Skip to main content

Role of Carcinoma-Associated Fibroblasts and Hypoxia in Tumor Progression

  • Chapter
  • First Online:
Diverse Effects of Hypoxia on Tumor Progression

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 345))

Abstract

In recent years, a variety of experimental evidence has convincingly shown that progression of malignant tumors does not depend exclusively on cell-autonomous properties of the cancer cells, but can also be influenced by the tumor stroma. The concept that cancer cells are subjected to microenvironmental control has thus emerged as an important chapter in cancer biology. Recent findings have suggested an important role, in particular, for macrophages, endothelial cells, and cancer-associated fibroblasts (CAFs) in tumor growth and progression. Numerous lines of evidence indicate that the bone marrow is the source, at least in part, of these cells. This chapter summarizes our current knowledge of how bone marrow contributes to the tumor stroma, with particular emphasis on CAFs. The potential role of hypoxia in modulating the differentiation and activity of CAFs, and the therapeutical implications of targeting CAFs for anticancer therapy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharinejad S, Sioud M et al (2009) Targeting stromal-cancer cell interactions with siRNAs. Methods Mol Biol 487:243–266

    PubMed  CAS  Google Scholar 

  • Ahmed F, Steele JC et al (2008) Tumor stroma as a target in cancer. Curr Cancer Drug Targets 86:447–453

    Google Scholar 

  • Albini A, Sporn MB (2007) The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 72:139–147

    Google Scholar 

  • Anton K, Glod J (2009) Targeting the tumor stroma in cancer therapy. Curr Pharm Biotechnol 102:185–191

    Google Scholar 

  • Asahara T, Takahashi T et al (1999) VEGF contributes to postnatal vascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972

    PubMed  CAS  Google Scholar 

  • Baglole CJ, Ray DM et al (2006) More than structural cells, fibroblasts create and orchestrate the tumor microenvironment. Immunol Invest 353–4:297–325

    Google Scholar 

  • Balkwill F, Coussens LM (2004) Cancer: an inflammatory link. Nature 4317007:405–406

    Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 3579255:539–545

    Google Scholar 

  • Barth PJ, Westhoff CC (2007) CD34+ fibrocytes: morphology, histogenesis and function. Curr Stem Cell Res Ther 23:221–227

    Google Scholar 

  • Barth PJ, Schenck zu Schweinsberg T et al (2004) CD34+ fibrocytes, alpha-smooth muscle antigen-positive myofibroblasts, and CD117 expression in the stroma of invasive squamous cell carcinomas of the oral cavity, pharynx, and larynx. Virchows Arch 4443:231–234

    Google Scholar 

  • Bellini A, Mattoli S (2007) The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 879:858–870

    Google Scholar 

  • Berra E, Benizri E et al (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. Embo J 2216:4082–4090

    Google Scholar 

  • Bhowmick NA, Chytil A et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 3035659:848–851

    Google Scholar 

  • Bianco P, Robey P et al (2008) Mesenchymal stem cells: revisiting history, concepts and assays. Cell Stem Cell 2:313–319

    PubMed  CAS  Google Scholar 

  • Bishop T, Lau K et al (2004) Genetic analysis of pathways regulated by the von hippel-lindau tumor suppressor in Caenorhabditis elegans. PLoS Biol 2:e289

    PubMed  Google Scholar 

  • Bissell MJ, Radisky DC et al (2002) The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 709–10:537–546

    Google Scholar 

  • Bucala R, Spiegel LA et al (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 11:71–81

    Google Scholar 

  • Bunn HF, Poyton RO (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 763:839–885

    Google Scholar 

  • Caplan A (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    PubMed  CAS  Google Scholar 

  • Chan D, Suthphin P et al (2002) Role of prolyl hydroxylation in oncogenically stabilized hyoxia-inducible factor-1alpha. J Biol Chem 277:40112–40117

    PubMed  CAS  Google Scholar 

  • Chan D, Sutphin P et al (2005) Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1 alpha. Mol Cell Biol 25:6415–6426

    PubMed  CAS  Google Scholar 

  • Chan DA, Krieg AJ et al (2007) HIF gene expression in cancer therapy. Methods Enzymol 435:323–345

    PubMed  CAS  Google Scholar 

  • Chometon G, Jendrossek V (2009) Targeting the tumour stroma to increase efficacy of chemo- and radiotherapy. Clin Transl Oncol 112:75–81

    Google Scholar 

  • Cosse JP, Michiels C (2008) Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anticancer Agents Med Chem 87:790–797

    Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 4206917:860–867

    Google Scholar 

  • Coussens LM, Tinkle CL et al (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 1033:481–490

    Google Scholar 

  • De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 2004:429–447

    Google Scholar 

  • De Wever O, Demetter P et al (2008) Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 12310:2229–2238

    Google Scholar 

  • DeNardo DG, Barreto JB et al (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 162:91–102

    Google Scholar 

  • Denko N, Fontana L et al (2003) Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22:5907–5914

    PubMed  CAS  Google Scholar 

  • Direkze NC, Hodivala-Dilke K et al (2004) Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 6423:8492–8495

    Google Scholar 

  • Direkze NC, Jeffery R et al (2006) Bone marrow-derived stromal cells express lineage-related messenger RNA species. Cancer Res 663:1265–1269

    Google Scholar 

  • Dong J, Grunstein J et al (2004) VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis. Embo J 2314:2800–2810

    Google Scholar 

  • Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 31526:1650–1659

    Google Scholar 

  • Erler J, Bennewith K et al (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–1226

    PubMed  CAS  Google Scholar 

  • Erler JT, Bennewith KL et al (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 151:35–44

    Google Scholar 

  • Feldman DE, Chauhan V et al (2005) The unfolded protein response: a novel component of the hypoxic stress response in tumors. Mol Cancer Res 311:597–605

    Google Scholar 

  • Feldon SE, O'Loughlin CW et al (2006) Activated human T lymphocytes express cyclooxygenase-2 and produce proadipogenic prostaglandins that drive human orbital fibroblast differentiation to adipocytes. Am J Pathol 1694:1183–1193

    Google Scholar 

  • Friedenstein A (1980) Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematol Blood Transf 25:19–29

    CAS  Google Scholar 

  • Friedenstein A, Chailakhjan R et al (1970) The development of fibroblast colonies in monolayer cutures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    PubMed  CAS  Google Scholar 

  • Fukumura D, Xavier R et al (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 946:715–725

    Google Scholar 

  • Gaggioli C, Hooper S et al (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 912:1392–1400

    Google Scholar 

  • Giaccia A, Siim B et al (2003) HIF-1 as a target for drug development. Nat Rev Drug Discov 2:803–811

    PubMed  CAS  Google Scholar 

  • Giaccia AJ, Simon MC et al (2004) The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease. Genes Dev 1818:2183–2194

    Google Scholar 

  • Graeber TG, Osmanian C et al (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 3796560:88–91

    Google Scholar 

  • Greijer AE, van der Groep P et al (2005) Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J Pathol 2063:291–304

    Google Scholar 

  • Hall E, Giaccia AJ (2006) Radiobiology for the radiologist. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Hall B, Andreeff M et al (2007) The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handb Exp Pharmacol 180:263–283

    Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 1001:57–70

    Google Scholar 

  • Hartlapp I, Abe R et al (2001) Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. Faseb J 1512:2215–2224

    Google Scholar 

  • Hayashida K, Fujita J et al (2005) Bone marrow-derived cells contribute to pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension. Chest 1275:1793–1798

    Google Scholar 

  • Higgins DF, Kimura K et al (2008) Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle 79:1128–1132

    Google Scholar 

  • Hill R, Song Y et al (2005) Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 1236:1001–1011

    Google Scholar 

  • Hong KM, Belperio JA et al (2007) Differentiation of human circulating fibrocytes as mediated by transforming growth factor-beta and peroxisome proliferator-activated receptor gamma. J Biol Chem 28231:22910–22920

    Google Scholar 

  • Hughes CC (2008) Endothelial-stromal interactions in angiogenesis. Curr Opin Hematol 153:204–209

    Google Scholar 

  • Ishii G, Sangai T et al (2003) Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun 3091:232–240

    Google Scholar 

  • Ivan M, Kondo K et al (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: imlications for O2 sensing. Science 292:464–468

    PubMed  CAS  Google Scholar 

  • Jaakkola P, Mole D et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    PubMed  CAS  Google Scholar 

  • Jiang YL, Dai AG et al (2006) Transforming growth factor-beta1 induces transdifferentiation of fibroblasts into myofibroblasts in hypoxic pulmonary vascular remodeling. Acta Biochim Biophys Sin (Shanghai) 381:29–36

    Google Scholar 

  • Kaelin W (2002) How oxygen makes its presence felt. Genes Dev 16:1441–1445

    PubMed  CAS  Google Scholar 

  • Kallio PJ, Okamoto K et al (1998) Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. Embo J 1722:6573–6586

    Google Scholar 

  • Kallio PJ, Wilson WJ et al (1999) Regulation of the Hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem 27410:6519–6525

    Google Scholar 

  • Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 65:392–401

    Google Scholar 

  • Karnoub AE, Dash AB et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 4497162:557–563

    Google Scholar 

  • Kiaris H, Trimis G et al (2008) Regulation of tumor-stromal fibroblast interactions: implications in anticancer therapy. Curr Med Chem 1529:3062–3067

    Google Scholar 

  • Kolf C, Cho E et al (2007) Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9:204

    PubMed  Google Scholar 

  • Koukourakis MI, Giatromanolaki A et al (2006) Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res 662:632–637

    Google Scholar 

  • Koyama H, Kobayashi N et al (2008) Significance of tumor-associated stroma in promotion of intratumoral lymphangiogenesis: pivotal role of a hyaluronan-rich tumor microenvironment. Am J Pathol 1721:179–193

    Google Scholar 

  • Leo C, Giaccia A et al (2004) The hypoxic tumor microenvironment and gene expression. Semin Radiat Oncol 14:207–214

    PubMed  Google Scholar 

  • Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 4116835:375–379

    Google Scholar 

  • Liu L, Simon MC (2004) Regulation of transcription and translation by hypoxia. Cancer Biol Ther 36:492–497

    Google Scholar 

  • Lorusso G, Ruegg C (2008) The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol 1306:1091–1103

    Google Scholar 

  • Masson R, Lefebvre O et al (1998) In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol 1406:1535–1541

    Google Scholar 

  • Maxwell P, Wiesener M et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    PubMed  CAS  Google Scholar 

  • Mehrad B, Burdick MD et al (2009) Fibrocyte CXCR4 regulation as a therapeutic target in pulmonary fibrosis. Int J Biochem Cell Biol 418–9:1708–1718

    Google Scholar 

  • Metz CN (2003) Fibrocytes: a unique cell population implicated in wound healing. Cell Mol Life Sci 607:1342–1350

    Google Scholar 

  • Milas L, Hirata H et al (1988) Effect of radiation-induced injury of tumor bed stroma on metastatic spread of murine sarcomas and carcinomas. Cancer Res 488:2116–2120

    Google Scholar 

  • Min J, Yang H et al (2002) Structure of an HIF-1alpha-pVHL complex: hydroxyproline recognition in signaling. Science 296:1886–1889

    PubMed  CAS  Google Scholar 

  • Monnier Y, Farmer P et al (2008) CYR61 and alphaVbeta5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma. Cancer Res 6818:7323–7331

    Google Scholar 

  • Mueller MM, Fusenig NE (2004) Friends or foes – bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 411:839–849

    Google Scholar 

  • Nazareth MR, Broderick L et al (2007) Characterization of human lung tumor-associated fibroblasts and their ability to modulate the activation of tumor-associated T cells. J Immunol 1789:5552–5562

    Google Scholar 

  • Olumi AF, Grossfeld GD et al (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 5919:5002–5011

    Google Scholar 

  • Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 515:1597–1601

    Google Scholar 

  • Orimo A, Gupta PB et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 1213:335–348

    Google Scholar 

  • Pahler JC, Tazzyman S et al (2008) Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia 104:329–340

    Google Scholar 

  • Patocs A, Zhang L et al (2007) Breast-cancer stromal cells with TP53 mutations and nodal metastases. N Engl J Med 35725:2543–2551

    Google Scholar 

  • Phillips RJ, Burdick MD et al (2004) Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest 1143:438–446

    Google Scholar 

  • Pietras K, Pahler J et al (2008) Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med 51:e19

    Google Scholar 

  • Pittenger M, Mackay A et al (1999) Multiineage potential of adult human mesenchymal stem cells. Science 284:143–147

    PubMed  CAS  Google Scholar 

  • Pouyssegur J, Dayan F et al (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 4417092:437–443

    Google Scholar 

  • Prockop D (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    PubMed  CAS  Google Scholar 

  • Quan TE, Bucala R (2007) Culture and analysis of circulating fibrocytes. Methods Mol Med 135:423–434

    PubMed  CAS  Google Scholar 

  • Quan TE, Cowper S et al (2004) Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 364:598–606

    Google Scholar 

  • Rankin EB, Giaccia AJ (2008) The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ 154:678–685

    Google Scholar 

  • Schipani E, Kronenberg HM (2008) Adult mesenchymal stem cells. Stembook doi:10.3824/stembook.1.38.1

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 310:721–732

    Google Scholar 

  • Semenza GL (2009) Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol 191:12–16

    Google Scholar 

  • Shan W, Yang G et al (2009) The inflammatory network: bridging senescent stroma and epithelial tumorigenesis. Front Biosci 14:4044–4057

    PubMed  CAS  Google Scholar 

  • Stover DG, Bierie B et al (2007) A delicate balance: TGF-beta and the tumor microenvironment. J Cell Biochem 1014:851–861

    Google Scholar 

  • Tan TT, Coussens LM (2007) Humoral immunity, inflammation and cancer. Curr Opin Immunol 192:209–216

    Google Scholar 

  • Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150

    PubMed  CAS  Google Scholar 

  • Trimboli AJ, Cantemir-Stone CZ et al (2009) Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 4617267:1084–1091

    Google Scholar 

  • van Deventer HW, Wu QP et al (2008) C-C chemokine receptor 5 on pulmonary fibrocytes facilitates migration and promotes metastasis via matrix metalloproteinase 9. Am J Pathol 1731:253–264

    Google Scholar 

  • van Kempen LC, Coussens LM (2002) MMP9 potentiates pulmonary metastasis formation. Cancer Cell 24:251–252

    Google Scholar 

  • Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 909:4304–4308

    Google Scholar 

  • Wang GL, Jiang BH et al (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 9212:5510–5514

    Google Scholar 

  • Weinberg RA (2007) The Biology of Cancer 1st Edition Chapter 13:527–586. Garland Science Publisher, NY, USA

    Google Scholar 

  • Wels J, Kaplan RN et al (2008) Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev 225:559–574

    Google Scholar 

  • Wenger RH, Rolfs A et al (1997) The mouse gene for hypoxia-inducible factor-1alpha–genomic organization, expression and characterization of an alternative first exon and 5' flanking sequence. Eur J Biochem 2461:155–165

    Google Scholar 

  • Wouters BG, Koritzinsky M (2008) Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer 811:851–864

    Google Scholar 

  • Wykoff C, Pugh C et al (2000) Identification of novel hypoxia dependent and independent target genes of the von Hippel Lindau (VHL) tumor suppressor by mRNA differential expression profiling. Oncogene 19:6297–6305

    PubMed  CAS  Google Scholar 

  • Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 2142:199–210

    Google Scholar 

  • Zumsteg A, Christofori G (2009) Corrupt policemen: inflammatory cells promote tumor angiogenesis. Curr Opin Oncol 211:60–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amato J. Giaccia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giaccia, A.J., Schipani, E. (2010). Role of Carcinoma-Associated Fibroblasts and Hypoxia in Tumor Progression. In: Simon, M. (eds) Diverse Effects of Hypoxia on Tumor Progression. Current Topics in Microbiology and Immunology, vol 345. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_73

Download citation

Publish with us

Policies and ethics