Skip to main content

New Horizons in the Development of Novel Needle-Free Immunization Strategies to Increase Vaccination Efficacy

  • Chapter
  • First Online:
How to Overcome the Antibiotic Crisis

Abstract

The young twenty-first century has already brought several medical advances, such as a functional artificial human liver created from stem cells, improved antiviral (e.g., against HIV) and cancer (e.g., against breast cancer) therapies, interventions controlling cardiovascular diseases, and development of new and optimized vaccines (e.g., HPV vaccine). However, despite this substantial progress and the achievements of the last century, humans still suffer considerably from diseases, especially from infectious diseases. Thus, almost one-fourth of all deaths worldwide are caused directly or indirectly by infectious agents. Although vaccination has led to the control of many diseases, including smallpox, diphtheria, and tetanus, emerging diseases are still not completely contained. Furthermore, pathogens such as Bordetella pertussis undergo alterations making adaptation of the respective vaccine necessary. Moreover, insufficient implementation of vaccination campaigns leads to re-emergence of diseases which were believed to be already under control (e.g., poliomyelitis). Therefore, novel vaccination strategies need to be developed in order to meet the current challenges including lack of compliance, safety issues, and logistic constraints. In this context, mucosal and transdermal approaches constitute promising noninvasive vaccination strategies able to match these demands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

αGalCer:

Alpha galactosylceramide

APCs:

Antigen-presenting cells

c-di-AMP:

Bis-(3′,5′)-cyclic dimeric adenosine monophosphate

CNS:

Central nervous system

CT:

Cholera toxin

CTB:

Cholera toxin B subunit

CTL:

Cytotoxic T lymphocyte

cVDPV:

Circulating vaccine-derived polioviruses

DCs:

Dendritic cells

EMA:

European Medicines Agency

ETEC:

Enterotoxigenic Escherichia coli

FDA:

Food and Drug Administration

GRAS:

Generally regarded as safe

HIV:

Human immunodeficiency virus

i.d.:

Intradermal

i.m.:

Intramuscular

IMSG NPs:

Inverse micellar sugar glass nanoparticles

i.n.:

Intranasal

i.t.:

Intratracheal

i.v.:

Intravenous

i.vag.:

Intravaginal

LAIV:

Live attenuated influenza virus vaccines

LCs:

Langerhans cells

LPS:

Lipopolysaccharide

LT:

Heat-labile toxin

MALP-2:

TLR2/6-binding macrophage-activating lipopeptide-2

MCTs:

Medium-chain triglycerides

MPL:

Monophosphoryl lipid A

NALT:

Nasal-associated lymphoid tissue

PAMPs:

Pathogen-associated molecular patterns

PEMs:

Polyelectrolyte multiple layers

PLA:

Polylactic acid

PLA NPs:

Polylactic acid nanoparticles

PLGA:

Polylactic-co-glycolic acid

PLGA NPs:

Polylactic-co-glycolic acid nanoparticles

PRRs:

Pattern recognition receptors

SC:

Stratum corneum

s.c.:

Subcutaneous

s.l.:

Sublingual

STING:

Stimulator of interferon genes

TCV:

Transcutaneous vaccination

t.f.:

Transfollicular

TLR:

Toll-like receptor

References

  • Agger EM, Rosenkrands I, Hansen J, Brahimi K, Vandahl BS, Aagaard C et al (2008) Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements. PLoS One 3(9):e3116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aljuffali IA, Sung CT, Shen FM, Huang CT, Fang JY (2014) Squarticles as a lipid nanocarrier for delivering diphencyprone and minoxidil to hair follicles and human dermal papilla cells. AAPS J 16(1):140–150

    Article  CAS  PubMed  Google Scholar 

  • Allison AC (1997) Immunological adjuvants and their modes of action. Arch Immunol Ther Exp (Warsz) 45(2–3):141–147

    CAS  Google Scholar 

  • Almeida JR, Price DA, Papagno L, Arkoub ZA, Sauce D, Bornstein E et al (2007) Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. J Exp Med 204(10):2473–2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrose CS, Wu X, Caspard H, Belshe RB (2014) Efficacy of live attenuated influenza vaccine against influenza illness in children as a function of illness severity. Vaccine 32(43):5546–5548

    Article  CAS  PubMed  Google Scholar 

  • Anjuere F, Bekri S, Bihl F, Braud VM, Cuburu N, Czerkinsky C et al (2012) B cell and T cell immunity in the female genital tract: potential of distinct mucosal routes of vaccination and role of tissue-associated dendritic cells and natural killer cells. Clin Microbiol Infect 18(Suppl 5):117–122

    Article  CAS  PubMed  Google Scholar 

  • Baaten BJ, Clarke B, Strong P, Hou S (2010) Nasal mucosal administration of chitin microparticles boosts innate immunity against influenza A virus in the local pulmonary tissue. Vaccine 28(25):4130–4137

    Article  CAS  PubMed  Google Scholar 

  • Badillo-Godinez O, Gutierrez-Xicotencatl L, Plett-Torres T, Pedroza-Saavedra A, Gonzalez-Jaimes A, Chihu-Amparan L et al (2015) Targeting of rotavirus VP6 to DEC-205 induces protection against the infection in mice. Vaccine 33(35):4228–4237

    Article  CAS  PubMed  Google Scholar 

  • Bal SM, Ding Z, van Riet E, Jiskoot W, Bouwstra JA (2010) Advances in transcutaneous vaccine delivery: do all ways lead to Rome? J Control Release 148(3):266–282

    Article  CAS  PubMed  Google Scholar 

  • Bangert C, Brunner PM, Stingl G (2011) Immune functions of the skin. Clin Dermatol 29(4):360–376

    Article  PubMed  Google Scholar 

  • Becker PD, Fiorentini S, Link C, Tosti G, Ebensen T, Caruso A et al (2006) The HIV-1 matrix protein p17 can be efficiently delivered by intranasal route in mice using the TLR 2/6 agonist MALP-2 as mucosal adjuvant. Vaccine 24(25):5269–5276

    Article  CAS  PubMed  Google Scholar 

  • Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I et al (2009) Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 10(5):488–495

    Article  CAS  PubMed  Google Scholar 

  • Behrens RH, Cramer JP, Jelinek T, Shaw H, von Sonnenburg F, Wilbraham D et al (2014) Efficacy and safety of a patch vaccine containing heat-labile toxin from Escherichia coli against travellers’ diarrhoea: a phase 3, randomised, double-blind, placebo-controlled field trial in travellers from Europe to Mexico and Guatemala. Lancet Infect Dis 14(3):197–204

    Article  CAS  PubMed  Google Scholar 

  • Beignon AS, Briand JP, Rappuoli R, Muller S, Partidos CD (2002) The LTR72 mutant of heat-labile enterotoxin of Escherichia coli enhances the ability of peptide antigens to elicit CD4(+) T cells and secrete gamma interferon after coapplication onto bare skin. Infect Immun 70(6):3012–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett E, Mullen AB, Ferro VA (2009) Translational modifications to improve vaccine efficacy in an oral influenza vaccine. Methods 49(4):322–327

    Article  CAS  PubMed  Google Scholar 

  • Blaauboer SM, Gabrielle VD, Jin L (2014) MPYS/STING-mediated TNF-alpha, not type I IFN, is essential for the mucosal adjuvant activity of (3’-5’)-cyclic-di-guanosine-monophosphate in vivo. J Immunol 192(1):492–502

    Article  CAS  PubMed  Google Scholar 

  • Bolhassani A, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR, Sadat SM (2014) Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccines Immunotherapeutics 10(2):321–332

    Article  CAS  Google Scholar 

  • Borsutzky S, Fiorelli V, Ebensen T, Tripiciano A, Rharbaoui F, Scoglio A et al (2003) Efficient mucosal delivery of the HIV-1 Tat protein using the synthetic lipopeptide MALP-2 as adjuvant. Eur J Immunol 33(6):1548–1556

    Article  CAS  PubMed  Google Scholar 

  • Boyce TG, Hsu HH, Sannella EC, Coleman-Dockery SD, Baylis E, Zhu Y et al (2000) Safety and immunogenicity of adjuvanted and unadjuvanted subunit influenza vaccines administered intranasally to healthy adults. Vaccine 19(2–3):217–226

    Article  CAS  PubMed  Google Scholar 

  • Bramson J, Dayball K, Evelegh C, Wan YH, Page D, Smith A (2003) Enabling topical immunization via microporation: a novel method for pain-free and needle-free delivery of adenovirus-based vaccines. Gene Ther 10(3):251–260

    Article  CAS  PubMed  Google Scholar 

  • Brandtzaeg P (2007) Induction of secretory immunity and memory at mucosal surfaces. Vaccine 25(30):5467–5484

    Article  CAS  PubMed  Google Scholar 

  • Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M et al (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature 478(7370):515–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caetano LA, Almeida AJ, Goncalves LM (2014) Approaches to tuberculosis mucosal vaccine development using nanoparticles and microparticles: a review. J Biomed Nanotechnol 10(9):2295–2316

    Article  CAS  PubMed  Google Scholar 

  • Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Shin Teh J, Lo JC et al (2008) The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 112(8):3264–3273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter NJ, Curran MP (2011) Live attenuated influenza vaccine (FluMist(R); Fluenz): a review of its use in the prevention of seasonal influenza in children and adults. Drugs 71(12):1591–1622

    Article  CAS  PubMed  Google Scholar 

  • Chadwick S, Kriegel C, Amiji M (2009) Delivery strategies to enhance mucosal vaccination. Expert Opin Biol Ther 9(4):427–440

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Burger M, Chu Q, Endres R, Zuleger C, Dean H et al (2004) Epidermal powder immunization: cellular and molecular mechanisms for enhancing vaccine immunogenicity. Virus Res 103(1–2):147–153

    Article  CAS  PubMed  Google Scholar 

  • ClinicalTrials.gov (2012) A service of the U.S. National Institutes of Health. Trial on the safety of a new liposomal adjuvant system, CAF01, when given with the tuberculosis subunit vaccine Ag85B-ESAT-6 as two injections with two months interval to healthy adult volunteers. Available from: http://clinicaltrials.gov/ct2/show/NCT00922363

  • Combadiere B, Vogt A, Mahe B, Costagliola D, Hadam S, Bonduelle O et al (2010) Preferential amplification of CD8 effector-T cells after transcutaneous application of an inactivated influenza vaccine: a randomized phase I trial. PLoS One 5(5):e10818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cox E, Verdonck F, Vanrompay D, Goddeeris B (2006) Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet Res 37(3):511–539

    Article  CAS  PubMed  Google Scholar 

  • Darrah PA, Hegde ST, Patel DT, Lindsay RW, Chen L, Roederer M et al (2010) IL-10 production differentially influences the magnitude, quality, and protective capacity of Th1 responses depending on the vaccine platform. J Exp Med 207(7):1421–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, Flynn BJ et al (2007) Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 13(7):843–850

    Article  CAS  PubMed  Google Scholar 

  • Davitt CJ, Lavelle EC (2015) Delivery strategies to enhance oral vaccination against enteric infections. Adv Drug Deliv Rev 91:52–69

    Article  CAS  PubMed  Google Scholar 

  • De Geest BG, Willart MA, Lambrecht BN, Pollard C, Vervaet C, Remon JP et al (2012) Surface-engineered polyelectrolyte multilayer capsules: synthetic vaccines mimicking microbial structure and function. Angew Chem Int Edit 51(16):3862–3866

    Article  CAS  Google Scholar 

  • De Vendittis E, Palumbo G, Parlato G, Bocchini V (1981) A fluorimetric method for the estimation of the critical micelle concentration of surfactants. Anal Biochem 115(2):278–286

    Article  PubMed  Google Scholar 

  • Demoulins T, Milona P, McCullough KC (2014) Alginate-coated chitosan nanogels differentially modulate class-A and class-B CpG-ODN targeting of dendritic cells and intracellular delivery. Nanomed Nanotechnol Biol Med 10(8):1739–1749

    Article  CAS  Google Scholar 

  • des Rieux A, Fievez V, Garinot M, Schneider YJ, Preat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116(1):1–27

    Google Scholar 

  • Dhere R, Yeolekar L, Kulkarni P, Menon R, Vaidya V, Ganguly M et al (2011) A pandemic influenza vaccine in India: from strain to sale within 12 months. Vaccine 29(Suppl 1):A16–A21

    Article  PubMed  Google Scholar 

  • Dlugonska H, Grzybowski M (2012) Mucosal vaccination–an old but still vital strategy. Ann Parasitol 58(1):1–8

    PubMed  Google Scholar 

  • Ebensen T, Libanova R, Schulze K, Yevsa T, Morr M, Guzman CA (2011) Bis-(3’,5’)-cyclic dimeric adenosine monophosphate: strong Th1/Th2/Th17 promoting mucosal adjuvant. Vaccine 29(32):5210–5220

    Article  CAS  PubMed  Google Scholar 

  • Ebensen T, Link C, Riese P, Schulze K, Morr M, Guzman CA (2007a) A pegylated derivative of alpha-galactosylceramide exhibits improved biological properties. J Immunol 179(4):2065–2073

    Article  CAS  PubMed  Google Scholar 

  • Ebensen T, Schulze K, Riese P, Morr M, Guzman CA (2007b) The bacterial second messenger cdiGMP exhibits promising activity as a mucosal adjuvant. Clin Vaccine Immunol CVI 14(8):952–958

    Article  CAS  PubMed  Google Scholar 

  • el-Sayed N, el-Gamal Y, Abbassy AA, Seoud I, Salama M, Kandeel A et al (2008) Monovalent type 1 oral poliovirus vaccine in newborns. N Engl J Med 359(16):1655–1665

    Google Scholar 

  • Engelke L, Winter G, Hook S, Engert J (2015) Recent insights into cutaneous immunization: how to vaccinate via the skin. Vaccine 33(37):4663–4674

    Article  CAS  PubMed  Google Scholar 

  • Etchart N, Hennino A, Friede M, Dahel K, Dupouy M, Goujon-Henry C et al (2007) Safety and efficacy of transcutaneous vaccination using a patch with the live-attenuated measles vaccine in humans. Vaccine 25(39–40):6891–6899

    Article  CAS  PubMed  Google Scholar 

  • Franco MA, Angel J, Greenberg HB (2006) Immunity and correlates of protection for rotavirus vaccines. Vaccine 24(15):2718–2731

    Article  CAS  PubMed  Google Scholar 

  • Frech SA, Dupont HL, Bourgeois AL, McKenzie R, Belkind-Gerson J, Figueroa JF et al (2008) Use of a patch containing heat-labile toxin from Escherichia coli against travellers’ diarrhoea: a phase II, randomised, double-blind, placebo-controlled field trial. Lancet 371(9629):2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Frenck RW Jr, Belshe R, Brady RC, Winokur PL, Campbell JD, Treanor J et al (2011) Comparison of the immunogenicity and safety of a split-virion, inactivated, trivalent influenza vaccine (Fluzone(R)) administered by intradermal and intramuscular route in healthy adults. Vaccine 29(34):5666–5674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glenn GM, Flyer DC, Ellingsworth LR, Frech SA, Frerichs DM, Seid RC et al (2007) Transcutaneous immunization with heat-labile enterotoxin: development of a needle-free vaccine patch. Expert Rev Vaccines 6(5):809–819

    Article  CAS  PubMed  Google Scholar 

  • Graw F, Regoes RR (2014) Predicting the impact of CD8+ T cell polyfunctionality on HIV disease progression. J Virol 88(17):10134–10145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hafner LM, Wilson DP, Timms P (2014) Development status and future prospects for a vaccine against Chlamydia trachomatis infection. Vaccine 32(14):1563–1571

    Article  PubMed  Google Scholar 

  • He LZ, Crocker A, Lee J, Mendoza-Ramirez J, Wang XT, Vitale LA et al (2007) Antigenic targeting of the human mannose receptor induces tumor immunity. J Immunol 178(10):6259–6267

    Article  CAS  PubMed  Google Scholar 

  • He XS, Holmes TH, Zhang C, Mahmood K, Kemble GW, Lewis DB et al (2006) Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines. J Virol 80(23):11756–11766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath WR, Carbone FR (2013) The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol 14(10):978–985

    Article  CAS  PubMed  Google Scholar 

  • Hirobe S, Matsuo K, Quan YS, Kamiyama F, Morito H, Asada H et al (2012) Clinical study of transcutaneous vaccination using a hydrogel patch for tetanus and diphtheria. Vaccine 30(10):1847–1854

    Article  CAS  PubMed  Google Scholar 

  • Hisert KB, MacCoss M, Shiloh MU, Darwin KH, Singh S, Jones RA et al (2005) A glutamate-alanine-leucine (EAL) domain protein of Salmonella controls bacterial survival in mice, antioxidant defence and killing of macrophages: role of cyclic diGMP. Mol Microbiol 56(5):1234–1245

    Article  CAS  PubMed  Google Scholar 

  • Holmgren J, Adamsson J, Anjuere F, Clemens J, Czerkinsky C, Eriksson K et al (2005) Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. Immunol Lett 97(2):181–188

    Article  CAS  PubMed  Google Scholar 

  • Holmgren J, Czerkinsky C (2005) Mucosal immunity and vaccines. Nat Med 11(4 Suppl):S45–S53

    Article  CAS  PubMed  Google Scholar 

  • Honma K, Abraham JL, Chiyotani K, De Vuyst P, Dumortier P, Gibbs AR et al (2004) Proposed criteria for mixed-dust pneumoconiosis: definition, descriptions, and guidelines for pathologic diagnosis and clinical correlation. Hum Pathol 35(12):1515–1523

    Article  CAS  PubMed  Google Scholar 

  • Icardi G, Orsi A, Ceravolo A, Ansaldi F (2012) Current evidence on intradermal influenza vaccines administered by Soluvia licensed micro injection system. Hum Vaccines immunotherapeutics 8(1):67–75

    Article  CAS  Google Scholar 

  • Ilinskaya AN, Dobrovolskaia MA (2016) Understanding the immunogenicity and antigenicity of nanomaterials: Past, present and future. Toxicol Appl Pharmacol 299:70–77

    Google Scholar 

  • Israeli E, Agmon-Levin N, Blank M, Shoenfeld Y (2009) Adjuvants and autoimmunity. Lupus 18(13):1217–1225

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Krishnan L, Omri A (2015) Nasal and pulmonary vaccine delivery using particulate carriers. Expert Opin Drug Deliv 12(6):993–1008

    Article  CAS  PubMed  Google Scholar 

  • Kannanganat S, Ibegbu C, Chennareddi L, Robinson HL, Amara RR (2007) Multiple-cytokine-producing antiviral CD4 T cells are functionally superior to single-cytokine-producing cells. J Virol 81(16):8468–8476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karande P, Mitragotri S (2010) Transcutaneous immunization: an overview of advantages, disease targets, vaccines, and delivery technologies. Annu Rev Chem Biomol 1:175–201

    Article  CAS  Google Scholar 

  • Kaurav M, Minz S, Sahu K, Kumar M, Madan J, Pandey RS (2016) Nanoparticulate mediated transcutaneous immunization: Myth or reality. Nanomed Nanotechnol Biol Med 12:1063–1081

    Google Scholar 

  • Kendall MA (2010) Needle-free vaccine injection. Handb Exp Pharmacol 197:193–219

    Article  CAS  Google Scholar 

  • Kim YC, Quan FS, Yoo DG, Compans RW, Kang SM, Prausnitz MR (2010) Enhanced memory responses to seasonal H1N1 influenza vaccination of the skin with the use of vaccine-coated microneedles. J Infect Dis 201(2):190–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraan H, Vrieling H, Czerkinsky C, Jiskoot W, Kersten G, Amorij JP (2014) Buccal and sublingual vaccine delivery. J Control Release 190:580–592

    Article  CAS  PubMed  Google Scholar 

  • Kugelberg E, Norstrom T, Petersen TK, Duvold T, Andersson DI, Hughes D (2005) Establishment of a superficial skin infection model in mice by using Staphylococcus aureus and Streptococcus pyogenes. Antimicrob Agents Chemother 49(8):3435–3441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kundi M (2007) New hepatitis B vaccine formulated with an improved adjuvant system. Expert Rev Vaccines 6(2):133–140

    Article  CAS  PubMed  Google Scholar 

  • Kuroda Y, Nacionales DC, Akaogi J, Reeves WH, Satoh M (2004) Autoimmunity induced by adjuvant hydrocarbon oil components of vaccine. Biomed Pharmacother 58(5):325–337

    Article  CAS  PubMed  Google Scholar 

  • Kweon MN (2011) Sublingual mucosa: a new vaccination route for systemic and mucosal immunity. Cytokine 54(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Lamichhane A, Azegamia T, Kiyonoa H (2014) The mucosal immune system for vaccine development. Vaccine 32(49):6711–6723

    Article  CAS  PubMed  Google Scholar 

  • Levin C, Perrin H, Combadiere B (2015) Tailored immunity by skin antigen-presenting cells. Hum Vaccines immunotherapeutics 11(1):27–36

    Article  Google Scholar 

  • Liard C, Munier S, Arias M, Joulin-Giet A, Bonduelle O, Duffy D et al (2011) Targeting of HIV-p24 particle-based vaccine into differential skin layers induces distinct arms of the immune responses. Vaccine 29(37):6379–6391

    Article  CAS  PubMed  Google Scholar 

  • Link C, Gavioli R, Ebensen T, Canella A, Reinhard E, Guzman CA (2004) The Toll-like receptor ligand MALP-2 stimulates dendritic cell maturation and modulates proteasome composition and activity. Eur J Immunol 34(3):899–907

    Article  CAS  PubMed  Google Scholar 

  • Mahe B, Vogt A, Liard C, Duffy D, Abadie V, Bonduelle O et al (2009) Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice. J Invest Dermatol 129(5):1156–1164

    Article  CAS  PubMed  Google Scholar 

  • McAllister L, Anderson J, Werth K, Cho I, Copeland K, Le Cam Bouveret N et al (2014) Needle-free jet injection for administration of influenza vaccine: a randomised non-inferiority trial. Lancet 384(9944):674–681

    Article  PubMed  Google Scholar 

  • McKenzie R, Bourgeois AL, Frech SA, Flyer DC, Bloom A, Kazempour K et al (2007) Transcutaneous immunization with the heat-labile toxin (LT) of enterotoxigenic Escherichia coli (ETEC): protective efficacy in a double-blind, placebo-controlled challenge study. Vaccine 25(18):3684–3691

    Article  CAS  PubMed  Google Scholar 

  • McLachlan JB, Catron DM, Moon JJ, Jenkins MK (2009) Dendritic cell antigen presentation drives simultaneous cytokine production by effector and regulatory T cells in inflamed skin. Immunity 30(2):277–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McWhirter SM, Barbalat R, Monroe KM, Fontana MF, Hyodo M, Joncker NT et al (2009) A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. J Exp Med 206(9):1899–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesa C, Fernandez LE (2004) Challenges facing adjuvants for cancer immunotherapy. Immunol Cell Biol 82(6):644–650

    Article  CAS  PubMed  Google Scholar 

  • Minor P (2009) Vaccine-derived poliovirus (VDPV): impact on poliomyelitis eradication. Vaccine 27(20):2649–2652

    Article  PubMed  Google Scholar 

  • Mitragotri S (2005) Immunization without needles. Nat Rev Immunol 5(12):905–916

    Article  CAS  PubMed  Google Scholar 

  • Mittal A, Raber AS, Schaefer UF, Weissmann S, Ebensen T, Schulze K et al (2013) Non-invasive delivery of nanoparticles to hair follicles: a perspective for transcutaneous immunization. Vaccine 31(34):3442–3451

    Article  CAS  PubMed  Google Scholar 

  • Mittal A, Schulze K, Ebensen T, Weissmann S, Hansen S, Guzman CA et al (2015a) Inverse micellar sugar glass (IMSG) nanoparticles for transfollicular vaccination. J Controlled Release (official journal of the Controlled Release Society) 206:140–152

    Article  CAS  Google Scholar 

  • Mittal A, Schulze K, Ebensen T, Weissmann S, Hansen S, Lehr CM et al (2015b) Efficient nanoparticle-mediated needle-free transcutaneous vaccination via hair follicles requires adjuvantation. Nanomed Nanotechnol Biol Med 11(1):147–154

    Article  CAS  Google Scholar 

  • Mondoulet L, Dioszeghy V, Puteaux E, Ligouis M, Dhelft V, Letourneur F et al (2012) Intact skin and not stripped skin is crucial for the safety and efficacy of peanut epicutaneous immunotherapy (EPIT) in mice. Clin Transl Allergy 2(1):22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T et al (2004) Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N Engl J Med 350(9):896–903

    Article  CAS  PubMed  Google Scholar 

  • Newsted D, Fallahi F, Golshani A, Azizi A (2015) Advances and challenges in mucosal adjuvant technology. Vaccine 33(21):2399–2405

    Article  CAS  PubMed  Google Scholar 

  • O’Hagan DT (1998) Recent advances in vaccine adjuvants for systemic and mucosal administration. J Pharm Pharmacol 50(1):1–10

    Article  PubMed  Google Scholar 

  • O’Hagan DT, Ott GS, Van Nest G (1997) Recent advances in vaccine adjuvants: the development of MF59 emulsion and polymeric microparticles. Mol Med Today 3(2):69–75

    Article  PubMed  Google Scholar 

  • O’Hagan DT, Rappuoli R (2004) The safety of vaccines. Drug Discov Today 9(19):846–854

    Article  PubMed  CAS  Google Scholar 

  • O’Ryan M, Linhares AC (2009) Update on Rotarix: an oral human rotavirus vaccine. Expert Rev Vaccines 8(12):1627–1641

    Article  PubMed  Google Scholar 

  • Ott G, Barchfeld GL, Chernoff D, Radhakrishnan R, van Hoogevest P, Van Nest G (1995) MF59. Design and evaluation of a safe and potent adjuvant for human vaccines. Pharm Biotechnol 6:277–296

    Article  CAS  PubMed  Google Scholar 

  • Patel P, Salapatek AM (2006) Pollinex Quattro: a novel and well-tolerated, ultra short-course allergy vaccine. Expert Rev vaccines 5(5):617–629

    Article  CAS  PubMed  Google Scholar 

  • Pattanayak S, Arora DD, Sehgal CL, Raghavan NG, Topa PK, Subrahmanyam YK (1970) Comparative studies of smallpox vaccination by the bifurcated needle and rotary lancet techniques. Bull World Health Organ 42(2):305–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen G, Cox R (2012) The mucosal vaccine quandary: intranasal vs. sublingual immunization against influenza. Hum Vaccines Immunotherapeutics 8(5):689–693

    Google Scholar 

  • Persing DH, Coler RN, Lacy MJ, Johnson DA, Baldridge JR, Hershberg RM et al (2002) Taking toll: lipid A mimetics as adjuvants and immunomodulators. Trends Microbiol 10(10 Suppl):S32–S37

    Article  CAS  PubMed  Google Scholar 

  • Petrovsky N (2006) Novel human polysaccharide adjuvants with dual Th1 and Th2 potentiating activity. Vaccine 24(Suppl 2):S2-26-29

    Google Scholar 

  • Petrovsky N, Aguilar JC (2004) Vaccine adjuvants: current state and future trends. Immunol Cell Biol 82(5):488–496

    Article  CAS  PubMed  Google Scholar 

  • Phonrat B, Pitisuttithum P, Chamnanchanunt S, Puthavathana P, Ngaosuwankul N, Louisirirotchanakul S, et al. (2013) Safety and immune responses following administration of H1N1 live attenuated influenza vaccine in Thais. Vaccine 31(11):1503–1509.

    Google Scholar 

  • Pizza M, Giuliani MM, Fontana MR, Douce G, Dougan G, Rappuoli R (2000) LTK63 and LTR72, two mucosal adjuvants ready for clinical trials. Int J Med Microbiol 290(4–5):455–461

    Article  CAS  PubMed  Google Scholar 

  • Pizza M, Giuliani MM, Fontana MR, Monaci E, Douce G, Dougan G et al (2001) Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants. Vaccine 19(17–19):2534–2541

    Article  CAS  PubMed  Google Scholar 

  • Podda A, Del Giudice G (2003) MF59-adjuvanted vaccines: increased immunogenicity with an optimal safety profile. Expert Rev Vaccines 2(2):197–203

    Article  CAS  PubMed  Google Scholar 

  • Ranasinghe C, Trivedi S, Wijesundara DK, Jackson RJ (2014) IL-4 and IL-13 receptors: roles in immunity and powerful vaccine adjuvants. Cytokine Growth Factor Rev 25(4):437–442

    Article  CAS  PubMed  Google Scholar 

  • Rancan F, Amselgruber S, Hadam S, Munier S, Pavot V, Verrier B et al (2013) Particle-based transcutaneous administration of HIV-1 p24 protein to human skin explants and targeting of epidermal antigen presenting cells. J Control Release 176:115–122

    Google Scholar 

  • Rappuoli R, Mandl CW, Black S, De Gregorio E (2011) Vaccines for the twenty-first century society. Nat Rev Immunol 11(12):865–872

    CAS  PubMed  Google Scholar 

  • Read RC, Naylor SC, Potter CW, Bond J, Jabbal-Gill I, Fisher A et al (2005) Effective nasal influenza vaccine delivery using chitosan. Vaccine 23(35):4367–4374

    Article  CAS  PubMed  Google Scholar 

  • Rharbaoui F, Drabner B, Borsutzky S, Winckler U, Morr M, Ensoli B et al (2002) The Mycoplasma-derived lipopeptide MALP-2 is a potent mucosal adjuvant. Eur J Immunol 32(10):2857–2865

    Article  CAS  PubMed  Google Scholar 

  • Rhee JH, Lee SE, Kim SY (2012) Mucosal vaccine adjuvants update. Clin Exp Vaccine Res 1(1):50–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riese P, Sakthivel P, Trittel S, Guzmán CA (2014) Intranasal formulations: promising strategy to deliver vaccines. Expert Opin Drug Deliv 11(10):1619–1634

    Article  CAS  PubMed  Google Scholar 

  • Riese P, Schulze K, Ebensen T, Prochnow B, Guzman CA (2013) Vaccine adjuvants: key tools for innovative vaccine design. Curr Top Med Chem 13(20):2562–2580

    Article  CAS  PubMed  Google Scholar 

  • Rose MA, Zielen S, Baumann U (2012) Mucosal immunity and nasal influenza vaccination. Expert Rev Vaccines 11(5):595–607

    Article  CAS  PubMed  Google Scholar 

  • Ruffin N, Borggren M, Euler Z, Fiorino F, Grupping K, Hallengard D et al (2012) Rational design of HIV vaccines and microbicides: report of the EUROPRISE annual conference 2011. J Transl Med 10:144

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Palacios GM, Perez-Schael I, Velazquez FR, Abate H, Breuer T, Clemens SC et al (2006) Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N Engl J Med 354(1):11–22

    Article  CAS  PubMed  Google Scholar 

  • Sah E, Sah H (2015) Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent. J Nanomaterials 2015:22

    Article  CAS  Google Scholar 

  • Sanchez MV, Ebensen T, Schulze K, Cargnelutti D, Blazejewska P, Scodeller EA et al (2014) Intranasal delivery of influenza rNP adjuvanted with c-di-AMP induces strong humoral and cellular immune responses and provides protection against virus challenge. PLoS One 9(8):e104824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sancho D, Mourao-Sa D, Joffre OP, Schulz O, Rogers NC, Pennington DJ et al (2008) Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Investig 118(6):2098–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savelkoul HF, Ferro VA, Strioga MM, Schijns VE (2015) Choice and design of adjuvants for parenteral and mucosal vaccines. Vaccines (Basel) 3(1):148–171

    Article  Google Scholar 

  • Schaap P (2013) Cyclic di-nucleotide signaling enters the eukaryote domain. IUBMB Life 65(11):897–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt CS, Morrow WJ, Sheikh NA (2007) Smart adjuvants. Expert Rev Vaccines 6(3):391–400

    Article  CAS  PubMed  Google Scholar 

  • Seder RA, Darrah PA, Roederer M (2008a) T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8(4):247–258

    Article  CAS  PubMed  Google Scholar 

  • Seder RA, Darrah PA, Roederer M (2008) T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8(6):247

    Google Scholar 

  • Sharma R, Agrawal U, Mody N, Vyas SP (2015) Polymer nanotechnology based approaches in mucosal vaccine delivery: challenges and opportunities. Biotechnol Adv 33(1):64–79

    Article  CAS  PubMed  Google Scholar 

  • Shortman K, Heath WR (2010) The CD8+ dendritic cell subset. Immunol Rev 234(1):18–31

    Article  CAS  PubMed  Google Scholar 

  • Shu C, Yi G, Watts T, Kao CC, Li P (2012) Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat Struct Mol Biol 19(7):722–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skrnjug I, Rueckert C, Libanova R, Lienenklaus S, Weiss S, Guzman CA (2014) The mucosal adjuvant cyclic di-AMP exerts immune stimulatory effects on dendritic cells and macrophages. PLoS One 9(4):e95728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srivastava A, Gowda DV, Madhunapantula SV, Shinde CG, Iyer M (2015) Mucosal vaccines: a paradigm shift in the development of mucosal adjuvants and delivery vehicles. APMIS 123(4):275–288

    Article  CAS  PubMed  Google Scholar 

  • Stein P, Gogoll K, Tenzer S, Schild H, Stevanovic S, Langguth P et al (2014) Efficacy of imiquimod-based transcutaneous immunization using a nano-dispersed emulsion gel formulation. PLoS One 9(7):e102664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stern AM, Markel H (2005) The history of vaccines and immunization: familiar patterns, new challenges. Health Aff 24(3):611–621

    Article  Google Scholar 

  • Stevceva L, Strober W (2004) Mucosal HIV vaccines: where are we now? Curr HIV Res 2(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Sutter RW, John TJ, Jain H, Agarkhedkar S, Ramanan PV, Verma H et al (2010) Immunogenicity of bivalent types 1 and 3 oral poliovirus vaccine: a randomised, double-blind, controlled trial. Lancet 376(9753):1682–1688

    Article  CAS  PubMed  Google Scholar 

  • Thomann-Harwood LJ, Kaeuper P, Rossi N, Milona P, Herrmann B, McCullough KC (2013) Nanogel vaccines targeting dendritic cells: contributions of the surface decoration and vaccine cargo on cell targeting and activation. J Control Release 166(2):95–105

    Article  CAS  PubMed  Google Scholar 

  • Tsuji T, Matsuzaki J, Kelly MP, Ramakrishna V, Vitale L, He LZ et al (2011) Antibody-targeted NY-ESO-1 to mannose receptor or DEC-205 in vitro elicits dual human CD8 + and CD4 + T cell responses with broad antigen specificity. J Immunol 186(2):1218–1227

    Article  CAS  PubMed  Google Scholar 

  • Vajdy M, Srivastava I, Polo J, Donnelly J, O’Hagan D, Singh M (2004) Mucosal adjuvants and delivery systems for protein-, DNA- and RNA-based vaccines. Immunol Cell Biol 82(6):617–627

    Article  CAS  PubMed  Google Scholar 

  • van den Dobbelsteen GP, van Rees EP (1995) Mucosal immune responses to pneumococcal polysaccharides: implications for vaccination. Trends Microbiol 3(4):155–159

    Article  PubMed  Google Scholar 

  • van Kooyk Y, Unger WW, Fehres CM, Kalay H, Garcia-Vallejo JJ (2013) Glycan-based DC-SIGN targeting vaccines to enhance antigen cross-presentation. Mol Immunol 55(2):143–145

    Article  PubMed  CAS  Google Scholar 

  • Vesikari T, Clark HF, Offit PA, Dallas MJ, DiStefano DJ, Goveia MG et al (2006) Effects of the potency and composition of the multivalent human-bovine (WC3) reassortant rotavirus vaccine on efficacy, safety and immunogenicity in healthy infants. Vaccine 24(22):4821–4829

    Article  CAS  PubMed  Google Scholar 

  • Vesikari T, Itzler R, Karvonen A, Korhonen T, Van Damme P, Behre U et al (2009) RotaTeq, a pentavalent rotavirus vaccine: efficacy and safety among infants in Europe. Vaccine 28(2):345–351

    Article  CAS  PubMed  Google Scholar 

  • Wang SH, Thompson AL, Hickey AJ, Staats HF (2012) Dry powder vaccines for mucosal administration: critical factors in manufacture and delivery. Curr Top Microbiol Immunol 354:121–156

    CAS  PubMed  Google Scholar 

  • Wang T, Wang N (2015) Biocompatible mater constructed microneedle arrays as a novel vaccine adjuvant-delivery system for cutaneous and mucosal vaccination. Curr Pharm Des 21:5245–5255

    Google Scholar 

  • Wang X, Meng D (2015) Innate endogenous adjuvants prime to desirable immune responses via mucosal routes. Protein Cell 6(3):170–184

    Article  CAS  PubMed  Google Scholar 

  • Wanke I, Skabytska Y, Kraft B, Peschel A, Biedermann T, Schittek B (2013) Staphylococcus aureus skin colonization is promoted by barrier disruption and leads to local inflammation. Exp Dermatol 22(2):153–155

    Article  CAS  PubMed  Google Scholar 

  • Woodrow KA, Bennett KM, Lo DD (2012) Mucosal vaccine design and delivery. Annu Rev Biomed Eng 14:17–46

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Fan Q, Hao D, Wu J, Ma G, Su Z (2015) Chitosan-based mucosal adjuvants: sunrise on the ocean. Vaccine 44:5997–6010

    Google Scholar 

  • Yu M, Vajdy M (2010) Mucosal HIV transmission and vaccination strategies through oral compared with vaginal and rectal routes. Expert Opin Biol Ther 10(8):1181–1195

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was in part supported by the BMBF-funded project PeTrA (Project Number 13N11455).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Schulze or Thomas Ebensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Schulze, K., Ebensen, T., Riese, P., Prochnow, B., Lehr, CM., Guzmán, C.A. (2016). New Horizons in the Development of Novel Needle-Free Immunization Strategies to Increase Vaccination Efficacy. In: Stadler, M., Dersch, P. (eds) How to Overcome the Antibiotic Crisis . Current Topics in Microbiology and Immunology, vol 398. Springer, Cham. https://doi.org/10.1007/82_2016_495

Download citation

Publish with us

Policies and ethics