Skip to main content

Formation of Nanotube-Like Protrusions, Regulation of Septin Organization and Re-guidance of Vesicle Traffic by Depolymerization of the Actin Cytoskeleton Induced by Binary Bacterial Protein Toxins

  • Chapter
  • First Online:
The Actin Cytoskeleton and Bacterial Infection

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 399))

Abstract

A large group of bacterial protein toxins, including binary ADP-ribosylating toxins, modify actin at arginine-177, thereby actin polymerization is blocked and the actin cytoskeleton is redistributed. Modulation of actin functions largely affects other components of the cytoskeleton, especially microtubules and septins. Here, recent findings about the functional interconnections of the actin cytoskeleton with microtubules and septins, affected by bacterial toxins, are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed S, Goh WI, Bu W (2010) I-BAR domains, IRSp53 and filopodium formation. Semin Cell Dev Biol 21(4):350–356

    Article  CAS  PubMed  Google Scholar 

  • Aktories K (2011) Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol 9(7):487–498

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Ankenbauer T, Schering B, Jakobs KH (1986a) ADP-ribosylation of platelet actin by botulinum C2 toxin. Eur J Biochem 161:155–162

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986b) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Barth H (2004) The actin-ADP-ribosylating Clostridium botulinum C2 toxin. Anaerobe 10(2):101–105

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Frevert J (1987) ADP-ribosylation of a 21–24 kDa eukaryotic protein(s) by C3, a novel botulinum ADP-ribosyltransferase, is regulated by guanine nucleotide. Biochem J 247:363–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aktories K, Lang AE, Schwan C, Mannherz HG (2011) Actin as target for modification by bacterial protein toxins. FEBS J 278(23):4526–4543

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Wegner A (1989) ADP-ribosylation of actin by clostridial toxins. J Cell Biol 109:1385–1387

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Weller U, Chhatwal GS (1987) Clostridium botulinum type C produces a novel ADP-ribosyltransferase distinct from botulinum C2 toxin. FEBS Lett 212:109–113

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Wille M, Just I (1992) Clostridial actin-ADP-ribosylating toxins. Curr Top Microbiol Immunol 175:97–113

    CAS  PubMed  Google Scholar 

  • Austefjord MW, Gerdes HH, Wang X (2014) Tunneling nanotubes: diversity in morphology and structure. Commun Integr Biol 7(1):e27934

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barth H, Aktories K, Popoff MR, Stiles BG (2004) Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 68(3):373–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barth H, Blöcker D, Behlke J, Bergsma-Schutter W, Brisson A, Benz R, Aktories K (2000) Cellular uptake of Clostridium botulinum C2 toxin requires oligomerization and acidification. J Biol Chem 275(25):18704–18711

    Article  CAS  PubMed  Google Scholar 

  • Beise N, Trimble W (2011) Septins at a glance. J Cell Sci 124(Pt 24):4141–4146

    Article  CAS  PubMed  Google Scholar 

  • Bihain BE, Yen FT (1998) The lipolysis stimulated receptor: a gene at last. Curr Opin Lipidol 9(3):221–224

    Article  CAS  PubMed  Google Scholar 

  • Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J (2014) Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 94(1):235–263

    Article  CAS  PubMed  Google Scholar 

  • Blöcker D, Pohlmann K, Haug G, Bachmeyer C, Benz R, Aktories K, Barth H (2003) Clostridium botulinum C2 toxin: low pH-induced pore formation is required for translocation of the enzyme component C2I into the cytosol of host cells. J Biol Chem 278(39):37360–37367

    Article  PubMed  CAS  Google Scholar 

  • Buszczak M, Inaba M, Yamashita YM (2016, Mar 28) Signaling by cellular protrusions: keeping the conversation private. Trends Cell Biol. doi:10.1016/j.tcb.2016.03.003, pii: S0962-8924(16)00042-8

    Google Scholar 

  • Castellano F, Chavrier P, Caron E (2001) Actin dynamics during phagocytosis. Semin Immunol 13(6):347–355

    Article  CAS  PubMed  Google Scholar 

  • Considine RV, Simpson LL, Sherwin JR (1992) Botulinum C2 toxin and steroid production in adrenal Y- 1 cells: the role of microfilaments in the toxin-induced increase in steroid release. J Pharmacol Exp Ther 260:859–864

    CAS  PubMed  Google Scholar 

  • Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117

    Article  CAS  PubMed  Google Scholar 

  • Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckhardt M, Barth H, Blöcker D, Aktories K (2000) Binding of Clostridium botulinum C2 toxin to asparagine-linked complex and hybrid carbohydrates. JBC 275:2328–2334

    Article  CAS  Google Scholar 

  • Fahrner M, Derler I, Jardin I, Romanin C (2013) The STIM1/Orai signaling machinery. Channels (Austin) 7(5):330–343

    Article  CAS  Google Scholar 

  • Fairchild CL, Barna M (2014) Specialized filopodia: at the ‘tip’ of morphogen transport and vertebrate tissue patterning. Curr Opin Genet Dev 27:67–73

    Article  CAS  PubMed  Google Scholar 

  • Fehr D, Burr SE, Gibert M, d‘Alayer J, Frey J, Popoff MR (2007) Aeromonas exoenzyme T of Aeromonas salmonicida is a bifunctional protein that targets the host cytoskeleton. J Biol Chem 282:28843–28852

    Article  CAS  PubMed  Google Scholar 

  • Frischauf I, Schindl R, Derler I, Bergsmann J, Fahrner M, Romanin C (2008) The STIM/Orai coupling machinery. Channels 2(4):261–268. doi:6705 [pii]

    Google Scholar 

  • Furuse M, Oda Y, Higashi T, Iwamoto N, Masuda S (2012) Lipolysis-stimulated lipoprotein receptor: a novel membrane protein of tricellular tight junctions. Ann N Y Acad Sci 1257:54–58

    Article  CAS  PubMed  Google Scholar 

  • Galan C, Dionisio N, Smani T, Salido GM, Rosado JA (2011) The cytoskeleton plays a modulatory role in the association between STIM1 and the Ca2+ channel subunits Orai1 and TRPC1. Biochem Pharmacol 82(4):400–410

    Article  CAS  PubMed  Google Scholar 

  • Geipel U, Just I, Aktories K (1990) Inhibition of cytochalasin D-stimulated G-actin ATPase by ADP-ribosylation with Clostridium perfringens iota toxin. Biochem J 266:335–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geipel U, Just I, Schering B, Haas D, Aktories K (1989) ADP-ribosylation of actin causes increase in the rate of ATP exchange and inhibition of ATP hydrolysis. Eur J Biochem 179:229–232

    Article  CAS  PubMed  Google Scholar 

  • Gotoh H, Okada N, Kim YG, Shiraishi K, Hirami N, Haneda T, Kurita A, Kikuchi Y, Danbara H (2003) Extracellular secretion of the virulence plasmid-encoded ADP-ribosyltransferase SpvB in Salmonella. Microb Pathog 34(5):227–238

    Article  CAS  PubMed  Google Scholar 

  • Gruenheid S, Finlay BB (2003) Microbial pathogenesis and cytoskeletal function. Nature 422(6933):775–781

    Article  CAS  PubMed  Google Scholar 

  • Gülke I, Pfeifer G, Liese J, Fritz M, Hofmann F, Aktories K, Barth H (2001) Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile. Infect Immun 69(10):6004–6011

    Article  PubMed  PubMed Central  Google Scholar 

  • Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA (1999) Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol 6:932–936

    Article  CAS  PubMed  Google Scholar 

  • Haug G, Leemhuis J, Tiemann D, Meyer DK, Aktories K, Barth H (2003) The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol. J Biol Chem 274:32266–32274

    Article  CAS  Google Scholar 

  • Herbsleb M, Birkenkamp-Demtroder K, Thykjaer T, Wiuf C, Hein AM, Orntoft TF, Dyrskjot L (2008) Increased cell motility and invasion upon knockdown of lipolysis stimulated lipoprotein receptor (LSR) in SW780 bladder cancer cells. BMC Med Genomics 1:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hochmann H, Pust S, von FG, Aktories K, Barth H (2006) Salmonella enterica SpvB ADP-ribosylates actin at position arginine-177-characterization of the catalytic domain within the SpvB protein and a comparison to binary clostridial actin-ADP-ribosylating toxins. Biochemistry 45(4):1271–1277

    Article  CAS  PubMed  Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Bai X, Bowen JR, Dolat L, Korobova F, Yu W, Baas PW, Svitkina T, Gallo G, Spiliotis ET (2012) Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons. Curr Biol 22(12):1109–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irikura D, Monma C, Suzuki Y, Nakama A, Kai A, Fukui-Miyazaki A, Horiguchi Y, Yoshinari T, Sugita-Konishi Y, Kamata Y (2015) Identification and characterization of a new enterotoxin produced by Clostridium perfringens isolated from food poisoning outbreaks. PLoS ONE 10(11):e0138183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joberty G, Perlungher RR, Macara IG (1999) The borgs, a new family of Cdc42 and TC10 GTPase-interacting proteins. Mol Cell Biol 19:6585–6597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joberty G, Perlungher RR, Sheffield PJ, Kinoshita M, Noda M, Haystead T, Macara IG (2001) Borg proteins control septin organization and are negatively regulated by Cdc42. Nat Cell Biol 3(10):861–866

    Article  CAS  PubMed  Google Scholar 

  • Kaiser E, Bohm N, Ernst K, Langer S, Schwan C, Aktories K, Popoff M, Fischer G, Barth H (2012) FK506-binding protein 51 interacts with Clostridium botulinum C2 toxin and FK506 inhibits membrane translocation of the toxin in mammalian cells. Cell Microbiol 14(8):1193–1205

    Article  CAS  PubMed  Google Scholar 

  • Kaiser E, Pust S, Kroll C, Barth H (2009) Cyclophilin A facilitates translocation of the Clostridium botulinum C2 toxin across membranes of acidified endosomes into the cytosol of mammalian cells. Cell Microbiol 11(5):780–795

    Article  CAS  PubMed  Google Scholar 

  • Kodama A, Karakesisoglou I, Wong E, Vaezi A, Fuchs E (2003) ACF7: an essential integrator of microtubule dynamics. Cell 115(3):343–354

    Article  CAS  PubMed  Google Scholar 

  • Lang AE, Schmidt G, Schlosser A, Hey TD, Larrinua IM, Sheets JJ, Mannherz HG, Aktories K (2010) Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering. Science 327(5969):1139–1142

    Article  CAS  PubMed  Google Scholar 

  • Lang AE, Schmidt G, Sheets JJ, Aktories K (2011) Targeting of the actin cytoskeleton by insecticidal toxins from Photorhabdus luminescens. Naunyn Schmiedebergs Arch Pharmacol 383(3):227–235

    Article  CAS  PubMed  Google Scholar 

  • Lanzetti L (2007) Actin in membrane trafficking. Curr Opin Cell Biol 19(4):453–458

    Article  CAS  PubMed  Google Scholar 

  • Leijnse N, Oddershede LB, Bendix PM (2015) An updated look at actin dynamics in filopodia. Cytoskeleton (Hoboken) 72(2):71–79

    Article  CAS  Google Scholar 

  • Leipe DD, Wolf YI, Koonin EV, Aravind L (2002) Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317(1):41–72

    Article  CAS  PubMed  Google Scholar 

  • Lemichez E, Aktories K (2013) Hijacking of Rho GTPases during bacterial infection. Exp Cell Res 319(15):2329–2336

    Article  CAS  PubMed  Google Scholar 

  • Lesnick ML, Reiner NE, Fierer J, Guiney DG (2001) The Salmonella SpvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol Microbiol 39:1464–1470

    Article  CAS  PubMed  Google Scholar 

  • Li G, Rungger-Brändle E, Just I, Jonas J-C, Aktories K, Wollheim CB (1994) Effect of disruption of actin filaments by Clostridium botulinum C2 toxin on insulin secretion in HIT-T15 cells and pancreatic islets. Mol Biol Cell 5(11):1199–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malicki J, Avidor-Reiss T (2014) From the cytoplasm into the cilium: bon voyage. Organogenesis 10(1):138–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Mann CJ, Khallou J, Chevreuil O, Troussard AA, Guermani LM, Launay K, Delplanque B, Yen FT, Bihain BE (1995) Mechanism of activation and functional significance of the lipolysis-stimulated receptor. Evidence for a role as chylomicron remnant receptor. Biochemistry 34(33):10421–10431

    Article  CAS  PubMed  Google Scholar 

  • Margarit SM, Davidson W, Frego L, Stebbins CE (2006) A steric antagonism of actin polymerization by a salmonella virulence protein. Structure 14(8):1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Masuda S, Oda Y, Sasaki H, Ikenouchi J, Higashi T, Akashi M, Nishi E, Furuse M (2011) LSR defines cell corners for tricellular tight junction formation in epithelial cells. J Cell Sci 124(Pt 4):548–555

    Article  CAS  PubMed  Google Scholar 

  • Matrone MA, Whipple RA, Balzer EM, Martin SS (2010) Microtentacles tip the balance of cytoskeletal forces in circulating tumor cells. Cancer Res 70(20):7737–7741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matter K, Dreyer F, Aktories K (1989) Actin involvement in exocytosis from PC12 cells: studies on the influence of botulinum C2 toxin on stimulated noradrenaline release. J Neurochem 52:370–376

    Article  CAS  PubMed  Google Scholar 

  • Mimori-Kiyosue Y, Grigoriev I, Lansbergen G, Sasaki H, Matsui C, Severin F, Galjart N, Grosveld F, Vorobjev I, Tsukita S, Akhmanova A (2005) CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J Cell Biol 168(1):141–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostowy S, Cossart P (2012) Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol 13(3):183–194

    CAS  PubMed  Google Scholar 

  • Nagahama M, Takahashi C, Aoyanagi K, Tashiro R, Kobayashi K, Sakaguchi Y, Ishidoh K, Sakurai J (2014) Intracellular trafficking of Clostridium botulinum C2 toxin. Toxicon 82:76–82

    Article  CAS  PubMed  Google Scholar 

  • Nagahama M, Umezaki M, Tashiro R, Oda M, Kobayashi K, Shibutani M, Takagishi T, Ishidoh K, Fukuda M, Sakurai J (2012) Intracellular trafficking of Clostridium perfringens iota toxin b. Infect Immun 80(10):3410–3416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nölke T, Schwan C, Lehmann F, Østevold K, Pertz O, Aktories K (2016) Septins guide microtubule protrusions induced by actin-depolymerizing toxins like Clostridium difficile CDT. Proc Natl Acad Sci USA

    Google Scholar 

  • Nogales E (2000) Structural insights into microtubule function. Annu Rev Biochem 69:277–302

    Article  CAS  PubMed  Google Scholar 

  • Norgauer J, Kownatzki E, Seifert R, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates actin and enhances O2 − production and secretion but inhibits migration of activated human neutrophils. J Clin Invest 82:1376–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohishi I, Iwasaki M, Sakaguchi G (1980) Purification and characterization of two components of botulinum C2 toxin. Infect Immun 30:668–673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohishi I, Tsuyama S (1986) ADP-ribosylation of nonmuscle actin with component I of C2 toxin. Biochem Biophys Res Commun 136:802–806

    Article  CAS  PubMed  Google Scholar 

  • Onfelt B, Nedvetzki S, Yanagi K, Davis DM (2004) Cutting edge: membrane nanotubes connect immune cells. J Immunol 173(3):1511–1513

    Article  PubMed  Google Scholar 

  • Otto H, Tezcan-Merdol D, Girisch R, Haag F, Rhen M, Koch-Nolte F (2000) The spvB gene-product of the Salmonella enterica virulence plasmid is a mono(ADP-ribosyl)transferase. Mol Microbiol 37:1106–1115

    Article  CAS  PubMed  Google Scholar 

  • Papatheodorou P, Carette JE, Bell GW, Schwan C, Guttenberg G, Brummelkamp TR, Aktories K (2011) Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc Natl Acad Sci USA 108(39):16422–16427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papatheodorou P, Wilczek C, Nolke T, Guttenberg G, Hornuss D, Schwan C, Aktories K (2012) Identification of the cellular receptor of Clostridium spiroforme toxin. Infect Immun 80(4):1418–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen LB, Schroder JM, Satir P, Christensen ST (2012) The ciliary cytoskeleton. Compr Physiol 2(1):779–803

    PubMed  Google Scholar 

  • Pollard TD, Almo S, Quirk S, Vinson V, Lattman EE (1994) Structure of actin binding proteins: insights about function at atomic resolution. Annu Rev Cell Biol 10:207–249

    Article  CAS  PubMed  Google Scholar 

  • Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326(5957):1208–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popoff MR, Geny B (2009) Multifaceted role of Rho, Rac, Cdc42 and Ras in intercellular junctions, lessons from toxins. Biochim Biophys Acta 1788(4):797–812

    Article  CAS  PubMed  Google Scholar 

  • Posern G, Treisman R (2006) Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 16(11):588–596

    Article  CAS  PubMed  Google Scholar 

  • Sadian Y, Gatsogiannis C, Patasi C, Hofnagel O, Goody RS, Farkasovsky M, Raunser S (2013) The role of Cdc42 and Gic1 in the regulation of septin filament formation and dissociation. Elife 2:e01085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakurai J, Nagahama M, Oda M, Tsuge H, Kobayashi K (2009) Clostridium perfringens iota-toxin: structure and function. Toxins (Basel) 1(2):208–228

    Article  CAS  Google Scholar 

  • Satchell KJ (2009) Actin crosslinking toxins of Gram-negative bacteria. Toxins (Basel) 1(2):123–133

    Article  CAS  Google Scholar 

  • Schering B, Bärmann M, Chhatwal GS, Geipel U, Aktories K (1988) ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Eur J Biochem 171:225–229

    Article  CAS  PubMed  Google Scholar 

  • Schleberger C, Hochmann H, Barth H, Aktories K, Schulz GE (2006) Structure and action of the binary C2 toxin from Clostridium botulinum. J Mol Biol 364:705–715

    Article  CAS  PubMed  Google Scholar 

  • Schmidt G, Papatheodorou P, Aktories K (2015) Novel receptors for bacterial protein toxins. Curr Opin Microbiol 23C:55–61

    Article  CAS  Google Scholar 

  • Schwan C, Kruppke AS, Nolke T, Schumacher L, Koch-Nolte F, Kudryashev M, Stahlberg H, Aktories K (2014) Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence. Proc Natl Acad Sci USA 111(6):2313–2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwan C, Noelke T, Kruppke AS, Schubert DM, Lang AE, Aktories K (2011) Cholesterol- and sphingolipid-rich microdomains are essential for microtubule-based membrane protrusions induced by Clostridium difficile transferase CDT. J Biol Chem 286(33):29356–29365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwan C, Stecher B, Tzivelekidis T, van HM, Rohde M, Hardt WD, Wehland J, Aktories K (2009) Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog 5(10):e1000626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheahan KL, Cordero CL, Satchell KJ (2004) Identification of a domain within the multifunctional Vibrio cholerae RTX toxin that covalently cross-links actin. Proc Natl Acad Sci USA 101(26):9798–9803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheff DR, Kroschewski R, Mellman I (2002) Actin dependence of polarized receptor recycling in Madin-Darby canine kidney cell endosomes. Mol Biol Cell 13(1):262–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheffield PJ, Oliver CJ, Kremer BE, Sheng S, Shao Z, Macara IG (2003) Borg/septin interactions and the assembly of mammalian septin heterodimers, trimers, and filaments. J Biol Chem 278(5):3483–3488

    Article  CAS  PubMed  Google Scholar 

  • Shimada H, Satohisa S, Kohno T, Takahashi S, Hatakeyama T, Konno T, Tsujiwaki M, Saito T, Kojima T (2016) The roles of tricellular tight junction protein lipolysis-stimulated lipoprotein receptor in malignancy of human endometrial cancer cells. Oncotarget. doi:10.18632/oncotarget.8408

  • Sirajuddin M, Farkasovsky M, Hauer F, Kuhlmann D, Macara IG, Weyand M, Stark H, Wittinghofer A (2007) Structural insight into filament formation by mammalian septins. Nature 449(7160):311–315

    Article  CAS  PubMed  Google Scholar 

  • Sisakhtnezhad S, Khosravi L (2015) Emerging physiological and pathological implications of tunneling nanotubes formation between cells. Eur J Cell Biol 94(10):429–443

    Article  CAS  PubMed  Google Scholar 

  • Stanganello E, Scholpp S (2016) Role of cytonemes in Wnt transport. J Cell Sci 129(4):665–672

    Article  CAS  PubMed  Google Scholar 

  • Stiles BG, Pradhan K, Fleming JM, Samy RP, Barth H, Popoff MR (2014) Clostridium and bacillus binary enterotoxins: bad for the bowels, and eukaryotic being. Toxins (Basel) 6(9):2626–2656

    Article  CAS  Google Scholar 

  • Stiles BG, Wilkens TD (1986) Purification and characterization of Clostridium perfringens iota toxin: dependence on two nonlinked proteins for biological activity. Infect Immun 54:683–688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles BG, Wilkins TD (1986) Clostridium perfringens iota toxin: synergism between two proteins. Toxicon 24:767–773

    Article  CAS  PubMed  Google Scholar 

  • Suarez G, Sierra JC, Erova TE, Sha J, Horneman AJ, Chopra AK (2010) A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol 192:155–168

    Article  CAS  PubMed  Google Scholar 

  • Terman JR, Kashina A (2013) Post-translational modification and regulation of actin. Curr Opin Cell Biol 25(1):30–38

    Article  CAS  PubMed  Google Scholar 

  • Trifaro JM, Gasman S, Gutierrez LM (2008) Cytoskeletal control of vesicle transport and exocytosis in chromaffin cells. Acta Physiol (Oxf) 192(2):165–172

    Article  CAS  Google Scholar 

  • Tsuge H, Nagahama M, Nishimura H, Hisatsune J, Sakaguchi Y, Itogawa Y, Katunuma N, Sakurai J (2003) Crystal structure and site-directed mutagenesis of enzymatic components from Clostridium perfringens iota-toxin. J Mol Biol 325(3):471–483

    Article  CAS  PubMed  Google Scholar 

  • Uematsu Y, Kogo Y, Ohishi I (2007) Disassembly of actin filaments by botulinum C2 toxin and actin-filament-disrupting agents induces assembly of microtubules in human leukaemia cell lines. Biol Cell 99(3):141–150

    Article  CAS  PubMed  Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1987) Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett 225:48–52

    Article  CAS  PubMed  Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates cytoplasmic β/γ-actin in arginine 177. J Biol Chem 263:696–700

    CAS  PubMed  Google Scholar 

  • Verschueren H, Van der Taelen I, Dewit J, De Braekeleer J, De Baetelier P, Aktories K, Just I (1995) Effects of Clostridium botulinum C2 toxin and cytochalasin D on in vitro invasiveness, motility and F-actin content of a murine T-lymphoma cell line. Eur J Cell Biol 66:335–341

    CAS  PubMed  Google Scholar 

  • Vilches S, Wilhelms M, Yu HB, Leung KY, Tomas JM, Merino S (2008) Aeromonas hydrophila AH-3 AexT is an ADP-ribosylating toxin secreted through the type III secretion system. Microb Pathog 44:1–12

    Article  CAS  PubMed  Google Scholar 

  • Visschedyk DD, Perieteanu AA, Turgeon ZJ, Fieldhouse RJ, Dawson JF, Merrill AR (2010) Photox, a novel actin-targeting mono-ADP-ribosyltransferase from Photorhabdus luminescens. J Biol Chem 285:13525–13534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitolo MI, Boggs AE, Whipple RA, Yoon JR, Thompson K, Matrone MA, Cho EH, Balzer EM, Martin SS (2013) Loss of PTEN induces microtentacles through PI3 K-independent activation of cofilin. Oncogene 32(17):2200–2210

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cui J, Sun X, Zhang Y (2011) Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ 18(4):732–742

    Article  CAS  PubMed  Google Scholar 

  • Waterman-Storer CM, Salmon ED (1997) Microtubule dynamics: treadmilling comes around again. Curr Biol 7(6):R369–R372

    Article  CAS  PubMed  Google Scholar 

  • Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263:13739–13742

    CAS  PubMed  Google Scholar 

  • Weirich CS, Erzberger JP, Barral Y (2008) The septin family of GTPases: architecture and dynamics. Nat Rev Mol Cell Biol 9(6):478–489

    Article  CAS  PubMed  Google Scholar 

  • Wiegers W, Just I, Müller H, Hellwig A, Traub P, Aktories K (1991) Alteration of the cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP-ribosyltransferase. Eur J Cell Biol 54:237–245

    CAS  PubMed  Google Scholar 

  • Wille M, Just I, Wegner A, Aktories K (1992) ADP-ribosylation of the gelsolin-actin complex by clostridial toxins. J Biol Chem 267:50–55

    CAS  PubMed  Google Scholar 

  • Yen FT, Mann CJ, Guermani LM, Hannouche NF, Hubert N, Hornick CA, Bordeau VN, Agnani G, Bihain BE (1994) Identification of a lipolysis-stimulated receptor that is distinct from the LDL receptor and the LDL receptor-related protein. Biochemistry 33(5):1172–1180

    Article  CAS  PubMed  Google Scholar 

  • Young JA, Collier RJ (2007) Anthrax toxin: receptor-binding, internalization, pore formation, and translocation. Annu Rev Biochem 76:243–265

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2011) Tunneling-nanotube: a new way of cell-cell communication. Commun Integr Biol 4(3):324–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Aktories .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schwan, C., Aktories, K. (2016). Formation of Nanotube-Like Protrusions, Regulation of Septin Organization and Re-guidance of Vesicle Traffic by Depolymerization of the Actin Cytoskeleton Induced by Binary Bacterial Protein Toxins. In: Mannherz, H. (eds) The Actin Cytoskeleton and Bacterial Infection. Current Topics in Microbiology and Immunology, vol 399. Springer, Cham. https://doi.org/10.1007/82_2016_25

Download citation

Publish with us

Policies and ethics