Skip to main content

Modulation of the Ubiquitination Machinery by Legionella

  • Chapter
  • First Online:
Molecular Mechanisms in Legionella Pathogenesis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 376))

Abstract

The bacterial pathogen Legionella pneumophila manipulates its intracellular fate by co-opting host processes. Using bacterial proteins translocated into host cells, L. pneumophila targets pathways shared by unicellular protozoa and higher eukaryotes. In eukaryotes, an important mechanism that regulates numerous cellular processes, including those designed to kill invading microorganisms, is ubiquitination. Post-translational modification of proteins with ubiquitin is a highly regulated process that either targets proteins for degradation or modifies their activity. It is emerging that L. pneumophila possesses functional mimics of eukaryotic E3 ubiquitin ligases that function with the host ubiquitination machinery to select and modify substrates for polyubiquitination. L. pneumophila proteins have been identified that ubiquitinate both host and bacterial proteins, and ubiquitination of the bacterial protein SidH results in its degradation by the host proteasome. This pathway allows L. pneumophila to temporally regulate effector function inside host cells, and facilitates optimal L. pneumophila replication by undefined mechanisms. This review will focus on our current knowledge of the proteins used by L. pneumophila to co-opt the host ubiquitination machinery, and current progress toward understanding the ubiquitin-mediated processes manipulated by L. pneumophila to facilitate intracellular survival and propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Khodor S, Price CT, Habyarimana F, Kalia A, Abu Kwaik Y (2008) A Dot/Icm-translocated ankyrin protein of Legionella pneumophila is required for intracellular proliferation within human macrophages and protozoa. Mol Microbiol 70:908–923

    PubMed  CAS  Google Scholar 

  • Al-Quadan T, Kwaik YA (2011) Molecular characterization of exploitation of the polyubiquitination and farnesylation machineries of Dictyostelium discoideum by the AnkB F-box effector of Legionella pneumophila. Front Microbiol 2:23

    Article  PubMed  CAS  Google Scholar 

  • Angot A, Vergunst A, Genin S, Peeters N (2007) Exploitation of eukaryotic ubiquitin signaling pathways by effectors translocated by bacterial type III and type IV secretion systems. PLoS Pathog 3:e3

    Article  PubMed  CAS  Google Scholar 

  • Ardley HC, Robinson PA (2005) E3 ubiquitin ligases. Essays Biochem 41:15–30

    Article  PubMed  CAS  Google Scholar 

  • Berger KH, Isberg RR (1993) Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol Microbiol 7:7–19

    Article  PubMed  CAS  Google Scholar 

  • Bruggemann H, Hagman A, Jules M, Sismeiro O, Dillies MA et al (2006) Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell Microbiol 8:1228–1240

    Article  PubMed  CAS  Google Scholar 

  • Calvo-Garrido J, Carilla-Latorre S, Kubohara Y, Santos-Rodrigo N, Mesquita A et al (2010) Autophagy in Dictyostelium: genes and pathways, cell death and infection. Autophagy 6:686–701

    Article  PubMed  CAS  Google Scholar 

  • Canadien V, Tan T, Zilber R, Szeto J, Perrin AJ et al (2005) Cutting edge: microbial products elicit formation of dendritic cell aggresome-like induced structures in macrophages. J Immunol 174:2471–2475

    PubMed  CAS  Google Scholar 

  • Cazalet C, Gomez-Valero L, Rusniok C, Lomma M, Dervins-Ravault D et al (2010) Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires’ disease. PLoS Genet 6:e1000851

    Article  PubMed  CAS  Google Scholar 

  • Choy A, Dancourt J, Mugo B, O’Connor TJ, Isberg RR et al (2012) The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338:1072–1076

    Article  PubMed  CAS  Google Scholar 

  • Clague MJ, Urbe S (2010) Ubiquitin: same molecule, different degradation pathways. Cell 143:682–685

    Article  PubMed  CAS  Google Scholar 

  • Clague MJ, Coulson JM, Urbe S (2012) Cellular functions of the DUBs. J Cell Sci 125:277–286

    Article  PubMed  CAS  Google Scholar 

  • Coombs N, Sompallae R, Olbermann P, Gastaldello S, Goppel D et al (2011) Helicobacter pylori affects the cellular deubiquitinase USP7 and ubiquitin-regulated components TRAF6 and the tumour suppressor p53. Int J Med Microbiol 301:213–224

    Article  PubMed  CAS  Google Scholar 

  • David Y, Ziv T, Admon A, Navon A (2010) The E2 ubiquitin-conjugating enzymes direct polyubiquitination to preferred lysines. J Biol Chem 285:8595–8604

    Article  PubMed  CAS  Google Scholar 

  • de Bie P, Ciechanover A (2011) Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ 18:1393–1402

    Article  PubMed  CAS  Google Scholar 

  • de Felipe KS, Pampou S, Jovanovic OS, Pericone CD, Ye SF et al (2005) Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J Bacteriol 187:7716–7726

    Article  PubMed  CAS  Google Scholar 

  • de Felipe KS, Glover RT, Charpentier X, Anderson OR, Reyes M et al (2008) Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog 4:e1000117

    Article  PubMed  CAS  Google Scholar 

  • Diao J, Zhang Y, Huibregtse JM, Zhou D, Chen J (2008) Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase. Nat Struct Mol Biol 15:65–70

    Article  PubMed  CAS  Google Scholar 

  • Dorer MS, Kirton D, Bader JS, Isberg RR (2006) RNA interference analysis of Legionella in Drosophila cells: exploitation of early secretory apparatus dynamics. PLoS Pathog 2:315–327

    Article  CAS  Google Scholar 

  • Ensminger AW, Isberg RR (2010) E3 ubiquitin ligase activity and targeting of BAT3 by multiple Legionella pneumophila translocated substrates. Infect Immun 78:3905–3919

    Article  PubMed  CAS  Google Scholar 

  • Ernst R, Claessen JH, Mueller B, Sanyal S, Spooner E et al (2011) Enzymatic blockade of the ubiquitin-proteasome pathway. PLoS Biol 8:e1000605

    Article  PubMed  CAS  Google Scholar 

  • Farbrother P, Wagner C, Na J, Tunggal B, Morio T et al (2006) Dictyostelium transcriptional host cell response upon infection with Legionella. Cell Microbiol 8:438–456

    Article  PubMed  CAS  Google Scholar 

  • Fujita N, Yoshimori T (2011) Ubiquitination-mediated autophagy against invading bacteria. Curr Opin Cell Biol 23:492–497

    Article  PubMed  CAS  Google Scholar 

  • Goody PR, Heller K, Oesterlin LK, Muller MP, Itzen A et al (2012) Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J 31:1774–1784

    Article  PubMed  CAS  Google Scholar 

  • Habyarimana F, Al-Khodor S, Kalia A, Graham JE, Price CT et al (2008) Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages. Environ Microbiol 10:1460–1474

    Article  PubMed  CAS  Google Scholar 

  • Haglund K, Dikic I (2005) Ubiquitylation and cell signaling. EMBO J 24:3353–3359

    Article  PubMed  CAS  Google Scholar 

  • Haglund K, Dikic I (2012) The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci 125:265–275

    Article  PubMed  CAS  Google Scholar 

  • Harhaj EW, Dixit VM (2012) Regulation of NF-kappaB by deubiquitinases. Immunol Rev 246:107–124

    Article  PubMed  CAS  Google Scholar 

  • Hartmann AM, Rujescu D, Giannakouros T, Nikolakaki E, Goedert M et al (2001) Regulation of alternative splicing of human tau exon 10 by phosphorylation of splicing factors. Mol Cell Neurosci 18:80–90

    Article  PubMed  CAS  Google Scholar 

  • Heidtman M, Chen EJ, Moy MY, Isberg RR (2009) Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol 11:230–248

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Heller H, Elias S, Ciechanover A (1983) Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258:8206–8214

    PubMed  CAS  Google Scholar 

  • Hessa T, Sharma A, Mariappan M, Eshleman HD, Gutierrez E et al (2011) Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 475:394–397

    Article  PubMed  CAS  Google Scholar 

  • Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172

    Article  PubMed  CAS  Google Scholar 

  • Hicks SW, Galan JE (2010) Hijacking the host ubiquitin pathway: structural strategies of bacterial E3 ubiquitin ligases. Curr Opin Microbiol 13:41–46

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MA (1987) Characterization of avirulent mutant Legionella pneumophila that survive but do not multiply within human monocytes. J Exp Med 166:1310–1328

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Boyd D, Amyot WM, Hempstead AD, Luo ZQ et al (2011) The E Block motif is associated with Legionella pneumophila translocated substrates. Cell Microbiol 13:227–245

    Article  PubMed  CAS  Google Scholar 

  • Hubber A, Roy CR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283

    Article  PubMed  CAS  Google Scholar 

  • Hutchins AP, Liu S, Diez D, Miranda-Saavedra D (2013) The repertoires of ubiquitinating and deubiquitinating enzymes in eukaryotic genomes. Mol Biol Evol 30:1172–1187

    Google Scholar 

  • Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J et al (2008) Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283:22847–22857

    Article  PubMed  CAS  Google Scholar 

  • Ikeda F, Crosetto N, Dikic I (2010) What determines the specificity and outcomes of ubiquitin signaling? Cell 143:677–681

    Article  PubMed  CAS  Google Scholar 

  • Ivanov SS, Roy CR (2009) Modulation of ubiquitin dynamics and suppression of DALIS formation by the Legionella pneumophila Dot/Icm system. Cell Microbiol 11:261–278

    Article  PubMed  CAS  Google Scholar 

  • Jarosch E, Taxis C, Volkwein C, Bordallo J, Finley D et al (2002) Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 4:134–139

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Chen ZJ (2012) The role of ubiquitylation in immune defence and pathogen evasion. Nat Rev Immunol 12:35–48

    CAS  Google Scholar 

  • Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296

    Article  PubMed  CAS  Google Scholar 

  • Joshi AD, Swanson MS (2011) Secrets of a successful pathogen: legionella resistance to progression along the autophagic pathway. Front Microbiol 2:138

    Article  PubMed  CAS  Google Scholar 

  • Kawahara H, Minami R, Yokota N (2013) BAG6/BAT3: emerging roles in quality control for nascent polypeptides. J Biochem 153:147–160

    Article  PubMed  CAS  Google Scholar 

  • Khweek AA, Caution K, Akhter A, Abdulrahman BA, Tazi M, et al (2013) A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy. Eur J Immunol 43:1333–1344

    Google Scholar 

  • Kipreos ET, Pagano M (2000) The F-box protein family. Genome Biol 1:REVIEWS3002

    Google Scholar 

  • Kirkin V, McEwan DG, Novak I, Dikic I (2009a) A role for ubiquitin in selective autophagy. Mol Cell 34:259–269

    Article  PubMed  CAS  Google Scholar 

  • Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL et al (2009b) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33:505–516

    Article  PubMed  CAS  Google Scholar 

  • Koepp DM, Harper JW, Elledge SJ (1999) How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 97:431–434

    Article  PubMed  CAS  Google Scholar 

  • Kozak NA, Buss M, Lucas CE, Frace M, Govil D et al (2010) Virulence factors encoded by Legionella longbeachae identified on the basis of the genome sequence analysis of clinical isolate D-4968. J Bacteriol 192:1030–1044

    Article  PubMed  CAS  Google Scholar 

  • Kubori T, Nagai H (2011) Bacterial effector-involved temporal and spatial regulation by hijack of the host ubiquitin pathway. Front Microbiol 2:145

    Article  PubMed  CAS  Google Scholar 

  • Kubori T, Hyakutake A, Nagai H (2008) Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol 67:1307–1319

    Article  PubMed  CAS  Google Scholar 

  • Kubori T, Shinzawa N, Kanuka H, Nagai H (2010) Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS Pathog 6:e1001216

    Article  PubMed  CAS  Google Scholar 

  • Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA et al (2008) Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 3:e1487

    Article  PubMed  CAS  Google Scholar 

  • Ligeon LA, Temime-Smaali N, Lafont F (2011) Ubiquitylation and autophagy in the control of bacterial infections and related inflammatory responses. Cell Microbiol 13:1303–1311

    Article  PubMed  CAS  Google Scholar 

  • Lomma M, Dervins-Ravault D, Rolando M, Nora T, Newton HJ et al (2010) The Legionella pneumophila F-box protein Lpp 2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell Microbiol 12:1272–1291

    Article  PubMed  CAS  Google Scholar 

  • Magori S, Citovsky V (2011a) Hijacking of the host SCF ubiquitin ligase machinery by plant pathogens. Front Plant Sci 2:87

    Article  PubMed  Google Scholar 

  • Magori S, Citovsky V (2011b) Agrobacterium counteracts host-induced degradation of its effector F-box protein. Sci Signal 4:ra69

    Article  PubMed  CAS  Google Scholar 

  • Marra A, Blander SJ, Horwitz MA, Shuman HA (1992) Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. Proc Natl Acad Sci U S A 89:9607–9611

    Article  PubMed  CAS  Google Scholar 

  • Matsuda F, Fujii J, Yoshida S (2009) Autophagy induced by 2-deoxy-d-glucose suppresses intracellular multiplication of Legionella pneumophila in A/J mouse macrophages. Autophagy 5:484–493

    Article  PubMed  CAS  Google Scholar 

  • McDade JE, Shepard CC, Fraser DW, Tsai TR, Redus MA et al (1977) Legionnaires’ disease: isolation of a bacterium and demonstration of its role in other respiratory disease. N Engl J Med 297:1197–1203

    Article  PubMed  CAS  Google Scholar 

  • Mesquita FS, Thomas M, Sachse M, Santos AJ, Figueira R et al (2012) The Salmonella deubiquitinase SseL inhibits selective autophagy of cytosolic aggregates. PLoS Pathog 8:e1002743

    Article  PubMed  CAS  Google Scholar 

  • Meusser B, Hirsch C, Jarosch E, Sommer T (2005) ERAD: the long road to destruction. Nat Cell Biol 7:766–772

    Article  PubMed  CAS  Google Scholar 

  • Minami R, Hayakawa A, Kagawa H, Yanagi Y, Yokosawa H et al (2010) BAG-6 is essential for selective elimination of defective proteasomal substrates. J Cell Biol 190:637–650

    Article  PubMed  CAS  Google Scholar 

  • Misaghi S, Balsara ZR, Catic A, Spooner E, Ploegh HL et al (2006) Chlamydia trachomatis-derived deubiquitinating enzymes in mammalian cells during infection. Mol Microbiol 61:142–150

    Article  PubMed  CAS  Google Scholar 

  • Mocciaro A, Rape M (2012) Emerging regulatory mechanisms in ubiquitin-dependent cell cycle control. J Cell Sci 125:255–263

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Keitany G, Li Y, Wang Y, Ball HL et al (2006) Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312:1211–1214

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Liu X, Arasaki K, McDonough J, Galan JE et al (2011) Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477:103–106

    Article  PubMed  CAS  Google Scholar 

  • Muller MP, Peters H, Blumer J, Blankenfeldt W, Goody RS et al (2010) The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329:946–949

    Article  PubMed  Google Scholar 

  • Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR (2002) A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295:679–682

    Article  PubMed  CAS  Google Scholar 

  • Nathan JA, Tae Kim H, Ting L, Gygi SP, Goldberg AL (2013) Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes? EMBO J 32:552–565

    Article  PubMed  CAS  Google Scholar 

  • Neunuebel MR, Chen Y, Gaspar AH, Backlund PS Jr, Yergey A et al (2011) De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science 333:453–456

    Google Scholar 

  • O’Connor TJ, Boyd D, Dorer MS, Isberg RR (2012) Aggravating genetic interactions allow a solution to redundancy in a bacterial pathogen. Science 338:1440–1444

    Article  PubMed  CAS  Google Scholar 

  • Otto GP, Wu MY, Clarke M, Lu H, Anderson OR et al (2004) Macroautophagy is dispensable for intracellular replication of Legionella pneumophila in Dictyostelium discoideum. Mol Microbiol 51:63–72

    Article  PubMed  CAS  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  PubMed  CAS  Google Scholar 

  • Patel JC, Hueffer K, Lam TT, Galan JE (2009) Diversification of a Salmonella virulence protein function by ubiquitin-dependent differential localization. Cell 137:283–294

    Article  PubMed  CAS  Google Scholar 

  • Pickart CM, Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8:610–616

    Article  PubMed  CAS  Google Scholar 

  • Pierre P (2005) Dendritic cells, DRiPs, and DALIS in the control of antigen processing. Immunol Rev 207:184–190

    Article  PubMed  CAS  Google Scholar 

  • Prasad J, Colwill K, Pawson T, Manley JL (1999) The protein kinase Clk/Sty directly modulates SR protein activity: both hyper- and hypophosphorylation inhibit splicing. Mol Cell Biol 19:6991–7000

    PubMed  CAS  Google Scholar 

  • Price CT, Kwaik YA (2010) Exploitation of host polyubiquitination machinery through molecular mimicry by eukaryotic-like bacterial F-box effectors. Front Microbiol 1:122

    PubMed  CAS  Google Scholar 

  • Price CT, Al-Khodor S, Al-Quadan T, Santic M, Habyarimana F et al (2009) Molecular mimicry by an F-box effector of Legionella pneumophila hijacks a conserved polyubiquitination machinery within macrophages and protozoa. PLoS Pathog 5:e1000704

    Article  PubMed  CAS  Google Scholar 

  • Price CT, Al-Khodor S, Al-Quadan T, Abu Kwaik Y (2010) Indispensable role for the eukaryotic-like ankyrin domains of the ankyrin B effector of Legionella pneumophila within macrophages and amoebae. Infect Immun 78:2079–2088

    Article  PubMed  CAS  Google Scholar 

  • Price CT, Al-Quadan T, Santic M, Rosenshine I, Abu Kwaik Y (2011) Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science 334:1553–1557

    Article  PubMed  CAS  Google Scholar 

  • Quezada CM, Hicks SW, Galan JE, Stebbins CE (2009) A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. Proc Natl Acad Sci U S A 106:4864–4869

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78:363–397

    Article  PubMed  CAS  Google Scholar 

  • Rytkonen A, Poh J, Garmendia J, Boyle C, Thompson A et al (2007) SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc Natl Acad Sci U S A 104:3502–3507

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Esser S, Tischler P, Arnold R, Montanaro J, Wagner M et al (2010) The genome of the amoeba symbiont “Candidatus Amoebophilus asiaticus” reveals common mechanisms for host cell interaction among amoeba-associated bacteria. J Bacteriol 192:1045–1057

    Article  PubMed  CAS  Google Scholar 

  • Schwertz H, Tolley ND, Foulks JM, Denis MM, Risenmay BW et al (2006) Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets. J Exp Med 203:2433–2440

    Article  PubMed  CAS  Google Scholar 

  • Segal G, Shuman HA (1999) Possible origin of the Legionella pneumophila virulence genes and their relation to Coxiella burnetii. Mol Microbiol 33:669–670

    Article  PubMed  CAS  Google Scholar 

  • Segal G, Purcell M, Shuman HA (1998) Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci U S A 95:1669–1674

    Article  PubMed  CAS  Google Scholar 

  • Sepulveda JL, Wu C (2006) The parvins. Cell Mol Life Sci 63:25–35

    Article  PubMed  CAS  Google Scholar 

  • Shahnazari S, Brumell JH (2011) Mechanisms and consequences of bacterial targeting by the autophagy pathway. Curr Opin Microbiol 14:68–75

    Article  PubMed  CAS  Google Scholar 

  • Shanks J, Burtnick MN, Brett PJ, Waag DM, Spurgers KB et al (2009) Burkholderia mallei tssM encodes a putative deubiquitinase that is secreted and expressed inside infected RAW 264.7 murine macrophages. Infect Immun 77:1636–1648

    Article  PubMed  CAS  Google Scholar 

  • Singer AU, Rohde JR, Lam R, Skarina T, Kagan O et al (2008) Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat Struct Mol Biol 15:1293–1301

    Article  PubMed  CAS  Google Scholar 

  • Szeto J, Kaniuk NA, Canadien V, Nisman R, Mizushima N et al (2006) ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy. Autophagy 2:189–199

    PubMed  CAS  Google Scholar 

  • Tan Y, Luo ZQ (2011) Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 475:506–509

    Article  PubMed  CAS  Google Scholar 

  • Tan Y, Arnold RJ, Luo ZQ (2011) Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci U S A 108:21212–21217

    Article  PubMed  CAS  Google Scholar 

  • Thomas M, Mesquita FS, Holden DW (2012) The DUB-ious lack of ALIS in Salmonella infection: a Salmonella deubiquitinase regulates the autophagy of protein aggregates. Autophagy 8:1824–1826

    Article  PubMed  CAS  Google Scholar 

  • Tung SM, Unal C, Ley A, Pena C, Tunggal B et al (2010) Loss of Dictyostelium ATG9 results in a pleiotropic phenotype affecting growth, development, phagocytosis and clearance and replication of Legionella pneumophila. Cell Microbiol 12:765–780

    Article  PubMed  CAS  Google Scholar 

  • Ulrich HD, Walden H (2010) Ubiquitin signalling in DNA replication and repair. Nat Rev Mol Cell Biol 11:479–489

    Article  PubMed  CAS  Google Scholar 

  • van Wijk SJ, Timmers HT (2010) The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J 24:981–993

    Article  PubMed  CAS  Google Scholar 

  • Vandenabeele P, Bertrand MJ (2012) The role of the IAP E3 ubiquitin ligases in regulating pattern-recognition receptor signalling. Nat Rev Immunol 12:833–844

    Article  PubMed  CAS  Google Scholar 

  • Vogel JP, Andrews HL, Wong SK, Isberg RR (1998) Conjugative transfer by the virulence system of Legionella pneumophila. Science 279:873–876

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Liu Y, Soetandyo N, Baek K, Hegde R et al (2011) A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol Cell 42:758–770

    Article  PubMed  CAS  Google Scholar 

  • Windheim M, Peggie M, Cohen P (2008) Two different classes of E2 ubiquitin-conjugating enzymes are required for the mono-ubiquitination of proteins and elongation by polyubiquitin chains with a specific topology. Biochem J 409:723–729

    Article  PubMed  CAS  Google Scholar 

  • Xin DW, Liao S, Xie ZP, Hann DR, Steinle L et al (2012) Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL) domain effector of Rhizobium sp. strain NGR234. PLoS Pathog 8:e1002707

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y et al (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133–145

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10:755–764

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Meyer HH, Rapoport TA (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414:652–656

    Article  PubMed  CAS  Google Scholar 

  • Ye Z, Petrof EO, Boone D, Claud EC, Sun J (2007) Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination. Am J Pathol 171:882–892

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa Y, Ogawa M, Hain T, Yoshida M, Fukumatsu M et al (2009) Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat Cell Biol 11:1233–1240

    Article  PubMed  CAS  Google Scholar 

  • Zeng LR, Park CH, Venu RC, Gough J, Wang GL (2008) Classification, expression pattern, and E3 ligase activity assay of rice U-box-containing proteins. Mol Plant 1:800–815

    Article  PubMed  CAS  Google Scholar 

  • Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T et al (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 183:5909–5916

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Monack DM, Kayagaki N, Wertz I, Yin J et al (2005) Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-kappa B activation. J Exp Med 202:1327–1332

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Li H, Hu L, Wang J, Zhou Y et al (2008) Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nat Struct Mol Biol 15:1302–1308

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Banga S, Tan Y, Zheng C, Stephenson R et al (2011) Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. PLoS ONE 6:e17638

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs Xuan Bui Thanh and Masafumi Koike for critical reading of the manuscript. Research in the Nagai laboratory was supported by Grants-in-Aid for Scientific Research (23117002, 23390105, 24659198) from Ministry of Education, Culture, Sports, Science and Technology, Japan. Andree Hubber is supported by a postdoctoral fellowship for foreign researchers awarded by the Japanese Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Nagai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hubber, A., Kubori, T., Nagai, H. (2013). Modulation of the Ubiquitination Machinery by Legionella . In: Hilbi, H. (eds) Molecular Mechanisms in Legionella Pathogenesis. Current Topics in Microbiology and Immunology, vol 376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2013_343

Download citation

Publish with us

Policies and ethics