Skip to main content

Systems Approaches to Dissecting Immunity

  • Chapter
  • First Online:
Systems Biology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 363))

Abstract

Systems biology is the comprehensive and quantitative analysis of the interactions between all of the components of biological systems over time. Cells of the innate immune system are the first line of defense against invading pathogens and orchestrate the ensuing adaptive response, which is critical to the establishment of long-term protective immunity. Innate immunity is well suited for systems analysis, because the relevant cells can be isolated in various functional states and many of their interactions can be reconstituted in a biologically meaningful manner. Application of the tools of systems biology to the innate immune system will enable comprehensive analysis of the complex interactions that maintain the fine balance between host defense and inflammatory disease. In this review, we discuss innate immunity in the context of the systems biology concepts, emergence, robustness, and modularity. We also describe recent efforts to apply these approaches to enable rational vaccine design and accelerate the pace of clinical vaccine trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Rappuoli R, Aderem A (2011) A 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature 473(7348):463–469

    Article  PubMed  CAS  Google Scholar 

  • Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461

    Article  PubMed  CAS  Google Scholar 

  • Zak DE et al (2011) Systems analysis identifies an essential role for SHANK-associated RH domain-interacting protein (SHARPIN) in macrophage Toll-like receptor 2 (TLR2) responses. In: Proceedings of the National Academy of Sciences of the United States of America, 2011

    Google Scholar 

  • Underhill DM, Ozinsky A (2002) Phagocytosis of microbes: complexity in action. Annu Rev Immunol 20:825–852

    Article  PubMed  CAS  Google Scholar 

  • Aderem AA, Scott WA, Cohn ZA (1984) A selective defect in arachidonic acid release from macrophage membranes in high potassium media. J Cell Biol 99(4 Pt 1):1235–1241

    Article  PubMed  CAS  Google Scholar 

  • Aderem AA (1985) Ligated complement receptors do not activate the arachidonic acid cascade in resident peritoneal macrophages. J Exp Med 161(3):617–622

    Article  PubMed  CAS  Google Scholar 

  • Aderem AA (1986) Bacterial lipopolysaccharides prime macrophages for enhanced release of arachidonic acid metabolites. J Exp Med 164(1):165–179

    Article  PubMed  CAS  Google Scholar 

  • Goodridge HS, Underhill DM (2008) Fungal Recognition by TLR2 and Dectin-1. Handb Exp Pharmacol 183:87–109

    Article  PubMed  CAS  Google Scholar 

  • Blander JM, Medzhitov R (2004) Regulation of phagosome maturation by signals from toll-like receptors. Science 304(5673):1014–1018

    Article  PubMed  CAS  Google Scholar 

  • Blander JM, Medzhitov R (2006) Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440(7085):808–812

    Article  PubMed  CAS  Google Scholar 

  • Trinchieri G, Sher A (2007) Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7(3):179–190

    Article  PubMed  CAS  Google Scholar 

  • Miao EA et al (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7(6):569–575

    Article  PubMed  CAS  Google Scholar 

  • Geddes BJ et al (2001) Human CARD12 is a novel CED4/Apaf-1 family member that induces apoptosis. Biochem Biophys Res Commun 284(1):77–82

    Article  PubMed  CAS  Google Scholar 

  • Poyet JL et al (2001) Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J Biol Chem 276(30):28309–28313

    Article  PubMed  CAS  Google Scholar 

  • Masumoto J et al (2003) ASC is an activating adaptor for NF-kappa B and caspase-8-dependent apoptosis. Biochem Biophys Res Commun 303(1):69–73

    Article  PubMed  CAS  Google Scholar 

  • Dinarello CA (1998) Interleukin-1 beta, interleukin-18, and the interleukin-1 beta converting enzyme. Ann N Y Acad Sci 856:1–11

    Article  PubMed  CAS  Google Scholar 

  • Miao EA (2007) TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin Immunopathol 29(3):275–288

    Article  PubMed  CAS  Google Scholar 

  • Stetson DB, Medzhitov R (2006) Type I interferons in host defense. Immunity 25(3):373–381

    Article  PubMed  CAS  Google Scholar 

  • Kumar H et al (2008) Cutting edge: cooperation of IPS-1- and TRIF-dependent pathways in poly IC-enhanced antibody production and cytotoxic T cell responses. J Immunol 180(2):683–687

    PubMed  CAS  Google Scholar 

  • Edelmann KH (2004) Does Toll-like receptor 3 play a biological role in virus infections? Virology 322(2):231–238

    Article  PubMed  CAS  Google Scholar 

  • Warren SE (2008) Multiple Nod-like receptors activate caspase 1 during Listeria monocytogenes infection. J Immunol 180(11):7558–7564

    PubMed  CAS  Google Scholar 

  • Roach JC (2005) The evolution of vertebrate Toll-like receptors. Proc Nat Acad Sci USA 102(27):9577–9582

    Article  PubMed  CAS  Google Scholar 

  • Jin MS, Lee JO (2008) Structures of TLR-ligand complexes. Curr Opin Immunol 20(4):414–419

    Article  PubMed  CAS  Google Scholar 

  • Jin MS (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130(6):1071–1082

    Article  PubMed  CAS  Google Scholar 

  • Liu L (2008) Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 320(5874):379–381

    Article  PubMed  CAS  Google Scholar 

  • Honda K, Takaoka A, Taniguchi T (2006) Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25(3):349–360

    Article  PubMed  CAS  Google Scholar 

  • Liew FY (2005) Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol 5(6):446–458

    Article  PubMed  CAS  Google Scholar 

  • Boone DL (2004) The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 5(10):1052–1060

    Article  PubMed  CAS  Google Scholar 

  • Wang YY (2004) A20 is a potent inhibitor of TLR3- and Sendai virus-induced activation of NF-kappaB and ISRE and IFN-beta promoter. FEBS Lett 576(1–2):86–90

    Article  PubMed  CAS  Google Scholar 

  • Saitoh T (2005) A20 is a negative regulator of IFN regulatory factor 3 signaling. J Immunol 174(3):1507–1512

    PubMed  CAS  Google Scholar 

  • Lin R (2006) Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J Biol Chem 281(4):2095–2103

    Article  PubMed  CAS  Google Scholar 

  • Hitotsumatsu O (2008) The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 28(3):381–390

    Article  PubMed  CAS  Google Scholar 

  • Bolouri H, Davidson EH (2003) Transcriptional regulatory cascades in development: initial rates, not steady state, determine network kinetics. Proc Nat Acad Sci USA 100(16):9371–9376

    Article  PubMed  CAS  Google Scholar 

  • Smith J, Theodoris C, Davidson EH (2007) A gene regulatory network subcircuit drives a dynamic pattern of gene expression. Science 318(5851):794–797

    Article  PubMed  CAS  Google Scholar 

  • Seymour RE (2007) Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun 8(5):416–421

    Article  PubMed  CAS  Google Scholar 

  • Zenewicz LA, Shen H (2007) Innate and adaptive immune responses to Listeria monocytogenes: a short overview. Microbes Infection/Institut Pasteur 9(10):1208–1215

    Article  CAS  Google Scholar 

  • Warren SE (2010) Cutting edge: Cytosolic bacterial DNA activates the inflammasome via Aim2. J Immunol 185(2):818–821

    Article  PubMed  CAS  Google Scholar 

  • Leber JH (2008) Distinct TLR- and NLR-mediated transcriptional responses to an intracellular pathogen. PLoS Pathog 4(1):e6

    Article  PubMed  Google Scholar 

  • Vadigepalli R (2003) PAINT: a promoter analysis and interaction network generation tool for gene regulatory network identification. OMICS 7(3):235–252

    Article  PubMed  CAS  Google Scholar 

  • Subramanian A (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Nat Acad Sci USA 102(43):15545–15550

    Article  PubMed  CAS  Google Scholar 

  • Siggs OM (2010) A mutation of Ikbkg causes immune deficiency without impairing degradation of IkappaB alpha. Proc Nat Acad Sci USA 107(7):3046–3051

    Article  PubMed  CAS  Google Scholar 

  • Lim S (2001) Sharpin, a novel postsynaptic density protein that directly interacts with the shank family of proteins. Mol Cell Neurosci 17(2):385–397

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga F (2009) Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 11(2):123–132

    Article  PubMed  CAS  Google Scholar 

  • Gerlach B (2011) Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471(7340):591–596

    Article  PubMed  CAS  Google Scholar 

  • Ikeda F (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis. Nature 471(7340):637–641

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga F (2011) SHARPIN is a component of the NF-kappaB-activating linear ubiquitin chain assembly complex. Nature 471(7340):633–636

    Article  PubMed  CAS  Google Scholar 

  • Amit I (2009) Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326(5950):257–263

    Article  PubMed  CAS  Google Scholar 

  • Zak DE (2011) Systems analysis identifies an essential role for SHANK-associated RH domain-interacting protein (SHARPIN) in macrophage Toll-like receptor 2 (TLR2) responses. Proc Natl Acad Sci U S A 108(28):11536–11541

    Article  PubMed  CAS  Google Scholar 

  • Litvak V (2009) Function of C/EBPdelta in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat Immunol 10(4):437–443

    Article  PubMed  CAS  Google Scholar 

  • Ramsey SA (2008) Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLoS Comput Biol 4(3):e1000021

    Article  PubMed  Google Scholar 

  • Gilchrist M (2006) Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441(7090):173–178

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H (2009) The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 41(5):553–562

    Article  PubMed  CAS  Google Scholar 

  • Querec TD (2009) Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 10(1):116–125

    Article  PubMed  CAS  Google Scholar 

  • Gaucher D (2008) Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J Exp Med 205(13):3119–3131

    Article  PubMed  CAS  Google Scholar 

  • Nakaya HI (2011) Systems biology of vaccination for seasonal influenza in humans. Nat Immunol 12(8):786–795

    Article  PubMed  CAS  Google Scholar 

  • Pulendran B, Li S, Nakaya HI (2010) Systems vaccinology. Immunity 33(4):516–529

    Article  PubMed  CAS  Google Scholar 

  • Zak DE, Aderem A (2009) Systems biology of innate immunity. Immunol Rev 227(1):264–282

    Article  PubMed  CAS  Google Scholar 

  • Shapira SD, Hacohen N (2011) Systems biology approaches to dissect mammalian innate immunity. Curr Opin Immunol 23(1):71–77

    Article  PubMed  CAS  Google Scholar 

  • Gardy JL (2009) Enabling a systems biology approach to immunology: focus on innate immunity. Trends Immunol 30(6):249–262

    Article  PubMed  CAS  Google Scholar 

  • Bosinger SE (2009) Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys. J Clin Invest 119(12):3556–3572

    PubMed  CAS  Google Scholar 

  • Palermo RE (2011) Genomic analysis reveals pre- and postchallenge differences in a rhesus macaque AIDS vaccine trial: insights into mechanisms of vaccine efficacy. J Virol 85(2):1099–1116

    Article  PubMed  CAS  Google Scholar 

  • Hersperger AR (2011) Qualitative features of the HIV-specific CD8 + T-cell response associated with immunologic control. Curr Opin HIV AIDS 6(3):169–173

    Article  PubMed  Google Scholar 

  • Querec T (2006) Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J Exp Med 203(2):413–424

    Article  PubMed  Google Scholar 

  • Lindsay RW (2010) CD8 + T cell responses following replication-defective adenovirus serotype 5 immunization are dependent on CD11c + dendritic cells but show redundancy in their requirement of TLR and nucleotide-binding oligomerization domain-like receptor signaling. J Immunol 185(3):1513–1521

    Article  PubMed  CAS  Google Scholar 

  • Delaloye J (2009) Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. PLoS Pathog 5(6):e1000480

    Article  PubMed  Google Scholar 

  • Brooks JPL (2008) E.K., Analysis of the consistency of a mixed integer programming-based multi-category constrained discriminant model. Ann Oper Res 1–64:1–20

    Google Scholar 

  • Zou HH, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc B. 67(Part 2):301–320

    Google Scholar 

  • Araki K (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460(7251):108–112

    Article  PubMed  CAS  Google Scholar 

  • Tan X (2011) Retinoic acid as a vaccine adjuvant enhances CD8 + T cell response and mucosal protection from viral challenge. J Virol 85(16):8316–8327

    Article  PubMed  CAS  Google Scholar 

  • Freidlin B, Simon R (2005) Adaptive signature design: an adaptive clinical trial design for generating and prospectively testing a gene expression signature for sensitive patients. Clin Cancer Res: An Off J Am Assoc Cancer Res 11(21):7872–7878

    Article  CAS  Google Scholar 

  • Campbell H (2009) Meningococcal C conjugate vaccine: the experience in England and Wales. Vaccine 27(Suppl 2):B20–B29

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Aderem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Diercks, A., Aderem, A. (2012). Systems Approaches to Dissecting Immunity. In: Katze, M. (eds) Systems Biology. Current Topics in Microbiology and Immunology, vol 363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2012_246

Download citation

Publish with us

Policies and ethics