkler-Pickett RT, Carbonetti NH, Ortaldo JR, Oppenheim JJ, Howard OM (2006) Pertussis toxin as an adjuvant suppresses the number and function of CD4+CD25+ T regulatory cells. Eur J Immunol 36(3):671–680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Confavreux C, Vukusic S (2014) The clinical course of multiple sclerosis. In: Goodin DS (ed) Handbook of clinical neurology: multiple sclerosis and related disorders, vol 122 (3rd series). Elsevier B.V., Amsterdam, pp 343–369

    Google Scholar 

  • Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model of multiple sclerosis (MS). Br J Pharmacol 164:1079–1106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Correale J, Ysrraelit M, Fiol M (2012) Benign multiple sclerosis: does it exist? Curr Neurol Neurosci Rep 12:601–609

    Article  PubMed  Google Scholar 

  • Cretney E, McQualter JL, Kayagaki N, Yagita H, Bernard C, Grewal IS, Ashkenazi A, Smyth M (2005) TNF-related apoptosis-inducing ligand (TRAIL)/Apo2L suppresses experimental autoimmune encephalomyelitis in mice. Immunol Cell Biol 832:511–519

    Article  CAS  Google Scholar 

  • Cross AH, Waubant E (2011) MS and the B cell controversy. Biochim Biophys Acta 1812:231–238

    Article  CAS  PubMed  Google Scholar 

  • Croxford AL, Kurschus FC, Waisman A (2011) Mouse models for multiple sclerosis: historical facts and future implications. Biochim Biophys Acta 1812:177–183

    Article  CAS  PubMed  Google Scholar 

  • Dal Canto MC, Lipton HL (1979) Recurrent demyelination in chronic central nervous system infection produced by Theiler’s murine encephalomyelitis virus. J Neurosci 42:391–405

    CAS  Google Scholar 

  • Del Pilar Martin M, Monson NL (2007) Potential role of humoral immunity in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Front Biosci 12:2735–2749

    Article  Google Scholar 

  • Denic A, Johnson AJ, Beiber AJ, Warrington AE, Rodriguez M, Pirko I (2011) The relevance of animal models in multiple sclerosis research. Pathophysiology 18(1):1–16

    Article  CAS  Google Scholar 

  • Ebers G (2006) Disease evolution in multiple sclerosis. J Neurol 253(Suppl 6):3–8

    Google Scholar 

  • Ellwardt E, Zipp F (2014) Molecular mechanisms linking neuroinflammation and neurodegeneration in MS. Exp Neurol 262:8–17

    Article  CAS  PubMed  Google Scholar 

  • Emerson MR, Gallagher RJ, Marquis JG, LeVine SM (2009) Enhancing the ability of experimental autoimmune encephalomyelitis to serve as a more rigorous model of multiple sclerosis through refinement of experimental design. Comp Med 59(2):112–128

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fan H, Longacre A, Meng F, Patel V, Hsiao K, Koh JS, Levine JS (2004) Cytokine dysregulation induced by apoptotic cells is a shared characteristic of macrophages from nonobese diabetic and systemic lupus erythrematosus-prone mice. J Immunol 172(8):4834–4943

    Article  CAS  PubMed  Google Scholar 

  • Farez MF, Quintana FJ, Gandhi R, Izquierdo G, Lucas M, Weiner HL (2009) Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nat Immunol 10(9):958–964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Filippi M, Valsania P, Rocca M (2007) Magnetic resonance imaging of grey matter damage in people with MS. Int MS J 14:12–21

    CAS  PubMed  Google Scholar 

  • Fuller K, Olson J, Howard L, Croxford J, Miller S (2004) Mouse models of multiple sclerosis: experimental autoimmune encephalomyelitis and Theiler’s virus-induced demyelinating disease. Methods Mol Med 102:339–361

    CAS  PubMed  Google Scholar 

  • Gardinier MV, Amiguet P, Linington C, Matthieu J-M (1992) Myelin oligodendrocyte glycoprotein is a member of the immunoglobulin superfamily. J Neurosci Res 33:177–187

    Article  CAS  PubMed  Google Scholar 

  • Genain CP, Nguyen MH, Letvin NT, Pearl R, Davis RL, Adelman M, Lees MB, Linington C, Hauser SL (1995) Antibody facilitation of multiple sclerosis-like lesions in a nonhuman primate. J Clin Invest 96(6):2966–2974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geurts J, Barkhof F (2008) Grey matter pathology in multiple sclerosis. Lancet Neurol 7:841–853

    Article  PubMed  Google Scholar 

  • Geurts J, BÓ§ L, Roosendaal S, Hazes T, Daniels R, Barkhof F, Witter I, van der Valk P (2007) Extensive hippocampal demyelination in multiple sclerosis. J Neuropathol Exp Neurol 66:819–827

    Article  PubMed  Google Scholar 

  • Gilmore C, Bo L, Owens T, Lowe J, Esiri M, Evangelou N (2006) Spinal cord grey matter demyelination in multiple sclerosis—a novel pattern of residual plaque morphology. Brain Pathol 16:202–208

    Article  PubMed  Google Scholar 

  • Gold R, Hartung H-P, Toyka KV (2000) Animal models for autoimmune demyelinating disorders of the nervous system. Mol Med Today 6:88–91

    Article  CAS  PubMed  Google Scholar 

  • Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129:1953–1971

    Article  PubMed  Google Scholar 

  • Goodin D (2014) The epidemiology of multiple sclerosis: insights into disease pathogenesis. In: Goodin DS (ed) Handbook of clinical neurology: multiple sclerosis and related disorders, vol 122 (3rd series). Elsevier B.V., Amsterdam, pp 231–266

    Google Scholar 

  • Greve B, Vijayakrishnan L, Kubal A, Sobel RA, Peterson RA, Wicker LS, Kuchroo VK (2004) The diabetes susceptibility of locus Idd5.1 on mouse chromosome 1 regulates ICOS expression and modulates murine experimental autoimmune encephalomyelitis. J Immunol 173(1):157–163

    Article  CAS  PubMed  Google Scholar 

  • Haase CG, Guggenmos J, Brehm U, Andersson A, Olsson T, Reindl M, Schneiderwind JM, Zettl UK, Heindenreich F, Berger T, Wekerle H, Hohlfeld R, Linington C (2001) The fine specificity of the myelin oligodendrocyte glycoprotein autoantibody response in patients with multiple sclerosis and healthy controls. J Immunol 114:220–225

    CAS  Google Scholar 

  • Herrero-Herranz E, Pardo LA, Gold R, Linker RA (2008) Pattern of axonal injury in murine oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis. Implications for multiple sclerosis. Neurobiol Dis 30:172–173

    Article  CAS  Google Scholar 

  • Hidaka Y, Inaba Y, Matsuda K, Itoh M, Kayenama T, Nazakawa Y, Koh CS, Ichikawa M (2014) Cytokine production profiles in chronic relapsing-remitting experimental autoimmune encephalomyelitis: IFN-Îł and TNF-α are important participants in the first attack but not the relapse. J Neurol Sci 340(1–2):117–122

    Article  CAS  PubMed  Google Scholar 

  • Hilton AA, Slavin AJ, Hilton DJ, Bernard C (1995) Cloning and molecular characterization of human myelin oligodendrocyte glycoprotein. J Neurochem 65:309–318

    Article  CAS  PubMed  Google Scholar 

  • Hofstetter HH, Shive CL, Forsthuber TG (2002) Pertussis toxin modulates the immune response to neuroantigens injected in incomplete Freund’s adjuvant: induction of Th1 cells and experimental autoimmune encephalomyelitis in the presence of high frequencies of Th2 cells. J Immunol 169(1):117–125

    Article  CAS  PubMed  Google Scholar 

  • Huitinga I, De Groot C, van der Valk P, Kamphorst W, Tilders F, Swaab D (2001) Hypothalamic lesions in multiple sclerosis. J Neuropathol Exp Neurol 60:1208–1212

    CAS  PubMed  Google Scholar 

  • Huntington ND, Tomioka R, Clavarino C, Chow AM, Linares D, Mana P, Rossjohn J, Cavaero T, Qian F, Kalled SL, Bernard C, Reid HH (2006) A BAFF antagonist suppresses experimental autoimmune encephalomyelitis by targeting cell-mediated and humoral responses. Int Immunol 18(10):1473–1485

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa M, Koh C-S, Inoue A, Tsuyusaki J, Yamazaki M, Inaba Y, Sekiguchi Y, Itoh M, Yagita H, Komiyama A (2000) Anti IL-12 antibody prevents the development and progression of multiple sclerosis-like relapsing-remitting demyelinating disease in NOD mice induced with myelin oligodendrocyte glycoprotein peptide. J Neuroimmunol 102:56–66

    Article  CAS  PubMed  Google Scholar 

  • Iglesias A, Bauer J, Litzenburger T, Schubart A, Linington C (2001) T- and B-cell responses to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis and multiple scelerosis. Glia 36:220–234

    Article  CAS  PubMed  Google Scholar 

  • Johansson AC, Lindqvist AK, Johannesson R, Holmdahl R (2003) Genetic heterogeneity of immune disorders in the non-obese diabetic mouse. Scand J Immunol 57:203–213

    Article  CAS  PubMed  Google Scholar 

  • Johns TG, Kerlero de Rosbo N, Menon K, Abo S, Gonzales MF, Bernard C (1995) Myelin oligodendrocyte glycoprotein induces a demyelinating encephalomyelitis resembling multiple sclerosis. J Immunol 154:5536–5541

    CAS  PubMed  Google Scholar 

  • Kamradt T, Soloway PD, Perkins DL, Gefter ML (1991) Pertussis toxin prevents the induction of peripheral T cell anergy and enhances the T cell response to an encephalitogenic peptide of myelin basic protein. J Immunol 147(10):3296–3302

    CAS  PubMed  Google Scholar 

  • Keegan BM, Noseworthy JH (2005) Multiple sclerosis. Annu Rev Med 53:285–302

    Article  Google Scholar 

  • Keithley EM, Canto C, Zheng QY, Fischel-Ghodsian N, Johnson KR (2004) Age-related hearing loss and the ahl locus in mice. Hear Res 188(1–2):21–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kerlero de Rosbo N, Milo R, Lees MB, Burger D, Bernard C, Ben-Nun A (1993) Reactivity of myelin antigens in multiple sclerosis. J Clin Invest 92:2602–2607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kerlero de Rosbo N, Mendel I, Ben-Nun A (1995) Chronic relapsing experimental autoimmune encephalomyelitis with a delayed onset and an atypical clinical course, induced in PL/J mice by myelin oligodendrocyte glycoprotein (MOG)-derived peptide: preliminary analysis of MOG T cell epitopes. Eur J Immunol 25:985–993

    Article  CAS  PubMed  Google Scholar 

  • Kerlero de Rosbo N, Hoffmann M, Mendel I, Just I, Kaye J, Bakimer R, Flecher S, Abramsky O, Milo R, Karni A, Ben-Nun A (1997) Predominance of the autoimmune response to myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis: reactivity to the extracellular domain of MOG is directed against three main regions. Eur J Immunol 27:3059–3069

    Article  CAS  PubMed  Google Scholar 

  • Kerlero de Rosbo N, Brok HPM, Bauer J, Kaye JH, ’t Hart B, Ben-Nun A (2000) Rhesus monkeys are highly susceptible to experimental autoimmune encephalomyeltis induced by myelin/oligodendrocyte glycoprotein (MOG). Characterization of immunodominant MOG T- and B-cell epitopes. J Neuroimmunol 110:83–96

    Article  CAS  PubMed  Google Scholar 

  • Kikutani H, Makino S (1992) The murine autoimmune diabetes model: NOD and related strains. Adv Immunol 31:285–322

    Article  Google Scholar 

  • Kipp M, van der Star B, Vogel DYS, Puentes F, van der Valk P, Baker D, Amor S (2012) Experimental in vivo and in vitro models of multiple sclerosis: EAE and beyond. Mult Scler Relat Disord 1:15–28

    Article  PubMed  Google Scholar 

  • Komiya T, Sato K, Shioya H, Inagi Y, Hagiya H, Kozaki R, Imai M, Takada Y, Maeda T, Kurata H, Kurono M, Suzuki R, Otsuki K, Habashita H, Nakade S (2013) Efficacy and immunomodulatory actions of ONO-4641, a novel selective agonist for sphingosine 1-phosphate receptors 1 and 5, in preclinical models of multiple sclerosis. Clin Exp Immunol 171(1):54–62

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, Linington C, Schmidbauer M, Lassmann H (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive and remyelinated lesions. Am J Pathol 157(7):267–276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krishnamoorthy G, Holz A, Wekerle H (2007) Experimental models of spontaneous autoimmune disease in the central nervous system. J Mol Med 85:1161–1173

    Article  CAS  PubMed  Google Scholar 

  • Kroepfl JF, Vise LR, Charron AJ, Linington C, Gardinier MV (1996) Investigation of myelin oligodendrocyte glycoprotein membrane topology. J Neurochem 67:2219–2222

    Article  CAS  PubMed  Google Scholar 

  • Kuerten S, Angelov DN (2008) Comparing the CNS morphology and immunobiology of different EAE models in C57Bl/6 mice—a step towards understanding the complexity of multiple sclerosis. Ann Anat 190:1–15

    Article  PubMed  Google Scholar 

  • Kuhle J, Pohl C, Mehling M, Edan G, Freedmann MS, Hartung HP, Polman CH, Miller DH, Montalban X, Barkhof F, Bauer L, Dahms S, Lindbergh R, Kappos L, Sandbrink R (2007) Lack of association between antimyelin antibodies and progression to multiple sclerosis. N Engl J Med 356:371–378

    Article  CAS  PubMed  Google Scholar 

  • Kurschus FC, Wortge S, Waisman A (2006) Modelling a complex disease: multiple sclerosis. In: Compston A, Lassmann H, McDonald I (eds) The story of multiple sclerosis: McAlpine’s multiple sclerosis. Churchill Livingston Elsevier, Amsterdam

    Google Scholar 

  • Kutzelnigg A, Lucchinetti C, Stadelmann C, BrĂĽck W, Rauschka H, Bergmann M, Schmidbauer M, Parisi J, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712

    Article  PubMed  Google Scholar 

  • Kutzelnigg A, Faber-Rod J, Bauer J, Lucchinetti C, Sorensen P, Laursen H, Stadelmann C, BrĂĽck W, Rauschka H, Schmidbauer M, Lassmann H (2007) Widespread demyelination in the cerebellar cortex of multiple sclerosis. Brain Pathol 17:38–44

    Article  PubMed  Google Scholar 

  • Lassmann H (2010a) What drives disease in multiple sclerosis: inflammation of neurodegeneration? Clin Exp Neuroimmunol 1:2–10

    Article  CAS  Google Scholar 

  • Lassmann H (2010b) Axonal and neuronal pathology in multiple sclerosis: what we have learnt from animal models. Exp Neurol 225:2–8

    Article  PubMed  Google Scholar 

  • Lassmann H, BrĂĽck W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. TRENDS Mol Med 7(3):115–121

    Article  CAS  PubMed  Google Scholar 

  • Lassmann H, BrĂĽck W, Lucchinetti C (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–218

    Article  PubMed  Google Scholar 

  • Lee D-H, Linker RA (2010) The role of myelin oligodendrocyte glycoprotein in autoimmune demyelination: a target for multiple sclerosis therapy? Exp Opin Ther Targets 16(5):451–462

    Article  CAS  Google Scholar 

  • Lees J, Golumbek P, Sim J (2008) Regional CNS responses to IFN-gamma determine lesion localization patterns during EAE pathogenesis. J Exp Med 205:2633–2642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levy H, Assaf Y, Frenkel D (2010) Characterization of brain lesions in a mouse model of progressive multiple sclerosis. Exp Neurol 226:148–158

    Article  CAS  PubMed  Google Scholar 

  • Levy-Barazany H, Barazany D, Puckett L, Blanga-Kanfi S, Bornstein-Auerbach N, Yang K, Peron JP, Weiner HL, Frenkel D (2014) Brain MRI of nasal MOG therapeutic effect in relapsing-progressive EAE. Exp Neurol 255:63–70

    Article  CAS  PubMed  Google Scholar 

  • Lin MH, Yeh LT, Chen SJ, Chiou HY, Chu CC, Yen LB, Lin KI, Chang DM, Sytwu HK (2014) T cell-specific BLIMP-1 deficiency exacerbates experimental autoimmune encephalomyelitis in non-obese diabetic mice by increasing Th1 and Th17 cells. Clin Immunol 151(2):101–131

    Article  CAS  PubMed  Google Scholar 

  • Linington C, Lassmann H (1987) The role of antibodies against myelin surface antigens in chronic EAE’. In: Crescenzi GC (ed) A multidisciplinary approach to demyelinating disease. Plenum Press, New York, pp 219–225

    Google Scholar 

  • Linington C, Bradl M, Lassmann H, Brunner C, Vass K (1988) Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin oligodendrocyte glycoprotein. Am J Pathol 130:443–454

    PubMed Central  CAS  PubMed  Google Scholar 

  • Linington C, Berger T, Perry L, Weerth S, Hinze-Selch D, Zhang Y, Lu HC, Lassmann H, Wekerle H (1993) T cells for the myelin oligodendrocyte glycoprotein mediate an unusual autoimmune inflammatory response in the central nervous system. Eur J Immunol 23:1364–1372

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Pelech S, Zhang H, Bond J, Spach K, Noubade R, Blankenhorn EP, Teuscher C (2008) Pertussis toxin induces angiogenesis in brain microvascular endothelial cells. J Neurosci Res 86:2624–2640

    Article  CAS  PubMed  Google Scholar 

  • Lucchinetti C, BrĂĽck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717

    Article  CAS  PubMed  Google Scholar 

  • Ludwin SK (2006) The pathogenesis of multiple sclerosis: relating human pathology to experimental studies. J Neuropathol Exp Neurol 65(4):305–318

    Article  PubMed  Google Scholar 

  • Makino S, Tochino Y (1978) The spontaneously non-obese diabetic mouse. Exp Anim 27:27–29

    Google Scholar 

  • Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y (1980) Breeding of a non-obese diabetic strain of mice. Exp Anim 29:1–13

    CAS  Google Scholar 

  • Makino S, Muraoka Y, Harada M, Kishimoto Y, Konishi T (1989) Characteristics of the NOD mouse and its relatives. In: Larkins R, Zimmet P, Chisolm D (eds) New lessons from diabetes in animals. Elsevier, Amsterdam, pp 747–750

    Google Scholar 

  • Maron R, Hancock WW, Slavin A, Hattori M, Kuchroo V, Weiner HL (1999) Genetic susceptibility or resistance to autoimmune encephalomyelitis in MHC congenic mice is associated with differential production of pro- and anti-inflammatory cytokines. Int Immunol 11(9):1573–1580

    Article  CAS  PubMed  Google Scholar 

  • Mars LT, Laloux V, Goude K, Desbois S, Saoudi A, Van Kaer L, Lassmann H, Herbelin A, Lehuen A, Liblau RS (2002) Vα14-Jα281 NKT cells naturally regulate experimental autoimmune encephalomyelitis in nonobese diabetic mice. J Immunol 168:6007–6011

    Article  CAS  PubMed  Google Scholar 

  • Mars LT, Gautron A-S, Novak J, Beaudoin L, Diana J, Liblau RS, Lehuen A (2008) Invariant NKT cells regulate experimental autoimmune encephalomyelitis and infiltrate the central nervous system in a CD1d-independent manner. J Immunol 181:2321–2329

    Article  CAS  PubMed  Google Scholar 

  • Marta M, Stridh P, Becanovic K, Gillett A, Ockinger J, Lorentzen JC, Jagodic M, Olsson T (2010) Multiple loci comprising immune-related genes regulate experimental neuroinflammation. Genes Immun 11(1):21–36

    Article  CAS  PubMed  Google Scholar 

  • Marusic S, Thakker P, Pelker JW, Stedman NL, Lee KL, McKew JC, Han L, Xu X, Wolf ST, Borey AJ, Cui J, Shen MWH, Donahue F, Hassan-Zaharee M, Leach MW, Shimizu T, Clark JD (2008) Blockade of cytosolic phospholipase A2α prevents autoimmune encephalomyelitis and diminishes development of Th1 and Th17 responses. J Neuroimmunol 204:29–37

    Article  CAS  PubMed  Google Scholar 

  • Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11(1):107–116

    Article  CAS  PubMed  Google Scholar 

  • Matthieu J-M, Amiguet P (1990) Myelin oligodendrocyte glycoprotein expression during development in normal and myelin-deficient mice. Dev Neurosci 12:293–302

    Article  CAS  PubMed  Google Scholar 

  • Mayo S, Quinn A (2007) Altered susceptibility to EAE in congenic NOD mice: altered processing of the encephalitogenic MOG35–55 peptide by NOR/J mice. Clin Immunol 122(1):91–100

    Article  CAS  PubMed  Google Scholar 

  • Mayo S, Kohler W, Kumar V, Quinn A (2006) Insulin-dependent diabetes loci Idd5 and Idd9 increase sensitivity to experimental autoimmune encephalomyelitis. Clin Immunol 118(2–3):219–228

    Article  CAS  PubMed  Google Scholar 

  • Mayo L, Trauger SA, Blain M, Nadeau M, Patel B, Alvarez JI, Mascanfroni ID, Yeste A, Kivisakk P, Kallas K, Ellezam B, Bakshi R, Prat A, Antel JP, Weiner HL, Quintana FJ (2014) Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat Med 20(10):1147–1156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCarthy D, Richards M, Miller S (2012) Mouse models of multiple sclerosis: experimental autoimmune encephalomyelitis and Theiler’s virus-induced demyelinating disease. Methods Mol Biol 900:381–401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McQualter JL, Darwiche R, Ewing C, Onuki M, Kay TW, Hamilton JA, Reid HH, Bernard C (2001) Granulocyte macrophage colony-stimulating factor: a putative therapeutic target in multiple sclerosis. J Exp Med 194(7):873–881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Melcon M, Correale J, Melcon C (2014) Is it time for a new classification of multiple sclerosis? J Neurol Sci 344:171–181

    Article  PubMed  Google Scholar 

  • Merkler D, Schmelting B, Czeh B, Fuchs E, Stadelman C, Bruck W (2006) Myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in the common marmoset reflects the immunopathology of pattern II of multiple sclerosis lesions. Mult Scler 12:369–374

    Article  CAS  PubMed  Google Scholar 

  • Mix E, Meyer-Reinecker H, Hartung H-P, Zettl U (2010) Animal models of multiple sclerosis—potentials and limitations. Prog Neurobiol 92:386–404

    Article  PubMed  Google Scholar 

  • Munoz JJ, Sewell W (1984) Effect of pertussigen on inflammation caused by Freund adjuvant. Infect Immun 44:637–641

    PubMed Central  CAS  PubMed  Google Scholar 

  • Namer IJ, Steibel J, Poulet P, Mauss Y, Mohr M, Chambron J (1994) The role of Mycobacterium tuberculosis in experimental autoimmune encephalomyelitis. Eur Neurol 34:224–227

    Article  CAS  PubMed  Google Scholar 

  • Nelson ALA, Bieber AJ, Rodriguez M (2004) Contrasting murine models of MS. Int MS J 11:95–99

    CAS  PubMed  Google Scholar 

  • Noben-Trauth K, Zheng QY, Johnson KR (2003) Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat Genet 35(1):21–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Onuki M, Ayers M, Bernard C, Orian JM (2001) Axonal degeneration is an early feature in autoimmune-mediated demyelination in mice. Microsc Res Tech 52:731–739

    Article  CAS  PubMed  Google Scholar 

  • Orian JM, Keating P, Downs LL, Hale MW, Jiang X, Pham H, LaFlamme AC (2014) Deletion of IL-4Rα in the BALB/C mouse is associated with altered lesion topography and susceptibility to experimental autoimmune encephalomyelitis. Autoimmun E-Pub. doi:10.3109/08916934.2014.987344

    Google Scholar 

  • Papenfuss TL, Rogers CJ, Gienapp I, Yurrita M, McClain M, Damico N, Valo J, Song F, Whitacre CC (2004) Sex differences in experimental autoimmune encephalomyelitis in multiple mouse strains. J Neuroimmunol 150:59–69

    Article  CAS  PubMed  Google Scholar 

  • Peterson J, BÓ§ L, MÓ§rk S, Chang A, Trapp B (2001) Transected neurites, apoptotic neurons and reduced inflammation in cortical multiple sclerosis neurons. Ann Neurol 50:389–400

    Article  CAS  PubMed  Google Scholar 

  • Pham H, Ng S, Klopstein A, Ramp A, Ayers M, Orian JM (2009) The astrocytic response in early experimental autoimmune encephalomyelitis occurs across both the grey and white matter compartments. J Neuroimmunol 208:30–39

    Article  CAS  PubMed  Google Scholar 

  • Pham H, Doerrbecker J, Ramp AA, D’Souza CS, Gorasia DG, Purcell AW, Ayers MM, Orian JM (2011) Experimental autoimmune encephalomyelitis (EAE) in C57Bl/6 mice is not associated with astrogliosis. J Neuroimmunol 232(1–2):51–62

    Article  CAS  PubMed  Google Scholar 

  • Pham-Dinh D, Mattei M-G, Nussbaum J-L, Roussel G, Pontarotti P, Roeckel N, Mather IH, Artzt K, Fischer-Lindahl K, Dautigny A (1993) Myelin oligodendrocyte glycoprotein is a member of a subset of the immunoglobulin superfamily encoded within the major histocompatibility complex. Proc Natl Acad Sci USA 90:7990–7994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pham-Dinh D, Allinquant B, Ruberg M, Della-Gaspera B, Nussbaum JL, Dautigny A (1994) Characterization and expression of the cDNA coding for the human myelin/oligodendrocyte glycoprotein. J Neurochem 63(6):2353–2356

    Article  CAS  PubMed  Google Scholar 

  • Pham-Dinh D, Gaspera BD, Kerlero de Rosbo N, Dautigny A (1995) Structure of the human myelin oligodendrocyte glycoprotein gene and multiple alternative splice isoforms. Genomics 29:345–352

    Article  CAS  PubMed  Google Scholar 

  • Pierson E, Simmons SB, Castelli L, Goverman JM (2012) Mechanisms regulating regional localization of inflammation during CNS autoimmunity. Immunol Rev 248(1):205–215

    Article  PubMed Central  PubMed  Google Scholar 

  • Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P (2014) Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 47:405–505

    Article  CAS  Google Scholar 

  • Quarles RH (2002) Myelin sheaths: glycoproteins involved in their formation, maintenance and degeneration. Cell Mol Life Sci 59(11):1851–1871

    Article  CAS  PubMed  Google Scholar 

  • Racke M, Hu W, Lovett-Racke (2005) PTX cruiser: driving autoimmunity via TLR4. Trends Immunol 26(6):289–291

    Article  CAS  PubMed  Google Scholar 

  • Raine C (1994) The Dale E. McFarlin memorial lecture: the immunology of the multiple sclerosis lesion. Ann Neurol 386:S61–S72

    Article  Google Scholar 

  • Ramp AA, Hall C, Orian JM (2010) Strain-related effects of fenbendazole treatment on murine experimental autoimmune encephalomyellitis. Lab Anim 44:271–273

    Article  CAS  PubMed  Google Scholar 

  • Rangachari M, Kuchroo VK (2013) Using EAE to better understand principles of immune function and autoimmune pathology. J Autoimmun 45:31–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ransohoff (2006) EAE: pitfalls outweigh virtues of screening potential treatments for multiple sclerosis. Trends Immunol 27(4):167–168

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM (2014) Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci 15(8):1074–1077

    Article  CAS  Google Scholar 

  • Ransohoff RM, Haffler DA, Lucchinetti CF (2015) Multiple sclerosis—a quiet revolution. Nat Rev Neurol 11:134–142

    Article  PubMed  Google Scholar 

  • Reifsnyder P, Li R, Silviera P, Churchill G, Serreze D, Leiter E (2005) Conditioning the genome identifies additional diabetes resistance loci in Type 1 diabetes resistant NOR/Lt mice. Genes Immun 6(6):528–538

    Article  CAS  PubMed  Google Scholar 

  • Reindl M, Di Pauli F, Rostasy K, Berger T (2013) The spectrum of MOG autoantibody-associated demyelinating diseases. Nat Rev Neurol 9:455–461

    Article  CAS  PubMed  Google Scholar 

  • Rivero VE, Riera CM, Roth GA (1999) Humoral response against myelin antigens in two strains of rats with different susceptibility to experimental allergic encephalomyelitis (EAE). Autoimmunity 29(2):129–137

    Article  CAS  PubMed  Google Scholar 

  • Robinson AP, Harp CT, Noronha A, Miller SD (2014) The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol 122:173–189

    Article  PubMed Central  PubMed  Google Scholar 

  • Rocca M, Messina R, Filippi M (2013) Multiple sclerosis imaging: recent advances. J Neurol 260:929–935

    Article  PubMed  Google Scholar 

  • Schluesener HJ, Sober RA, Linington C, Weiner HL (1987) A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. J Immunol 139:4016–4021

    CAS  PubMed  Google Scholar 

  • Schmidt S (1999) Candidate autoantigens in multiple sclerosis. Mult Scler 5:147–160

    Article  CAS  PubMed  Google Scholar 

  • Scolding NJ, Frith S, Linington C, Morgan BP, Campbell AK, Compston AS (1989) Myelin oligodendrocyte glycoprotein is a surface marker of oligodendrocyte maturation. J Neuroimmunol 22:169–176

    Article  CAS  PubMed  Google Scholar 

  • Sekugichi Y, Ichikawa M, Inoue A, Itoh M, Koh C-S (2001) Brain-derived gangliosides suppress the chronic relapsing-remitting experimental autoimmune encephalomyelitis in NOD mice induced with myelin oligodendrocyte glycoprotein peptide. J Neuroimmunol 116:196–205

    Article  Google Scholar 

  • Serreze DV, Leiter EH (1994) Genetic and pathogenic basis of autoimmune diabetes in NOD mice. Curr Opin Immunol 6:900–906

    Article  CAS  PubMed  Google Scholar 

  • Serreze DV, Chapman HD, Varnum DS, Gerling I, Leiter EH, Shulz LD (1997) Initiation of autoimmune diabetes in NOD/Lt mice is MHC class I-dependent. J Immunol 158(8):3978–3986

    CAS  PubMed  Google Scholar 

  • Silveira PA, Baxter AG (2001) The NOD mouse as a model of SLE. Autoimmunity 34:53–64

    Article  CAS  PubMed  Google Scholar 

  • Simmons SB, Liggitt D, Goverman JM (2014) Cytokine-regulated neutrophil recruitment is required for brain but not spinal cord inflammation during experimental autoimmune encephalomyelitis. J Immunol 193(2):555–563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siram S, Steiner I (2005) Experimental autoimmune encephalomyelitis: a misleading model of MS. Ann Neurol 58:939–945

    Article  CAS  Google Scholar 

  • Skundric DS (2005) Experimental models of relapsing-remitting multiple sclerosis: current concepts and perspective. Curr Neurovascular Res 2:349–362

    Article  CAS  Google Scholar 

  • Slavin AJ, Johns TG, Orian JM, Bernard C (1996) Regulation of myelin oligodendrocyte glycoprotein in different species during development. Dev Neurosci 19:69–78

    Article  Google Scholar 

  • Slavin A, Ewing C, Liu J, Ichikawa M, Slavin J, Bernard C (1998) Induction of a multiple sclerosis-like disease in mice with an immunodominant epitope of myelin oligodendrocyte glycoprotein. Autoimmunity 28:109–120

    Article  CAS  PubMed  Google Scholar 

  • Smith P, Heijmans N, Ouwerling B, Breij E, Evans N, van Noort J, Plomp A, Delarasse C, ’t Hart B, Pham-Dinh D, Amor S (2005) Native myelin oligodendrocyte glycoprotein promotes severe chronic neurological disease and demyelination in Biozzi mice. Eur J Immunol 35:1311–1319

    Article  CAS  PubMed  Google Scholar 

  • Stefferl A, Brehm U, Storch M, Lambracht-Washington D, Bourquin C, Wonigeit K, Lassmann H, Linington C (1999) Myelin oligodendrocyte glycoprotein induces experimental autoimmune encephalomyelitis in the “resistant” Brown norway rat: disease susceptibility is determined by MHC and MHC-linked effects in the B cell response. J Immunol 163:40–49

    CAS  PubMed  Google Scholar 

  • Stefferl A, Brehm U, Linington C (2000) The myelin oligodendrocyte glycoprotein (MOG): a model for antibody-mediated demyelination in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neural Transm 58:123–133

    Google Scholar 

  • Steinman L, Zamvil SS (2005) Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis. Trends Immunol 26(11):565–571

    Article  CAS  PubMed  Google Scholar 

  • Steinman L, Zamvil S (2006) How to successfully apply animal studies in experimental autoimmune encephalomyelitis to research on multiple sclerosis. Ann Neurol 60:12–21

    Article  CAS  PubMed  Google Scholar 

  • Storch MK, Piddelsden S, Haltia M, Livanainen M, Morgan P, Lassmann H (1998a) Multiple sclerosis: in situ evidence for antibody- and complement-mediated demyelination. Ann Neurol 43:465–471

    Article  CAS  PubMed  Google Scholar 

  • Storch MK, Stefferl A, Brehm U, Weissert R, Wallstrom E, Kerschensteiner M, Olsson T, Linington C, Lassmann H (1998b) Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol 8:681–694

    Article  CAS  PubMed  Google Scholar 

  • Strommes IM, Goverman JM (2006) Passive induction of experimental autoimmune encephalomyelitis. Nat Protoc 1:1952–1960

    Article  CAS  Google Scholar 

  • ’t Hart BA, van Meurs M, Brok HPM, Massacesi L, Bauer J, Boon L, Bontrop RE, Laman JD (2000) A new primate model for multiple sclerosis in the common marmoset. Immunol Today 21(6):290–297

    Google Scholar 

  • ’t Hart BA, Vogels J, Bauer J, Brock HP, Blezer R (2004) Non-invasive measurement of brain damage in a primate model of multiple sclerosis. Trends Mol Med 10(2):85–91

    Article  PubMed  Google Scholar 

  • ’t Hart BA, Gran B, Weissert R (2013) EAE: imperfect but useful models of multiple sclerosis. Trends Mol Med 17(3):119–125

    Article  CAS  Google Scholar 

  • Trapp BD, Nave K-A (2008) Multiple sclerosis: an immune of neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  CAS  PubMed  Google Scholar 

  • Tsunoda I, Kuang LQ, Theil DJ, Fujinami RS (2000) Antibody association with a novel model for primary progressive multiple sclerosis: induction of relapsing-remitting and progressive forms of EAE in H2s mouse strains. Brain Pathol 10(3):402–418

    Article  CAS  PubMed  Google Scholar 

  • van Engelen BG, Pavelko KD, Rodriguez M (1997) Enhancement of central nervous system remyelination in immune and non-immune experimental models of demyelination. Mult Scler 3(2):76–79

    Article  PubMed  Google Scholar 

  • Vercellino M, Plano T, Votta B, Mutani R, Giordana M, Cavalla P (2005) Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol 64:1101–1107

    Article  PubMed  Google Scholar 

  • Waldman A, Ghezzi A, Bar-Or A, Mikaeloff Y, Tardieu M, Banwell B (2014) Multiple sclerosis in children: an update on clinical diagnosis, therapeutic strategies and research. Lancet Neurol 13(9):936–948

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang D, Ayers MM, Hazelwood LJ, Catmull DV, Bernard CCA, Orian JM (2005) Astrocyte-associated axonal damage in pre-onset stages of experimental autoimmune encephalomyelitis. Glia 51:235–240

    Article  PubMed  Google Scholar 

  • Yeh A, Chitnis T, Krupp L, Ness J, Chabas D, Kuntz N, Waubant E (2009) Pediatric multiple sclerosis. Nat Rev Neurol 5:621–631

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was funded by the National Multiple Sclerosis Society and Novartis Pharmaceuticals Australia. The authors would like to thank LIMS and the Clive and Vera Ramaciotti and Rebecca L. Cooper Medical Research Foundations for equipment. CDS was supported by a post-graduate award from La Trobe University. We also thank A.A. Jimenez for permission to use Fig. 1 and A.A. Ramp for Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline M. Orian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dang, P.T., Bui, Q., D’Souza, C.S., Orian, J.M. (2015). Modelling MS: Chronic-Relapsing EAE in the NOD/Lt Mouse Strain. In: La Flamme, A., Orian, J. (eds) Emerging and Evolving Topics in Multiple Sclerosis Pathogenesis and Treatments. Current Topics in Behavioral Neurosciences, vol 26. Springer, Cham. https://doi.org/10.1007/7854_2015_378

Download citation

Publish with us

Policies and ethics