Skip to main content

Phosphoinositide Lipids and the Legionella Pathogen Vacuole

  • Chapter
  • First Online:
Molecular Mechanisms in Legionella Pathogenesis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 376))

Abstract

Subversion of vesicle trafficking is vital for intracellular survival of Legionella pneumophila within host cells. L. pneumophila produces several type IV-translocated effector proteins that modify components of the phagosomal membrane, in particular the phosphoinositide (PI) lipids. Within eukaryotic cells PIs co-define subcellular compartments and membrane dynamics. The generation, half-life, and localization of PI lipids are not only tightly regulated by the host cell, but also targeted and modulated by a number of L. pneumophila effectors. These effectors either anchor to PIs, directly modify the lipids, or recruit PI-metabolizing enzymes to the LCV membrane. Together, PI-subverting L. pneumophila effectors act jointly to promote the formation of a replication-permissive niche inside the host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPylase:

Adenylyltransferase

ANTH domain:

AP180 N-terminal homology domain

DAG:

Diacylglycerol

ENTH domain:

Epsin N-terminal homology domain

ER:

Endoplasmic reticulum

FYVE domain:

Domain occurring in Fab 1 (yeast orthologue of PIKfyve), YOTB, Vac 1 (vesicle transport protein), and EEA1

GDF:

GDI displacement factor

GDI:

Guanine nucleotide dissociation inhibitor

GEF:

Guanine nucleotide exchange factor

LCV:

Legionella-containing vacuole

LVA domain:

Legionella vacuole association domain

MVB:

Multivesicular body

PH domain:

Pleckstrin homology domain

PHOX domain:

Phagocyte NADPH oxidase domain

PI:

Phosphoinositide

PI3K:

Phosphoinositide 3-kinase

PtdIns:

Phosphatidylinositol

PX domain:

PHOX homology domain

SCV:

Salmonella-containing vacuole

T2SS:

Type II secretion system

T4SS:

Type IV secretion system

TGN:

Trans-Golgi network

References

  • Alix E, Chesnel L, Bowzard BJ, et al. (2012) The capping domain in RalF regulates effector functions. PLoS Path 8:e1003012

    Google Scholar 

  • Almena M, Merida I (2011) Shaping up the membrane: diacylglycerol coordinates spatial orientation of signaling. Trends Biochem Sci 36:593–603

    Google Scholar 

  • Amor JC, Swails J, Zhu X, et al. (2005) The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from L. pneumophila, reveals the presence of a cap over the active site. J Biol Chem 280:1392–1400

    Google Scholar 

  • Araki N, Johnson MT, Swanson JA (1996) A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol 135:1249–1260

    Google Scholar 

  • Arasaki K, Roy CR (2010) L. pneumophila promotes functional interactions between plasma membrane syntaxins and Sec22b. Traffic 11:587–600

    Google Scholar 

  • Arasaki K, Toomre DK, Roy CR (2012) The L. pneumophila effector DrrA is sufficient to stimulate SNARE-dependent membrane fusion. Cell Host Microbe 11:46–57

    Google Scholar 

  • Bakowski MA, Braun V, Lam GY, et al. (2010) The phosphoinositide phosphatase SopB manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole. Cell Host Microbe 7:453–462

    Google Scholar 

  • Banga S, Gao P, Shen X, Fiscus V, Zong WX, Chen L, Luo ZQ (2007) Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc Nat Acad Sci U S A 104:5121–5126

    Article  CAS  Google Scholar 

  • Behnia R, Munro S (2005) Organelle identity and the signposts for membrane traffic. Nature 438:597–604

    Article  CAS  PubMed  Google Scholar 

  • Beresford N, Patel S, Armstrong J, Szoor B, Fordham-Skelton AP, Tabernero L (2007) MptpB, a virulence factor from M. tuberculosis, exhibits triple-specificity phosphatase activity. Biochem J 406:13–18

    Article  CAS  PubMed  Google Scholar 

  • Beresford NJ, Mulhearn D, Szczepankiewicz B et al (2009) Inhibition of MptpB phosphatase from M. tuberculosis impairs mycobacterial survival in macrophages. J Antimicrob Chemother 63:928–936

    Article  CAS  PubMed  Google Scholar 

  • Berger KH, Isberg RR (1993) Two distinct defects in intracellular growth complemented by a single genetic locus in L. pneumophila. Mol Microbiol 7:7–19

    Article  CAS  PubMed  Google Scholar 

  • Blumental-Perry A, Haney CJ, Weixel KM, Watkins SC, Weisz OA, Aridor M (2006) Phosphatidylinositol 4-phosphate formation at ER exit sites regulates ER export. Dev Cell 11:671–682

    Article  CAS  PubMed  Google Scholar 

  • Botelho RJ, Teruel M, Dierckman R et al (2000) Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol 151:1353–1368

    Article  CAS  PubMed  Google Scholar 

  • Brombacher E, Urwyler S, Ragaz C, Weber SS, Kami K, Overduin M, Hilbi H (2009) Rab1 guanine nucleotide exchange factor SidM is a major phosphatidyl-inositol 4-phosphate-binding effector protein of L. pneumophila. J Biol Chem 284:4846–4856

    Article  CAS  PubMed  Google Scholar 

  • Burkinshaw BJ, Prehna G, Worrall LJ, Strynadka NC (2012) Structure of Salmonella effector protein SopB N-terminal domain in complex with host Rho GTPase Cdc42. J Biol Chem 287:13348–13355

    Article  CAS  PubMed  Google Scholar 

  • Charpentier X, Gabay JE, Reyes M et al (2009) Chemical genetics reveals bacterial and host cell functions critical for type IV effector translocation by L. pneumophila. PLoS Path 7:e1000501

    Article  Google Scholar 

  • Chen Y, Machner MP (2013) Targeting of the small GTPase Rab6A’ by the L. pneumophila effector LidA. Infect Immun 81:2226–35

    Google Scholar 

  • Cheng W, Yin K, Lu D et al (2012) Structural insights into a unique L. pneumophila effector LidA recognizing both GDP and GTP bound Rab1 in their active state. PLoS Path 8:e1002528

    Article  CAS  Google Scholar 

  • Christoforidis S, Miaczynska M, Ashman K et al (1999) Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol 1:249–252

    Article  CAS  PubMed  Google Scholar 

  • Conover GM, Derre I, Vogel JP, Isberg RR (2003) The L. pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol Microbiol 48:305–321

    Article  CAS  PubMed  Google Scholar 

  • Cosson P, Soldati T (2008) Eat, kill or die: when amoeba meets bacteria. Curr Op Microbiol 11:271–276

    Article  CAS  PubMed  Google Scholar 

  • Cox D, Tseng CC, Bjekic G, Greenberg S (1999) A requirement for phosphatidyl-inositol 3-kinase in pseudopod extension. J Biol Chem 274:1240–1247

    Article  CAS  PubMed  Google Scholar 

  • De Camilli P, Chen H, Hyman J, Panepucci E, Bateman A, Brunger AT (2002) The ENTH domain. FEBS Lett 513:11–18

    Article  PubMed  Google Scholar 

  • De Matteis MA, Godi A (2004) PI-loting membrane traffic. Nat Cell Biol 6:487–492

    Article  PubMed  Google Scholar 

  • Derre I, Isberg RR (2004) Legionella pneumophila replication vacuole formation involves rapid recruitment of proteins of the early secretory system. Inf Immun 72:3048–3053

    Article  CAS  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    Article  PubMed  Google Scholar 

  • Donaldson JG, Jackson CL (2000) Regulators and effectors of the ARF GTPases. Curr Op Cell Biol 12:475–482

    Article  CAS  PubMed  Google Scholar 

  • Ford MG, Pearse BM, Higgins MK et al (2001) Simultaneous binding of PtdIns(4,5)P 2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291:1051–1055

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Rubin CS (2011) Protein kinase D: coupling extracellular stimuli to the regulation of cell physiology. EMBO Rep 12:785–796

    Article  CAS  PubMed  Google Scholar 

  • Godi A, Pertile P, Meyers R et al (1999) ARF mediates recruitment of PtdIns-4–OH kinase-beta and stimulates synthesis of PtdIns(4,5)P 2 on the Golgi complex. Nat Cell Biol 1:280–287

    Article  CAS  PubMed  Google Scholar 

  • Ham H, Sreelatha A, Orth K (2011) Manipulation of host membranes by bacterial effectors. Nat Rev Microbiol 9:635–646

    Article  CAS  PubMed  Google Scholar 

  • Harada T, Tanikawa T, Iwasaki Y, Yamada M, Imai Y, Miyake M (2012) Phagocytic entry of L. pneumophila into macrophages through phosphatidyl-inositol 3,4,5-trisphosphate-independent pathway. Biol Pharma Bull 35:1460–1468

    CAS  Google Scholar 

  • Heidtman M, Chen EJ, Moy MY, Isberg RR (2009) Large-scale identification of L. pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 11:230–248

    Article  CAS  PubMed  Google Scholar 

  • Hernandez LD, Hueffer K, Wenk MR, Galan JE (2004) Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304:1805–1807

    Article  CAS  PubMed  Google Scholar 

  • Hilbi H (2006) Modulation of phosphoinositide metabolism by pathogenic bacteria. Cell Microbiol 8:1697–1706

    Article  CAS  PubMed  Google Scholar 

  • Hilbi H, Haas A (2012) Secretive bacterial pathogens and the secretory pathway. Traffic 13:1187–1197

    Article  CAS  PubMed  Google Scholar 

  • Hilbi H, Weber S, Finsel I (2011) Anchors for effectors: subversion of phosphoinositide lipids by Legionella. Front Microbiol 2:91

    Article  CAS  PubMed  Google Scholar 

  • Hilbi H, Weber SS, Ragaz C, Nyfeler Y, Urwyler S (2007) Environmental predators as models for bacterial pathogenesis. Env Microbiol 9:563–575

    Article  CAS  Google Scholar 

  • Hsu F, Zhu W, Brennan L, Tao L, Luo ZQ, Mao Y (2012) Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proc Nat Acad Sci U S A 109:13567–13572

    Article  CAS  Google Scholar 

  • Hubber A, Roy CR (2010) Modulation of host cell function by L. pneumophila type IV effectors. Ann Rev Cell Dev Biol 26:261–283

    Article  CAS  Google Scholar 

  • Hyvola N, Diao A, McKenzie E, Skippen A, Cockcroft S, Lowe M (2006) Membrane targeting and activation of the Lowe syndrome protein OCRL1 by Rab GTPases. EMBO J 25:3750–3761

    Article  CAS  PubMed  Google Scholar 

  • Ingmundson A, Delprato A, Lambright DG, Roy CR (2007) Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450:365–369

    Article  CAS  PubMed  Google Scholar 

  • Jank T, Bohmer KE, Tzivelekidis T, Schwan C, Belyi Y, Aktories K (2012) Domain organization of Legionella effector SetA. Cell Microbiol 14:852–868

    Article  CAS  PubMed  Google Scholar 

  • Kagan JC, Stein MP, Pypaert M, Roy CR (2004) Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. J Exp Med 199:1201–1211

    Article  CAS  PubMed  Google Scholar 

  • Khelef N, Shuman HA, Maxfield FR (2001) Phagocytosis of wild-type L. pneumophila occurs through a wortmannin-insensitive pathway. Inf Immun 69:5157–5161

    Article  CAS  Google Scholar 

  • Konradt C, Frigimelica E, Nothelfer K et al (2011) The S. flexneri type three secretion system effector IpgD inhibits T cell migration by manipulating host phosphoinositide metabolism. Cell Host Microbe 9:263–272

    Article  CAS  PubMed  Google Scholar 

  • Krauss M, Kinuta M, Wenk MR, De Camilli P, Takei K, Haucke V (2003) Arf6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type I gamma. J Cell Biol 162:113–124

    Article  CAS  PubMed  Google Scholar 

  • Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nature Rev Mol Cell Biol 9:99–111

    Article  CAS  Google Scholar 

  • Li Z, Solomon JM, Isberg RR (2005) D. discoideum strains lacking the RtoA protein are defective for maturation of the L. pneumophila replication vacuole. Cell Microbiol 7:431–442

    Article  CAS  PubMed  Google Scholar 

  • Lichter-Konecki U, Farber LW, Cronin JS, Suchy SF, Nussbaum RL (2006) The effect of missense mutations in the RhoGAP-homology domain on Ocrl1 function. Mol Genetics Metabol 89:121–128

    Article  CAS  Google Scholar 

  • Lifshitz Z, Burstein D, Peeri M et al (2013) Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal. Proc Nat Acad Sci U S A 110:E707–E715

    Article  Google Scholar 

  • Loovers HM, Kortholt A, de Groote H, Whitty L, Nussbaum RL, van Haastert PJ (2007) Regulation of phagocytosis in Dictyostelium by the inositol 5-phosphatase OCRL homolog Dd5P4. Traffic 8:618–628

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Clarke M (2005) Dynamic properties of Legionella-containing phagosomes in Dictyostelium amoebae. Cell Microbiol 7:995–1007

    Article  CAS  PubMed  Google Scholar 

  • Luo ZQ, Isberg RR (2004) Multiple substrates of the L. pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Nat Acad Sci U S A 101:841–846

    Article  CAS  Google Scholar 

  • Machner MP, Isberg RR (2006) Targeting of host Rab GTPase function by the intravacuolar pathogen L. pneumophila. Dev Cell 11:47–56

    Article  CAS  PubMed  Google Scholar 

  • Machner MP, Isberg RR (2007) A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 318:974–977

    Article  CAS  PubMed  Google Scholar 

  • Mallo GV, Espina M, Smith AC et al (2008) SopB promotes phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting Rab5 and Vps34. J Cell Biol 182:741–752

    Article  CAS  PubMed  Google Scholar 

  • Marra A, Blander SJ, Horwitz MA, Shuman HA (1992) Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. Proc Nat Acad Scie U S A 89:9607–9611

    Article  CAS  Google Scholar 

  • Marshall JG, Booth JW, Stambolic V et al (2001) Restricted accumulation of phosphatidyl-inositol 3-kinase products in a plasmalemmal subdomain during Fc gamma receptor-mediated phagocytosis. J Cell Biol 153:1369–1380

    Article  CAS  PubMed  Google Scholar 

  • Mason D, Mallo GV, Terebiznik MR et al (2007) Alteration of epithelial structure and function associated with PtdIns(4,5)P 2 degradation by a bacterial phosphatase. J Gen Physiol 129:267–283

    Article  CAS  PubMed  Google Scholar 

  • Müller MP, Peters H, Blumer J, Blankenfeldt W, Goody RS, Itzen A (2010) The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329:946–949

    Article  PubMed  Google Scholar 

  • Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, Roy CR (2006) The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 8:971–977

    Article  CAS  PubMed  Google Scholar 

  • Murray JT, Panaretou C, Stenmark H, Miaczynska M, Backer JM (2002) Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic 3:416–427

    Article  CAS  PubMed  Google Scholar 

  • Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR (2002) A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295:679–682

    Article  CAS  PubMed  Google Scholar 

  • Neunuebel MR, Mohammadi S, Jarnik M, Machner MP (2012) Legionella pneumophila LidA affects nucleotide binding and activity of the host GTPase Rab1. J Bact 194:1389–1400

    CAS  PubMed  Google Scholar 

  • Newton HJ, Sansom FM, Bennett-Wood V, Hartland EL (2006) Identification of L. pneumophila-specific genes by genomic subtractive hybridization with L. micdadei and identification of lpnE, a gene required for efficient host cell entry. Inf Immun 74:1683–1691

    Article  CAS  Google Scholar 

  • Newton HJ, Sansom FM, Dao J, McAlister AD, Sloan J, Cianciotto NP, Hartland EL (2007) Sel1 repeat protein LpnE is a L. pneumophila virulence determinant that influences vacuolar trafficking. Infect Immun 75:5575–5585

    Article  CAS  PubMed  Google Scholar 

  • Niebuhr K, Giuriato S, Pedron T et al (2002) Conversion of PtdIns(4,5)P 2 into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J 21:5069–5078

    Article  CAS  PubMed  Google Scholar 

  • Norris FA, Wilson MP, Wallis TS, Galyov EE, Majerus PW (1998) SopB, a protein required for virulence of S. dublin, is an inositol phosphate phosphatase. Proc Nat Acad Sci U S A 95:14057–14059

    Article  CAS  Google Scholar 

  • O’Connor TJ, Adepoju Y, Boyd D, Isberg RR (2011) Minimization of the L. pneumophila genome reveals chromosomal regions involved in host range expansion. Proc Nat Acad Sci U S A 108:14733–14740

    Article  Google Scholar 

  • Payrastre B, Missy K, Giuriato S, Bodin S, Plantavid M, Gratacap M (2001) Phosphoinositides: key players in cell signalling, in time and space. Cell Signal 13:377–387

    Article  CAS  PubMed  Google Scholar 

  • Peracino B, Balest A, Bozzaro S (2010) Phosphoinositides differentially regulate bacterial uptake and Nramp1-induced resistance to Legionella infection in Dictyostelium. J Cell Sci 123:4039–4051

    Article  CAS  PubMed  Google Scholar 

  • Pizarro-Cerda J, Cossart P (2004) Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nat Cell Biol 6:1026–1033

    Article  CAS  PubMed  Google Scholar 

  • Ragaz C, Pietsch H, Urwyler S, Tiaden A, Weber SS, Hilbi H (2008) The L. pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 10:2416–2433

    Article  CAS  PubMed  Google Scholar 

  • Saarikangas J, Zhao H, Lappalainen P (2010) Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 90:259–289

    Article  CAS  PubMed  Google Scholar 

  • Saleh MT, Belisle JT (2000) Secretion of an acid phosphatase (SapM) by M. tuberculosis that is similar to eukaryotic acid phosphatases. J Bacteriol 182:6850–6853

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Takasuga S, Sasaki J, Kofuji S, Eguchi S, Yamazaki M, Suzuki A (2009) Mammalian phosphoinositide kinases and phosphatases. Prog Lipid Res 48:307–343

    Article  CAS  PubMed  Google Scholar 

  • Schoebel S, Blankenfeldt W, Goody RS, Itzen A (2010) High-affinity binding of phosphatidylinositol 4-phosphate by L. pneumophila DrrA. EMBO Rep 11:598–604

    Article  CAS  PubMed  Google Scholar 

  • Schoebel S, Cichy AL, Goody RS, Itzen A (2011) Protein LidA from Legionella is a Rab GTPase supereffector. Proc Nat Acad Sci U S A 108:17945–17950

    Article  CAS  Google Scholar 

  • Schoebel S, Oesterlin LK, Blankenfeldt W, Goody RS, Itzen A (2009) RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol Cell 36:1060–1072

    Article  CAS  PubMed  Google Scholar 

  • Simonsen A, Lippe R, Christoforidis S et al (1998) EEA1 links PI3K function to Rab5 regulation of endosome fusion. Nature 394:494–498

    Article  CAS  PubMed  Google Scholar 

  • Suh HY, Lee DW, Lee KH et al (2010) Structural insights into the dual nucleotide exchange and GDI displacement activity of SidM/DrrA. EMBO J 29:496–504

    Article  CAS  PubMed  Google Scholar 

  • Tachado SD, Samrakandi MM, Cirillo JD (2008) Non-opsonic phagocytosis of L. pneumophila by macrophages is mediated by phosphatidylinositol 3-kinase. Plos One 3:e3324

    Article  PubMed  Google Scholar 

  • Terebiznik MR, Vieira OV, Marcus SL et al (2002) Elimination of host cell PtdIns(4,5)P 2 by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat Cell Biol 4:766–773

    Article  CAS  PubMed  Google Scholar 

  • Urwyler S, Brombacher E, Hilbi H (2009) Endosomal and secretory markers of the Legionella-containing vacuole. Comm Integrat Biol 2:107–109

    CAS  Google Scholar 

  • Vergne I, Chua J, Lee HH, Lucas M, Belisle J, Deretic V (2005) Mechanism of phagolysosome biogenesis block by viable M. tuberculosis. Proc Nat Acad Sci U S A 102:4033–4038

    Article  CAS  Google Scholar 

  • Vergne I, Chua J, Singh SB, Deretic V (2004) Cell biology of M. tuberculosis phagosome. Ann Rev Cell Dev Biol 20:367–394

    Article  CAS  Google Scholar 

  • Vieira OV, Botelho RJ, Rameh L et al (2001) Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol 155:19–25

    Article  CAS  PubMed  Google Scholar 

  • Viner R, Chetrit D, Ehrlich M, Segal G (2012) Identification of two L. pneumophila effectors that manipulate host phospholipids biosynthesis. PLoS Path 8:e1002988

    Article  CAS  Google Scholar 

  • Wang DS, Shaw G (1995) The association of the C-terminal region of beta I sigma II spectrin to brain membranes is mediated by a PH domain, does not require membrane proteins, and coincides with a inositol-1,4,5 triphosphate binding site. Biochem Biophys Res Commun 217:608–615

    Article  CAS  PubMed  Google Scholar 

  • Weber SS, Ragaz C, Hilbi H (2009a) The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cell Microbiol 11:442–460

    Article  CAS  PubMed  Google Scholar 

  • Weber SS, Ragaz C, Hilbi H (2009b) Pathogen trafficking pathways and host phosphoinositide metabolism. Mol Microbiol 71:1341–1352

    Article  CAS  PubMed  Google Scholar 

  • Weber SS, Ragaz C, Reus K, Nyfeler Y, Hilbi H (2006) L. pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Path 2:e46

    Article  Google Scholar 

  • Wishart MJ, Taylor GS, Dixon JE (2001) Phoxy lipids: revealing PX domains as phospho-inositide binding modules. Cell 105:817–820

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Jefferson AB, Auethavekiat V, Majerus PW (1995) The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-phosphatase. Proc Nat Acad Sci U S A 92:4853–4856

    Article  CAS  Google Scholar 

  • Zhu W, Banga S, Tan Y, Zheng C, Stephenson R, Gately J, Luo ZQ (2011) Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of L. pneumophila. Plos One 6:e17638

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Hu L, Zhou Y, Yao Q, Liu L, Shao F (2010) Structural mechanism of host Rab1 activation by the bifunctional Legionella type IV effector SidM/DrrA. Proc Nat Acad Sci U S A 107:4699–4704

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Hilbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haneburger, I., Hilbi, H. (2013). Phosphoinositide Lipids and the Legionella Pathogen Vacuole. In: Hilbi, H. (eds) Molecular Mechanisms in Legionella Pathogenesis. Current Topics in Microbiology and Immunology, vol 376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2013_341

Download citation

Publish with us

Policies and ethics