Skip to main content

Cognitive Translation Using the Rodent Touchscreen Testing Approach

  • Chapter
Translational Neuropsychopharmacology

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 28))

Abstract

The development of novel therapeutic avenues for the treatment of cognitive deficits in psychiatric and neurodegenerative disease is of high importance, yet progress in this field has been slow. One reason for this lack of success may lie in discrepancies between how cognitive functions are assessed in experimental animals and humans. In an attempt to bridge this translational gap, the rodent touchscreen testing platform is suggested as a translational tool. Specific examples of successful cross-species translation are discussed focusing on paired associate learning (PAL), the 5-choice serial reaction time task (5-CSRTT), the rodent continuous performance task (rCPT) and reversal learning. With ongoing research assessing the neurocognitive validity of tasks, the touchscreen approach is likely to become increasingly prevalent in translational cognitive research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Monim Z, Reynolds GPG, Neill JC (2003) The atypical antipsychotic ziprasidone, but not haloperidol, improves phencyclidine-induced cognitive deficits in a reversal learning task in the rat. J Psychopharmacol 17:57–65

    Article  CAS  PubMed  Google Scholar 

  • Adler CM, Sax KW, Holland SK et al (2001) Changes in neuronal activation with increasing attention demand in healthy volunteers: an fMRI study. Synapse 42:266–272. doi:10.1002/syn.1112

    Article  CAS  PubMed  Google Scholar 

  • Alexander DA (1973) Attention dysfunction in senile dementia. Psychol Rep 32:229–230. doi:10.2466/pr0.1973.32.1.229

    Article  CAS  PubMed  Google Scholar 

  • Alsiö J, Nilsson S, Gastambide F et al (2015) The role of 5-HT2C receptors in touchscreen visual reversal learning in the rat: a cross-site study. Psychopharmacology 1–15. doi:10.1007/s00213-015-3963-5

  • Antshel KM, Shprintzen R, Fremont W, et al (2010) new research cognitive and psychiatric predictors to psychosis in velocardiofacial syndrome: a 3-year follow-up study. 49:333–344. doi:10.1016/j.jaac.2010.01.010

  • Aubin G, Stip E, Gélinas I et al (2009) Daily activities, cognition and community functioning in persons with schizophrenia. Schizophr Res 107:313–318. doi:10.1016/j.schres.2008.08.002

    Article  PubMed  Google Scholar 

  • Baddeley A, Cocchini G, Sala Della S et al (1999) Working memory and vigilance: evidence from normal aging and Alzheimer’s disease. Brain Cogn 41:87–108. doi:10.1006/brcg.1999.1097

    Article  CAS  PubMed  Google Scholar 

  • Bari A, Theobald DEH, Caprioli D et al (2010) Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacol 35:1290–1301. doi:10.1038/npp.2009.233

    Article  CAS  Google Scholar 

  • Barnett JH, Sahakian BJ, Werners U et al (2005) Visuospatial learning and executive function are independently impaired in first-episode psychosis. Psychol Med 35:1031–1041

    Article  PubMed  Google Scholar 

  • Barnett JH, Robbins TW, Leeson VC et al (2010) Assessing cognitive function in clinical trials of schizophrenia. Neurosci Biobehav Rev 34:1161–1177. doi:10.1016/j.neubiorev.2010.01.012

    Article  PubMed  Google Scholar 

  • Bartko SJ, Vendrell I, Saksida LM, Bussey TJ (2010) A computer-automated touchscreen paired-associates learning (PAL) task for mice: impairments following administration of scopolamine or dicyclomine and improvements following donepezil. Psychopharmacology 214:537–548. doi:10.1007/s00213-010-2050-1

    Article  PubMed  CAS  Google Scholar 

  • Bartko SJ, Romberg C, White B et al (2011) Intact attentional processing but abnormal responding in M1 muscarinic receptor-deficient mice using an automated touchscreen method. Neuropsychopharm 61(8):1366–1378

    CAS  Google Scholar 

  • Bartók E, Berecz R, Glaub T, Degrell I (2005) Cognitive functions in prepsychotic patients. Prog Neuropsychopharmacol Biol Psychiatry 29:621–625. doi:10.1016/j.pnpbp.2005.01.008

    Article  PubMed  Google Scholar 

  • Baudic S, Barba GD, Thibaudet MC et al (2006) Executive function deficits in early Alzheimer’s disease and their relations with episodic memory. Arch Clin Neuropsychol 21:15–21. doi:10.1016/j.acn.2005.07.002

    Article  PubMed  Google Scholar 

  • Becker JT, Olton DS, Anderson CA, Breitinger ERP (1981) Cognitive mapping in rats: the role of the hippocampal and frontal systems in retention and reversal. Behav Brain Res 3:1–22

    Article  CAS  PubMed  Google Scholar 

  • Belforte JE, Zsiros V, Sklar ER et al (2009) Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 13:76–83. doi:10.1038/nn.2447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belleville S, Chertkow H, Gauthier S (2007) Working memory and control of attention in persons with Alzheimer’s disease and mild cognitive impairment. Neuropsychology 21:458–469. doi:10.1037/0894-4105.21.4.458

    Article  PubMed  Google Scholar 

  • Bentley P, Driver J, Dolan RJ (2008) Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer’s disease and health. Brain 131:409–424. doi:10.1093/brain/awm299

    Article  PubMed  Google Scholar 

  • Berwid OG, Curko Kera EA, Marks DJ et al (2005) Sustained attention and response inhibition in young children at risk for Attention Deficit/Hyperactivity Disorder. J Child Psychol Psychiatry 46:1219–1229. doi:10.1111/j.1469-7610.2005.00417.x

    Article  PubMed  Google Scholar 

  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4324

    CAS  PubMed  Google Scholar 

  • Bissonette GB, Martins GJ, Franz TM et al (2008) Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice. J Neurosci Res 28:11124–11130. doi:10.1523/JNEUROSCI.2820-08.2008

    CAS  Google Scholar 

  • Blackwell AD, De Jager C, Budge M et al (2005) Preclinical detection and differential diagnosis of Alzheimer’s disease using a visuospatial paired associates learning test (CANTAB PAL): Implications for screening and clinical trial sample enrichment. Alzheimer’s & Dement 1:S80–S81. doi:10.1016/j.jalz.2005.06.286

    Article  Google Scholar 

  • Boulougouris V, Dalley JW, Robbins TW (2007) Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behav Brain Res 179:219–228. doi:10.1016/j.bbr.2007.02.005

    Article  PubMed  Google Scholar 

  • Brigman JL, Mathur P, Harvey-White J et al (2010) Pharmacological or genetic inactivation of the serotonin transporter improves reversal learning in mice. Cereb Cortex 20:1955–1963. doi:10.1093/cercor/bhp266

    Article  PubMed  Google Scholar 

  • Buchsbaum MS, Nuechterlein KH, Haier RJ et al (1990) Glucose metabolic rate in normals and schizophrenics during the continuous performance test assessed by positron emission tomography. Brit J Psychiat 156:216–227. doi:10.1192/bjp.156.2.216

    Article  CAS  PubMed  Google Scholar 

  • Bussey TJ, Wise SP, Murray EA (2001) The role of ventral and orbital prefrontal cortex in conditional visuomotor learning and strategy use in rhesus monkeys (Macaca mulatta). Behav Neurosci 115:971–982

    Article  CAS  PubMed  Google Scholar 

  • Bussey TJ, Holmes A, Lyon L et al (2012) New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats. Neuropharmacology 62:1191–1203. doi:10.1016/j.neuropharm.2011.04.011

    Article  CAS  PubMed  Google Scholar 

  • Carli M, Robbins TW, Evenden JL, Everitt BJ (1983) Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav Brain Res 9:361–380

    Article  CAS  PubMed  Google Scholar 

  • Carter CS, Barch DM (2007) Cognitive neuroscience-based approaches to measuring and improving treatment effects on cognition in schizophrenia: the CNTRICS initiative. Schizophr Bull 33:1131–1137. doi:10.1093/schbul/sbm081

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter CS, Braver TS, Barch DM et al (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280:747–749

    Article  CAS  PubMed  Google Scholar 

  • Castañé A, Theobald DEH, Robbins TW (2010) Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behav Brain Res 210:74–83. doi:10.1016/j.bbr.2010.02.017

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceaser AE, Goldberg TE, Egan MF et al (2008) Set-shifting ability and schizophrenia: a marker of clinical illness or an immediate phenotype? Biol Psychiatry 64:782–788

    Article  PubMed  PubMed Central  Google Scholar 

  • Chee P, Logan G, Schachar R et al (1989) Effects of event rate and display time on sustained attention in hyperactive, normal, and control children. J Abnorm Child Psychol 17:371–391

    Article  CAS  PubMed  Google Scholar 

  • Chouinard S, Stip E, Poulin J et al (2007) Rivastigmine treatment as an add-on to antipsychotics in patients with schizophrenia and cognitive deficits. Curr Med Res Opin 23:575–583. doi:10.1185/030079906X167372

    Article  CAS  PubMed  Google Scholar 

  • Chudasama Y, Robbins TW (2003) Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci 23:8771–8780

    CAS  PubMed  Google Scholar 

  • Chudasama Y, Robbins TW (2006) Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and humans. Biol Psychol 73:19–38. doi:10.1016/j.biopsycho.2006.01.005

    Article  CAS  PubMed  Google Scholar 

  • Clarke HF, Dalley JW, Crofts HS et al (2004) Cognitive inflexibility after prefrontal serotonin depletion. Science 304:878–880. doi:10.1126/science.1094987

    Article  CAS  PubMed  Google Scholar 

  • Clatworthy PL, Lewis SJG, Brichard L et al (2009) Dopamine release in dissociable striatal subregions predicts the different effects of oral methylphenidate on reversal learning and spatial working memory. J Neurosci 29:4690–4696. doi:10.1523/JNEUROSCI.3266-08.2009

    Article  CAS  PubMed  Google Scholar 

  • Conners CK, Epstein JN, Angold A, Klaric J (2003) Continuous performance test performance in a normative epidemiological sample. J Abnorm Child Psychol 31:555–562

    Article  PubMed  Google Scholar 

  • Cools R, Clark L, Owen AM, Robbins TW (2002) Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J Neurosci 22:4563–4567

    CAS  PubMed  Google Scholar 

  • Cools R, Robinson OJ, Sahakian B (2008) Acute tryptophan depletion in healthy volunteers enhances punishment prediction but does not affect reward prediction. Neuropsychopharmacol 33:2291–2299. doi:10.1038/sj.npp.1301598

    Article  CAS  Google Scholar 

  • Corbett BA, Constantine LJ (2006) Autism and attention deficit hyperactivity disorder: assessing attention and response control with the integrated visual and auditory continuous performance test. NCNY 12:335–348. doi:10.1080/09297040500350938

    Article  Google Scholar 

  • Cornblatt BA, Keilp JG (1994) Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophr Bull 20:31–46

    Article  CAS  PubMed  Google Scholar 

  • Cornblatt BA, Lenzenweger MF, Erlenmeyer-Kimling L (1989) The continuous performance test, identical pairs version: II. Contrasting attentional profiles in schizophrenic and depressed patients. Psychiatry Res 29(1):65–85

    Google Scholar 

  • Cornblatt BA, Malhotra AK (2001) Impaired attention as an endophenotype for molecular genetic studies of schizophrenia. Am J Med Genet 105:11–15

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, O’Leary OF, Jin S-H et al (2004) Norepinephrine-Deficient Mice Lack Responses to Antidepressant Drugs, Including Selective Serotonin Reuptake Inhibitors. Proc Natl Acad Sci USA 101:8186–8191. doi:10.2307/3372472?ref=no-x-route:ab20f928fa3830dcbfa7405ac3ccea45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crystal H, Dickson D, Fuld P et al (1988) Clinico-pathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology 38:1682–1687. doi:10.1212/WNL.38.11.1682

    Article  CAS  PubMed  Google Scholar 

  • Cubillo A, Halari R, Smith A et al (2012) A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with attention deficit hyperactivity disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention. Cortex 48:194–215. doi:10.1016/j.cortex.2011.04.007

    Article  PubMed  Google Scholar 

  • Dalley JW, Mar AC, Economidou D, Robbins TW (2008) Neurobehavioral mechanisms of impulsivity: Fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav 90:250–260. doi:10.1016/j.pbb.2007.12.021

    Article  CAS  PubMed  Google Scholar 

  • Dalley JW, Everitt BJ, Robbins TW (2011) Impulsivity, compulsivity, and top-down cognitive control. Neuron 69:680–694. doi:10.1016/j.neuron.2011.01.020

    Article  CAS  PubMed  Google Scholar 

  • Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2:1403

    Article  CAS  PubMed  Google Scholar 

  • Daw ND, Kakade S, Dayan P (2002) Opponent interactions between serotonin and dopamine. Neural Netw 15:603–616. doi:10.1016/S0893-6080(02)00052-7

    Article  PubMed  Google Scholar 

  • Daws LC (2006) Ethanol inhibits clearance of brain serotonin by a serotonin transporter-independent mechanism. J Neurosci 26:6431–6438. doi:10.1523/JNEUROSCI.4050-05.2006

    Article  CAS  PubMed  Google Scholar 

  • De Jager C, Blackwell AD, Budge MM, Sahakian BJ (2005) Predicting cognitive decline in healthy older adults. Am J Geriatr Psychiatry 13:735–740. doi:10.1176/appi.ajgp.13.8.735

    Article  PubMed  Google Scholar 

  • de Rover M, Pironti VA, McCabe JA, Acosta-Cabronero J, Arana FS, Morein-Zamir S, Hodges JR, Robbins TW, Fletcher PC, Nestor PJ, Sahakian BJ (2011) Hippocampal dysfunction in patients with mild cognitive impairment: a functional neuroimaging study of a visuospatial paired associates learning task. Neuropsychologia 49(7):2060–2070

    Google Scholar 

  • Delotterie DF, Mathis C, Cassel JC, Rosenbrock H, Dorner-Ciossek C, Marti A (2015) Touchscreen tasks in mice to demonstrate differences between hippocampal and striatal functions. Neurobiol Learn Mem 120:16–27

    Google Scholar 

  • Demeter E, Sarter M, Lustig C (2008) Rats and humans paying attention: cross-species task development for translational research. Neuropsychology 22:787–799. doi:10.1037/a0013712

    Article  PubMed  PubMed Central  Google Scholar 

  • den Ouden HEM, Daw ND, Fernandez G et al (2013) Dissociable effects of dopamine and serotonin on reversal learning. Neuron 80:1090–1100. doi:10.1016/j.neuron.2013.08.030

    Article  CAS  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380:69–72. doi:10.1038/380069a0

    Article  CAS  PubMed  Google Scholar 

  • Donohoe G, Spoletini I, McGlade N et al (2008) Are relational style and neuropsychological performance predictors of social attributions in chronic schizophrenia? Psychiatry Res 161:19–27. doi:10.1016/j.psychres.2007.10.001

    Article  PubMed  Google Scholar 

  • Downes JJ, Roberts AC, Sahakian BJ et al (1989) Impaired extra-dimensional shift performance in medicated and unmedicated Parkinson’s disease: evidence for a specific attentional dysfunction. Neuropsychologica 27:1329–1343

    Article  CAS  Google Scholar 

  • Égerházi A, Berecz R, Bartók E, Degrell I (2007) Automated neuropsychological test battery (CANTAB) in mild cognitive impairment and in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 31:746–751. doi:10.1016/j.pnpbp.2007.01.011

    Article  PubMed  Google Scholar 

  • Eichenbaum H (1999) The hippocampus and mechanisms of declarative memory. Behav Brain Res 103:123–133

    Article  CAS  PubMed  Google Scholar 

  • Eichenbaum H (2000) A cortical-hippocampal system for declarative memory. Nat Rev Neursoci 1:41–50

    Article  CAS  Google Scholar 

  • Epstein JN, Casey BJ, Tonev ST et al (2007) ADHD- and medication-related brain activation effects in concordantly affected parent-child dyads with ADHD. J Child Psychol Psychiatry 48:899–913. doi:10.1111/j.1469-7610.2007.01761.x

    Article  PubMed  Google Scholar 

  • Evenden JL (1999) Varieties of impulsivity. Psychopharmacology 146:348–361

    Article  CAS  PubMed  Google Scholar 

  • Evers EAT, Cools R, Clark L et al (2005) Serotonergic modulation of prefrontal cortex during negative feedback in probabilistic reversal learning. Neuropsychopharmacol 30:1138–1147. doi:10.1038/sj.npp.1300663

    Article  CAS  Google Scholar 

  • Fallgatter AJ, Strik WK (1997) Right frontal activation during the continuous performance test assessed with near-infrared spectroscopy in healthy subjects. Neurosci Lett 223:89–92

    Article  CAS  PubMed  Google Scholar 

  • Fallgatter AJ, Strik WK (1999) The NoGo-anteriorization as a neurophysiological standard-index for cognitive response control. Int J Psychophysiol 32:233–238

    Article  CAS  PubMed  Google Scholar 

  • Filbey FM, Toulopoulou T, Morris RG et al (2008) Selective attention deficits reflect increased genetic vulnerability to schizophrenia. Schizophrn Res 101:169–175. doi:10.1016/j.schres.2008.01.019

    Article  Google Scholar 

  • Finger EC, Marsh AA, Buzas B et al (2007) The impact of tryptophan depletion and 5-HTTLPR genotype on passive avoidance and response reversal instrumental learning tasks. Neuropsychopharmacol 32:206–215. doi:10.1038/sj.npp.1301182

    Article  CAS  Google Scholar 

  • Floresco SB, Block AE, Tse MTL (2008) Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behav Brain Res 190:85–96

    Article  PubMed  Google Scholar 

  • Foldi NS, White REC, Schaefer LA (2005) Detecting effects of donepezil on visual selective attention using signal detection parameters in Alzheimer’s disease. Int J Geriat Psychiatry 20:485–488. doi:10.1002/gps.1319

    Article  Google Scholar 

  • Frank MJ, O’Reilly RC (2006) A mechanistic account of striatal dopamine function in human cognition: Psychopharmacological studies with cabergoline and haloperidol. Behav Neurosci 120:497–517. doi:10.1037/0735-7044.120.3.497

    Article  CAS  PubMed  Google Scholar 

  • Frey PW, Colliver JA (1973) Sensitivity and responsivity measures for discrimination learning. Learn Motiv 4:327–342. doi:10.1016/0023-9690(73)90023-4

    Article  Google Scholar 

  • Friedman JI, Adler DN, Howanitz E, Harvey PD, Brenner G, Temporini H, White L, Parrella M (2002) A double blind placebo controlled trial of donepezil adjunctive treatment to risperidone for the cognitive impairment of schizophrenia. Biol Psychiatry 51(5):349–357

    Google Scholar 

  • Gardner RA, Coate WB (1965) Reward versus nonreward in a simultaneous discrimination. J Exp Psychol 69:579–582. doi:10.1037/h0022057

    Article  CAS  PubMed  Google Scholar 

  • Gauthier S, Juby A, Rehel B, Schecter R (2007) EXACT: rivastigmine improves the high prevalence of attention deficits and mood and behaviour symptoms in Alzheimer’s disease*. Int J Clin Pract 61:886–895. doi:10.1111/j.1742-1241.2007.01387.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlai R, Clayton NS (1999) Analysing hippocampal function in transgenic mice: an ethological persepctive. Trends Neurosci 22:47–51

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA, Tamminga CA (2004) Measurement and treatment research to improve cognition in schizophrenia: neuropharmacological aspects. Psychopharmacology 174:1–2. doi:10.1007/s00213-004-1846-2

    Article  CAS  Google Scholar 

  • Ghods-Sharifi S, Haluk DM, Floresco SB (2008) Differential effects of inactivation of the orbitofrontal cortex on strategy set-shifting and reversal learning. Neurobiol Learn Mem 89:567–573. doi:10.1016/j.nlm.2007.10.007

    Article  PubMed  Google Scholar 

  • Glosser G, Goodglass H (1990) Disorders in executive control functions among aphasic and other brain-damaged patients. J Clin Exp Neuropsychol 12:485–501. doi:10.1080/01688639008400995

    Article  CAS  PubMed  Google Scholar 

  • Graybeal C, Feyder M, Schulman E et al (2011) Paradoxical reversal learning enhancement by stress or prefrontal cortical damage: rescue with BDNF. Nat Neurosci 14:1507–1509. doi:10.1038/nn.2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153:321–330

    Article  CAS  PubMed  Google Scholar 

  • Green MF (2006) Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. J Clin Psychiatry 67(supl 9):3–8

    Google Scholar 

  • Green DM, Swets JA (1989) Signal detection theory and psychophysics. Peninsula Pub

    Google Scholar 

  • Greig NH, Sambamurti K, Yu QS et al (2005) An overview of phenserine tartrate, a novel acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Curr Alzheimer Res 2:281–290

    Article  CAS  PubMed  Google Scholar 

  • Hampshire A, Owen AM (2006) Fractionating attentional control using event-related fMRI. Cereb Cortex 16:1679–1689. doi:10.1093/cercor/bhj116

    Article  PubMed  Google Scholar 

  • Harrell W, Eack S, Hooper SR et al (2013) Research in developmental disabilities feasibility and preliminary efficacy data from a computerized cognitive intervention in children with chromosome 22q11.2 deletion syndrome. Res Dev Disabil 34:2606–2613. doi:10.1016/j.ridd.2013.05.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison AA, Everitt BJ, Robbins TW (1997) Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: interactions with dopaminergic mechanisms. Psychopharmacology 133:329–342

    Article  CAS  PubMed  Google Scholar 

  • Hervey AS, Epstein JN, Curry JF et al (2006) Reaction time distribution analysis of neuropsychological performance in an ADHD sample. NCNY 12:125–140. doi:10.1080/09297040500499081

    Article  Google Scholar 

  • Holthausen EA, Wiersma D, Cahn W et al (2007) Predictive value of cognition for different domains of outcome in recent-onset schizophrenia. Psychiatry Res 149:71–80. doi:10.1016/j.psychres.2005.07.037

    Article  PubMed  Google Scholar 

  • Hooper SR, Curtiss K, Schoch K et al (2013) Research in developmental disabilities a longitudinal examination of the psychoeducational, neurocognitive, and psychiatric functioning in children with 22q11.2 deletion syndrome. Res Dev Disabil 34:1758–1769. doi:10.1016/j.ridd.2012.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Hornak J, O’Doherty J, Bramham J et al (2004) Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J Cogn Neurosci 16:463–478. doi:10.1162/089892904322926791

    Article  CAS  PubMed  Google Scholar 

  • Horner AE, Heath CJ, Hvoslef-Eide M et al (2013) The touchscreen operant platform for testing learning and memory in rats and mice. Nat Protoc 8:1961–1984. doi:10.1038/nprot.2013.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes C, Russell J, Robbins TW (1994) Evidence for executive dysfunction in autism. Neuropsychologia 32:477–492

    Article  CAS  PubMed  Google Scholar 

  • Hvoslef-Eide M, Lyon L, Mar AC et al. (2013) Attentional deficits following postnatal NR1 knock-out in corticolimbic interneurons. Program No. 255.29. 2013 Neuroscience Meeting Planner. Society for Neuroscience, San Diego, (Online)

    Google Scholar 

  • Hvoslef-Eide M, Mar AC, Nilsson S et al (2015) The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia. Psychopharmacology 232:3852–3872

    Google Scholar 

  • Insel TR (2012) Next-generation treatments for mental disorders. Sci Transl Med 4:155ps19–155ps19. doi:10.1126/scitranslmed.3004873

  • Insel TR, Wang PS (2010) Rethinking mental illness. JAMA 303:1970–1971. doi:10.1001/jama.2010.555

    Article  CAS  PubMed  Google Scholar 

  • Insel TR, Voon V, Nye JS et al (2013) Neuroscience and biobehavioral reviews. Neurosci Biobehav Rev 37:2438–2444. doi:10.1016/j.neubiorev.2013.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izquierdo A, Darling C, Manos N, Pozos H, Kim C, Ostrander S, Cazares V, Stepp H, Rudebeck PH (2013) Basolateral amygdala lesions facilitate reward choices after negative feedback in rats. J Neurosci 33(9):4105–4109

    Google Scholar 

  • Kahn PV, Walker TM, Williams TS et al (2012) Standardizing the use of the continuous performance test in schizophrenia research: a validation study. Schizophr Res 1–6. doi:10.1016/j.schres.2012.09.009

  • Keefe RSE, Bilder RM, Davis SM et al (2007) Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch Gen Psychiatry 64:633–647. doi:10.1001/archpsyc.64.6.633

    Article  CAS  PubMed  Google Scholar 

  • Keilp JG, Herrera J, Stritzke P, Cornblatt BA (1997) The continuous performance test, identical pairs version (CPT-IP): III: brain functioning during performance of numbers and shapes subtasks. Psychiatry Res 74:35–45. doi:10.1016/S0925-4927(96)02881-8

    Article  CAS  PubMed  Google Scholar 

  • Kempton S, Vance A, Maruff P et al (1999) Executive function and attention deficit hyperactivity disorder: stimulant medication and better executive function performance in children. Psychol Med 29:527–538

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Ragozzino ME (2005) The involvement of the orbitofrontal cortex in learning under changing task contingencies. Neurobiol Learn Mem 83:125–133. doi:10.1016/j.nlm.2004.10.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim CH, Hvoslef-Eide M, Nilsson SR, Johnson MR, Herbert BR, Robbins TW, Saksida LM, Bussey TJ, Mar AC (2015) The continuous performance test (rCPT) for mice: a novel operant touchscreen test of attentional function. Psychopharmacology 232(21–22):3947–3966

    Google Scholar 

  • Klinkenberg I, Sambeth A, Blokland A (2011) Acetylcholine and attention. Behav Brain Res 221:430–442. doi:10.1016/j.bbr.2010.11.033

    Article  CAS  PubMed  Google Scholar 

  • Kofler MJ, Rapport MD, Sarver DE et al (2013) Reaction time variability in ADHD: a meta-analytic review of 319 studies. Clin Psychol Rev 33(6):795–811

    Article  PubMed  Google Scholar 

  • Lapiz-Bluhm MDS, Soto-Piña AE, Hensler JG, Morilak DA (2009) Chronic intermittent cold stress and serotonin depletion induce deficits of reversal learning in an attentional set-shifting test in rats. Psychopharmacology 202:329–341. doi:10.1007/s00213-008-1224-6

    Article  CAS  PubMed  Google Scholar 

  • Lawrence AD, Sahakian BJ (1995) Alzheimer disease, attention, and the cholinergic system. Alzheimer Dis Assoc Disord 9(Suppl 2):43–49

    PubMed  Google Scholar 

  • Leeson VC, Robbins TW, Matheson E et al (2009) Discrimination learning, reversal, and set-shifting in first-episode schizophrenia: stability over six years and specific associations with medication type and disorganization syndrome. Biol Psychiatry 66:586–593. doi:10.1016/j.biopsych.2009.05.016

    Article  PubMed  PubMed Central  Google Scholar 

  • Levaux M-N, Potvin S, Sepehry AA et al (2007) Computerized assessment of cognition in schizophrenia: promises and pitfalls of CANTAB. Eur Psychiatry 22:104–115. doi:10.1016/j.eurpsy.2006.11.004

    Article  PubMed  Google Scholar 

  • Levin ED, Conners KC, Silva D et al (1998) Transdermal nicotine effect on attention. Psychopharmacology 140:135–141

    Article  CAS  PubMed  Google Scholar 

  • Levin ED, Conners KC, Silva D et al (2001) Effects of chronic nicotine and methylphenidate in adults with attention deficit/hyperactivity disorder. Exp Clin Psychopharm 9(1):83–90

    Article  CAS  Google Scholar 

  • Levinoff EJ, Saumier D, Chertkow H (2005) Focused attention deficits in patients with Alzheimer’s disease and mild cognitive impairment. Brain Cogn 57:127–130. doi:10.1016/j.bandc.2004.08.058

    Article  PubMed  Google Scholar 

  • Lustig C, Kozak R, Sarter M et al (2013) CNTRICS final animal model task selection: control of attention. Neurosci Biobehav Rev 37:2099–2110. doi:10.1016/j.neubiorev.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  • Macmillan NA, Creelman CD (2004) Detection theory. Psychology Press

    Google Scholar 

  • Mar AC, Horner AE, Nilsson S et al (2013) The touchscreen operant platform for assessing executive function in rats and mice. Nat Protoc 8:1985–2005. doi:10.1038/nprot.2013.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masaki D, Yokoyama C, Kinoshita S et al (2006) Relationship between limbic and cortical 5-HT neurotransmission and acquisition and reversal learning in a go/no-go task in rats. Psychopharmacology 189:249–258. doi:10.1007/s00213-006-0559-0

    Article  CAS  PubMed  Google Scholar 

  • Mason JR, Stevens D, Wixon DR, Owens MP (1980) Assessment of the relative importance of S+ and S- in rats using differential training on intercurrent discriminations. Learn Motiv 11:49–60. doi:10.1016/0023-9690(80)90020-X

    Article  Google Scholar 

  • Mass R, Wolf K, Wagner M, Haasen C (2000) Differential sustained attention/vigilance changes over time in schizophrenics and controls during a degraded stimulus continuous performance test. Eur Arch Psychiatry Clin Neurosci 250:24–30. doi:10.1007/PL00007535

    Article  CAS  PubMed  Google Scholar 

  • Mathews TA, Fedele DE, Coppelli FM et al (2004) Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Methods 140:169–181. doi:10.1016/j.jneumeth.2004.05.017

    Article  CAS  PubMed  Google Scholar 

  • McAllister KAL, Saksida LM, Bussey TJ (2013) Dissociation between memory retention across a delay and pattern separation following medial prefrontal cortex lesions in the touchscreen TUNL task. Neurobiol Learn Mem 101:120–126. doi:10.1016/j.nlm.2013.01.010

    Article  PubMed  PubMed Central  Google Scholar 

  • McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146:97–103. doi:10.1016/j.bbr.2003.09.019

    Article  PubMed  Google Scholar 

  • McGaughy J, Sarter M (1995) Behavioral vigilance in rats: task validation and effects of age, amphetamine, and benzodiazepine receptor ligands. Psychopharmacology 117:340–357. doi:10.1007/BF02246109

    Article  CAS  PubMed  Google Scholar 

  • McGuinness B, Barrett SL, Craig D et al (2010) Attention deficits in Alzheimer’s disease and vascular dementia. J Neurol Neurosurg Psychiatry 81:157–159. doi:10.1136/jnnp.2008.164483

    Article  PubMed  Google Scholar 

  • Milner B, Jonhsrude I, Crane J (1997) Right medial temporal-lobe contribution to object-location memory. Philos Trans R Soc Lond B Biol Sci 352:1469–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller V, Anokhin AP (2012) Neural synchrony during response production and inhibition. PLoS ONE 7:e38931–11. doi:10.1371/journal.pone.0038931

  • Mullins GP, Winefield AH (1979) The relative importance of responses to S+ and S- in simultaneous discrimination learning. Q J Exp Psychol 31:329–338. doi:10.1080/14640747908400731

    Article  CAS  PubMed  Google Scholar 

  • Nithianantharajah J, Komiyama NH, McKechanie A et al (2012a) Synaptic scaffold evolution generated components of vertebrate cognitive complexity. Nat Neurosci 16:16–24. doi:10.1038/nn.3276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nithianantharajah J, McKechanie AG, Stewart TJ, Johnstone M et al (2012b) Bridging the translational divide: identical cognitive touchscreen testing in mice and humans carrying mutations in a disease-relevant homologous gene. Sci Rep 5:14613

    Article  CAS  Google Scholar 

  • Nithianantharajah J, McKechanie AG, Stewart TJ, Johnstone M, Blackwood DH, St Clair D, Grant SG, Bussey TJ, Saksida LM (2015) Bridging the translational divide: identical cognitive touchscreen testing in mice and humans carrying mutations in a disease-relevant homologous gene. Scientific Rep 5

    Google Scholar 

  • Nuechterlein KH (1983) Signal detection in vigilance tasks and behavioral attributes among offspring of schizophrenic mothers and among hyperactive children. J Abnorm Psychol 92:4–28

    Article  CAS  PubMed  Google Scholar 

  • Nuechterlein KH, Green MF, Calkins ME et al (2015) Attention/vigilance in schizophrenia: performance results from a large multi-site study of the consortium on the genetics of schizophrenia (COGS). Schizophr Res 163:38–46. doi:10.1016/j.schres.2015.01.017

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Carroll R (2000) Cognitive impairment in schizophrenia. Adv Psychiatry Treat 6:161–168. doi:10.1192/apt.6.3.161

    Article  Google Scholar 

  • Oken BS, Kishiyama SS, Kaye JA, Howieson DB (1994) Attention deficit in Alzheimer’s disease is not simulated by an anticholinergic/antihistaminergic drug and is distinct from deficits in healthy aging. Neurology 44:657. doi:10.1212/WNL.44.4.657

    Article  CAS  PubMed  Google Scholar 

  • Oomen CA, Bussey TJ, Saksida LM (2012) The retrosplenial cortex is involved in object-place paired-associates learning in the rat touchscreen operant chamber. Program No. 600.06. 2012 Neuroscience Meeting Planner. Society for Neuroscience, New Orleans (Online)

    Google Scholar 

  • Oomen CA, Hvoslef-Eide M, Heath CJ et al (2013) The touchscreen operant platform for testing working memory and pattern separation in rats and mice. Nat Protoc 8:2006–2021. doi:10.1038/nprot.2013.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen AM, Sahakian BJ, Semple J et al (1995) Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amydgalo-hippocampctomy in man. Neuropsychologia 33:1–24

    Article  CAS  PubMed  Google Scholar 

  • Pantelis C, Barber FZ, Barnes TR et al (1999) Comparison of set-shifting ability in patients with chronic schizophrenia and frontal lobe damage. Schizophr Res 37:251–270

    Article  CAS  PubMed  Google Scholar 

  • Park SB, Coull JT, McShane RH et al (1994) Tryptophan depletion in normal volunteers produces selective impairments in learning and memory. Neuropharmacology 33:575–588. doi:10.1016/0028-3908(94)90089-2

    Article  CAS  PubMed  Google Scholar 

  • Pattij T, Vanderschuren L (2008) The neuropharmacology of impulsive behaviour. Trends Pharmacol Sci 29:192–199. doi:10.1016/j.tips.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  • Perry RJ, Hodges JR (1999) Attention and executive deficits in Alzheimer’s disease: a critical review. Brain 122:383–404

    Article  PubMed  Google Scholar 

  • Peters MS, Cherian AK, Bradshaw M, Sarter M (2011) Sustained attention in mice: expanding the translational utility of the SAT by incorporating the Michigan Controlled Access Response Port (MICARP). Behav Brain Res 225:574–583. doi:10.1016/j.bbr.2011.08.025

    Article  Google Scholar 

  • Prouteau A (2004) Self-assessed cognitive dysfunction and objective performance in outpatients with schizophrenia participating in a rehabilitation program. Schizophr Res 69:85–91. doi:10.1016/j.schres.2003.08.011

    Article  PubMed  Google Scholar 

  • Prouteau A, Verdoux H, Briand C et al (2005) Cognitive predictors of psychosocial functioning outcome in schizophrenia: a follow-up study of subjects participating in a rehabilitation program. Schizophr Res 77:343–353. doi:10.1016/j.schres.2005.03.001

    Article  PubMed  Google Scholar 

  • Ritsner MS, Blumenkrantz H (2007) Predicting domain-specific insight of schizophrenia patients from symptomatology, multiple neurocognitive functions, and personality related traits. Psychiatry Res 149:59–69. doi:10.1016/j.psychres.2006.01.002

    Article  PubMed  Google Scholar 

  • Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology 163:362–380. doi:10.1007/s00213-002-1154-7

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, Roberts AC (2007) Differential regulation of fronto-executive function by the monoamines and acetylcholine. Cereb Cortex 17(Suppl 1):i151–i160. doi:10.1093/cercor/bhm066

    Article  PubMed  Google Scholar 

  • Roberts AC (2011) The importance of serotonin for orbitofrontal function. Biol Psychiatry 69:1185–1191. doi:10.1016/j.biopsych.2010.12.037

    Article  CAS  PubMed  Google Scholar 

  • Robinson OJ, Frank MJ, Sahakian BJ, Cools R (2010) Dissociable responses to punishment in distinct striatal regions during reversal learning. NeuroImage 51:1459–1467. doi:10.1016/j.neuroimage.2010.03.036

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers RD, Blackshaw AJ, Middleton HC et al (1999) Tryptophan depletion impairs stimulus-reward learning while methylphenidate disrupts attentional control in healthy young adults: implications for the monoaminergic basis of impulsive behaviour. Psychopharmacology 146:482–491

    Article  CAS  PubMed  Google Scholar 

  • Romberg C, Mattson MP, Mughal MR et al (2011) Impaired attention in the 3xTgAD mouse model of Alzheimer’s disease: rescue by donepezil (aricept). J Neurosci 31:3500–3507. doi:10.1523/JNEUROSCI.5242-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romberg C, Horner AE, Bussey TJ, Saksida LM (2013) A touch screen-automated cognitive test battery reveals impaired attention, memory abnormalities, and increased response inhibition in the TgCRND8 mouse model of Alzheimer’s disease. NBA 34:731–744. doi:10.1016/j.neurobiolaging.2012.08.006

    Google Scholar 

  • Rosvold HE, Mirsky AF, Sarason I et al (1956) A continuous performance test of brain damage. J Consult Psychol 20:343–350. doi:10.1037/h0043220

    Article  PubMed  Google Scholar 

  • Roth M, Tomlinson BE, Blessed G (1966) Correlation between scores for dementia and counts of “senile plaques” in cerebral grey matter of elderly subjects. Nature 209:109–110. doi:10.1038/209109a0

    Article  CAS  PubMed  Google Scholar 

  • Sahakian BJ, Coull JT (1993) Tetrahydroaminoacridine (THA) in Alzheimer’s disease: An assessment of attentional and mnemonic function using CANTAB. Acta Neurol Scand 88:29–35. doi:10.1111/j.1600-0404.1993.tb04251.x

    Article  Google Scholar 

  • Sahakian BJ, Owen AM (1992) Computerized assessment in neuropsychiatry using CANTAB: discussion paper. J R Soc Med 85:399–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahakian BJ, Owen AM, Morant NJ et al (1993) Further analysis of the cognitive effects of tetrahydroaminoacridine (THA) in Alzheimer’s disease: assessment of attentional and mnemonic function using CANTAB. Psychopharmacology 110:395–401. doi:10.1007/BF02244644

    Article  CAS  PubMed  Google Scholar 

  • Salmaso D, Denes G (1982) Role of the frontal lobes on an attention task: a signal detection analysis. Percept Mot Skill 54:1147–1150. doi:10.2466/pms.1982.54.3c.1147

    Article  CAS  Google Scholar 

  • Sasaki M (1969) Influence of prereversal experience on reversal learning in white rats. Ann Anim Psychol 19:17–28

    Article  Google Scholar 

  • Schneider M, Debbane M, Bassett AS et al (2014) Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the international consortium on brain and behavior in 22q11.2 deletion syndrome. Am J Psychiatry 171:627–639. doi:10.1176/appi.ajp.2013.13070864

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoch K, Harrell W, Hooper SR et al (2014) Applicability of the nonverbal learning disability paradigm for children With 22q11.2 deletion syndrome. J Learn Disabil 47:153–166. doi:10.1177/0022219412443556

    Article  PubMed  Google Scholar 

  • Schoenbaum G, Chiba AA (1999) Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning

    Google Scholar 

  • Schoenbaum G, Nugent SL, Saddoris MP, Setlow B (2002) Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. NeuroReport 13:885–890

    Article  PubMed  Google Scholar 

  • Shamay-Tsoory SG, Shur S, Harari H et al (2007) Neurocognitive bias of impaired empathy in schizophrenia. Neuropsychology 21:431–438

    Article  PubMed  Google Scholar 

  • Shashi V, Kwapil TR, Kaczorowski J et al (2010) Evidence of gray matter reduction and dysfunction in chromosome 22q11.2 deletion syndrome. Psychiatry Res-Neuroim 181:1–8. doi:10.1016/j.pscychresns.2009.07.003

    Article  CAS  Google Scholar 

  • Shashi V, Veerapandiyan A, Keshavan MS et al (2012) Altered development of the dorsolateral prefrontal cortex in chromosome 22q11.2 deletion syndrome: an in vivo proton spectroscopy study. Biol Psychiatry 72:684–691. doi:10.1016/j.biopsych.2012.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silveri MC, Reali G, Jenner C, Puopolo M (2007) Attention and memory in the preclinical stage of dementia. J Geriatr Psychiatry Neurol 20:67–75. doi:10.1177/0891988706297469

    Article  PubMed  Google Scholar 

  • Simon AE, Cattapan-Ludewig K, Zmilacher S et al (2007) Cognitive functioning in the schizophrenia prodrome. Schizophr Bull 33:761–771. doi:10.1093/schbul/sbm018

    Article  PubMed  PubMed Central  Google Scholar 

  • Simons JS, Speirs HJ (2003) Preforntal and medial temporal lobe interactions in long-term memory. Nat Rev Neurosci 4:637–648

    Article  CAS  PubMed  Google Scholar 

  • Sobin C, Kiley-Brabeck K, Daniels S et al (2004) Networks of attention in children with the 22q11 deletion syndrome. Dev Neuropsychol 26:611–626. doi:10.1207/s15326942dn2602_5

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanislaw H, Todorov N (1999) Calculation of signal detection theory measures. Behav Res Methods Instrum Comput 31:137–149

    Article  CAS  PubMed  Google Scholar 

  • Stevens DA, Fechter LD (1968) Relative strengths of approach and avoidance tendencies in discrimination learning of rats trained under two types of reinforcement. J Exp Psychol 76:489–491. doi:10.1037/h0025553

    Article  CAS  PubMed  Google Scholar 

  • Stopford CL, Thomson JC, Neary D et al (2012) Working memory, attention, and executive function in Alzheimer’s disease and frontotemporal dementia. Cortex 48:429–446

    Article  PubMed  Google Scholar 

  • Swainson R, Hodges JR, Galton CJ et al (2001) Early detection and differential diagnosis of Alzheimer’s disease and depression with neuropsychological tasks. Dement Geriatr Cogn Disord 12:265–280

    Article  CAS  PubMed  Google Scholar 

  • Talbot PS, Watson DR, Barrett SL, Cooper SJ (2005) Rapid tryptophan depletion improves decision-making cognition in healthy humans without affecting reversal learning or set shifting. Neuropsychopharmacology 31:1519–1525. doi:10.1038/sj.npp.1300980

    Article  PubMed  CAS  Google Scholar 

  • Talpos J, Steckler T (2013) Touching on translation. Cell Tissue Res. doi:10.1007/s00441-013-1694-7

    PubMed  Google Scholar 

  • Talpos JC, Winters BD, Dias R et al (2009) A novel touchscreen-automated paired-associate learning (PAL) task sensitive to pharmacological manipulation of the hippocampus: a translational rodent model of cognitive impairments in neurodegenerative disease. Psychopharmacology 205:157–168. doi:10.1007/s00213-009-1526-3

    Article  CAS  PubMed  Google Scholar 

  • Toichi M, Findling RL, Kubota Y et al (2004) Hemodynamic differences in the activation of the prefrontal cortex: attention vs. higher cognitive processing. Neuropsychologia 42:698–706. doi:10.1016/j.neuropsychologia.2003.08.012

    Article  PubMed  Google Scholar 

  • Ursu S, Stenger VA, Shear MK et al (2003) Overactive action monitoring in obsessive-compulsive disorder: evidence from functional magnetic resonance imaging. Psychol Sci 14:347–353

    Article  PubMed  Google Scholar 

  • Valentino DA, Arruda JE, Gold SM (1993) Comparison of QEEG and response accuracy in good vs poorer performers during a vigilance task. Int J Psychophysiol 15:123–133. doi:10.1016/0167-8760(93)90070-6

    Article  CAS  PubMed  Google Scholar 

  • Voon V, Irvine MA, Derbyshire K et al (2014) Measuring “waiting” impulsivity in substance addictions and binge eating disorder in a novel analogue of rodent serial reaction time task. Biol Psychiatry 75:148–155. doi:10.1016/j.biopsych.2013.05.013

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiss EM, Bilder RM, Fleischhacker WW (2002) The effects of second-generation antipsychotics on cognitive functioning and psychosocial outcome in schizophrenia. Psychopharmacology 162:11–17. doi:10.1007/s00213-002-1053-y

    Article  CAS  PubMed  Google Scholar 

  • White HK, Levin ED (1999) Four-week nicotine skin patch treatment effects on cognitive performance in Alzheimer’s disease. Psychopharmacology 143:158–165

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG et al (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239. doi:10.2307/1688438?ref=no-x-route:b0a5c28d36e9e70b883b7c5ea2426388

    Article  CAS  PubMed  Google Scholar 

  • Winstanley CA, Dalley JW, Theobald DE, Robbins TW (2004) Fractionating impulsivity: contrasting effects of central 5-HT depletion on different measures of impulsive behavior. Neuropsychopharmacology 29:1331–1343

    Article  CAS  PubMed  Google Scholar 

  • Wohlberg GW, Kornetsky C (1973) Sustained attention in remitted schizophrenics. Arch Gen Psychiatry 28:533–537

    Article  CAS  PubMed  Google Scholar 

  • Wood SJ, Proffitt T, Mahony K et al (2002) Visuospatial memory and learning in first-episode schizophreniform psychosis and established schizophrenia: a functional correlate of hippocampal pathology? Psychol Med 32:429–438

    Article  CAS  PubMed  Google Scholar 

  • Worbe Y, Savulich G, Voon V et al (2014) Serotonin depletion induces “waiting impulsivity” on the human four-choice serial reaction time task: cross-species translational significance. Neuropsychopharmacology 39:1519–1526. doi:10.1038/npp.2013.351

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu B, Roos JL, Levy S et al (2008) Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 40:880–885. doi:10.1038/ng.162

    Article  CAS  PubMed  Google Scholar 

  • Young JW, Light GA, Marston HM et al (2009a) The 5-choice continuous performance test: evidence for a translational test of vigilance for mice. PLoS ONE 4:e4227–13. doi:10.1371/journal.pone.0004227

  • Young JW, Powell SB, Risbrough V et al (2009b) Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol Ther 122:150–202. doi:10.1016/j.pharmthera.2009.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JW, Geyer MA, Rissling AJ, Sharp RF (2013) Translational psychiatry—reverse translation of the rodent 5C-CPT reveals that the impaired attention of people with schizophrenia is similar to scopolamine-induced deficits in mice

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hvoslef-Eide .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hvoslef-Eide, M., Nilsson, S.R.O., Saksida, L.M., Bussey, T.J. (2015). Cognitive Translation Using the Rodent Touchscreen Testing Approach. In: Robbins, T.W., Sahakian, B.J. (eds) Translational Neuropsychopharmacology. Current Topics in Behavioral Neurosciences, vol 28. Springer, Cham. https://doi.org/10.1007/7854_2015_5007

Download citation

Publish with us

Policies and ethics