Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 404))

Abstract

Twin-arginine protein translocation systems (Tat) translocate fully folded and co-factor-containing proteins across biological membranes. In this review, we focus on the Tat pathway of Gram-positive bacteria. The minimal Tat pathway is composed of two components, namely a TatA and TatC pair, which are often complemented with additional TatA-like proteins. We provide overviews of our current understanding of Tat pathway composition and mechanistic aspects related to Tat-dependent cargo protein translocation. This includes Tat pathway flexibility, requirements for the correct folding and incorporation of co-factors in cargo proteins and the functions of known cargo proteins. Tat pathways of several Gram-positive bacteria are discussed in detail, with emphasis on the Tat pathway of Bacillus subtilis. We discuss both shared and unique features of the different Gram-positive bacterial Tat pathways. Lastly, we highlight topics for future research on Tat, including the development of this protein transport pathway for the biotechnological secretion of high-value proteins and its potential applicability as an antimicrobial drug target in pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Sec pathway:

General Secretory pathway

Tat:

Twin-arginine translocation

NMR:

Nuclear magnetic resonance

Y2H:

Yeast two-hybrid

References

  • Alami M, Luke I, Deitermann S, Eisner G, Koch HG, Brunner J, Muller M (2003) Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol Cell 12(4):937–946

    Article  CAS  PubMed  Google Scholar 

  • Albrecht AG, Peuckert F, Landmann H, Miethke M, Seubert A, Marahiel MA (2011) Mechanistic characterization of sulfur transfer from cysteine desulfurase SufS to the iron-sulfur scaffold SufU in Bacillus subtilis. FEBS Lett 585(3):465–470

    Article  CAS  PubMed  Google Scholar 

  • Anne J, Maldonado B, Van Impe J, Van Mellaert L, Bernaerts K (2012) Recombinant protein production and streptomycetes. J Biotechnol 158(4):159–167

    Article  CAS  PubMed  Google Scholar 

  • Bachmann J, Bauer B, Zwicker K, Ludwig B, Anderka O (2006) The Rieske protein from Paracoccus denitrificans is inserted into the cytoplasmic membrane by the twin-arginine translocase. FEBS J 273(21):4817–4830

    Article  CAS  PubMed  Google Scholar 

  • Baglieri J, Beck D, Vasisht N, Smith CJ, Robinson C (2012) Structure of TatA paralog, TatE, suggests a structurally homogeneous form of Tat protein translocase that transports folded proteins of differing diameter. J Biol Chem 287(10):7335–7344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD (2010) Combined prediction of Tat and Sec signal peptides with hidden Markov models. Bioinformatics 26(22):2811–2817

    Article  CAS  PubMed  Google Scholar 

  • Barnett JP, Eijlander RT, Kuipers OP, Robinson C (2008) A minimal Tat system from a gram-positive organism: a bifunctional TatA subunit participates in discrete TatAC and TatA complexes. J Biol Chem 283(5):2534–2542

    Article  CAS  PubMed  Google Scholar 

  • Barnett JP, van der Ploeg R, Eijlander RT, Nenninger A, Mendel S, Rozeboom R, Kuipers OP, van Dijl JM, Robinson C (2009) The twin-arginine translocation (Tat) systems from Bacillus subtilis display a conserved mode of complex organization and similar substrate recognition requirements. FEBS J 276(1):232–243

    Article  CAS  PubMed  Google Scholar 

  • Barrett CM, Freudl R, Robinson C (2007) Twin arginine translocation (Tat)-dependent export in the apparent absence of TatABC or TatA complexes using modified Escherichia coli TatA subunits that substitute for TatB. J Biol Chem 282(50):36206–36213

    Article  CAS  PubMed  Google Scholar 

  • Beck D, Vasisht N, Baglieri J, Monteferrante CG, van Dijl JM, Robinson C, Smith CJ (2013) Ultrastructural characterisation of Bacillus subtilis TatA complexes suggests they are too small to form homooligomeric translocation pores. Biochim Biophys Acta 1833:1811–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behrendt J, Standar K, Lindenstrauss U, Bruser T (2004) Topological studies on the twin-arginine translocase component TatC. FEMS Microbiol Lett 234(2):303–308

    Article  CAS  PubMed  Google Scholar 

  • Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S (2005) Prediction of twin-arginine signal peptides. BMC Bioinformatics 6:167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benoit SL, Maier RJ (2014) Twin-arginine translocation system in Helicobacter pylori: TatC, but not TatB, is essential for viability. mBio 5(1):e01016–01013

    Google Scholar 

  • Berks BC (2015) The twin-arginine protein translocation pathway. Annu Rev Biochem 84:843–864

    Article  CAS  PubMed  Google Scholar 

  • Berks BC, Sargent F, Palmer T (2000) The Tat protein export pathway. Mol Microbiol 35(2):260–274

    Article  CAS  PubMed  Google Scholar 

  • Berthelmann F, Mehner D, Richter S, Lindenstrauss U, Lunsdorf H, Hause G, Bruser T (2008) Recombinant expression of tatABC and tatAC results in the formation of interacting cytoplasmic TatA tubes in Escherichia coli. J Biol Chem 283(37):25281–25289

    Article  CAS  PubMed  Google Scholar 

  • Biswas L, Biswas R, Nerz C, Ohlsen K, Schlag M, Schafer T, Lamkemeyer T, Ziebandt AK, Hantke K, Rosenstein R, Gotz F (2009) Role of the twin-arginine translocation pathway in Staphylococcus. J Bacteriol 191(19):5921–5929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaudeck N, Kreutzenbeck P, Muller M, Sprenger GA, Freudl R (2005) Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient tat-dependent protein translocation in the absence of TatB. J Biol Chem 280(5):3426–3432

    Article  CAS  PubMed  Google Scholar 

  • Blümmel AS, Haag LA, Eimer E, Müller M, Fröbel J (2015) Initial assembly steps of a translocase for folded proteins. Nat Commun 6:7234

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Bolhuis A (2002) Protein transport in the halophilic archaeon Halobacterium sp. NRC-1: a major role for the twin-arginine translocation pathway? Microbiology 148(Pt 11):3335–3346

    Article  CAS  PubMed  Google Scholar 

  • Bolhuis A, Mathers JE, Thomas JD, Barrett CM, Robinson C (2001) TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. J Biol Chem 276(23):20213–20219

    Article  CAS  PubMed  Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11(5):731–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruser T (2007) The twin-arginine translocation system and its capability for protein secretion in biotechnological protein production. Appl Microbiol Biotechnol 76(1):35–45

    Article  PubMed  CAS  Google Scholar 

  • Bruser T, Sanders C (2003) An alternative model of the twin arginine translocation system. Microbiol Res 158(1):7–17

    Article  CAS  PubMed  Google Scholar 

  • Buchanan G, de Leeuw E, Stanley NR, Wexler M, Berks BC, Sargent F, Palmer T (2002) Functional complexity of the twin-arginine translocase TatC component revealed by site-directed mutagenesis. Mol Microbiol 43(6):1457–1470

    Article  CAS  PubMed  Google Scholar 

  • Buchanan G, Maillard J, Nabuurs SB, Richardson DJ, Palmer T, Sargent F (2008) Features of a twin-arginine signal peptide required for recognition by a Tat proofreading chaperone. FEBS Lett 582(29):3979–3984

    Article  CAS  PubMed  Google Scholar 

  • Buescher JM, Liebermeister W, Jules M, Uhr M, Muntel J, Botella E, Hessling B, Kleijn RJ, Le Chat L, Lecointe F, Mader U, Nicolas P, Piersma S, Rugheimer F, Becher D, Bessieres P, Bidnenko E, Denham EL, Dervyn E, Devine KM, Doherty G, Drulhe S, Felicori L, Fogg MJ, Goelzer A, Hansen A, Harwood CR, Hecker M, Hubner S, Hultschig C, Jarmer H, Klipp E, Leduc A, Lewis P, Molina F, Noirot P, Peres S, Pigeonneau N, Pohl S, Rasmussen S, Rinn B, Schaffer M, Schnidder J, Schwikowski B, Van Dijl JM, Veiga P, Walsh S, Wilkinson AJ, Stelling J, Aymerich S, Sauer U (2012) Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. Science 335(6072):1099–1103

    Article  ADS  CAS  PubMed  Google Scholar 

  • Castanie-Cornet MP, Bruel N, Genevaux P (2014) Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. Biochim Biophys Acta 1843(8):1442–1456

    Article  CAS  PubMed  Google Scholar 

  • Chaddock AM, Mant A, Karnauchov I, Brink S, Herrmann RG, Klosgen RB, Robinson C (1995) A new type of signal peptide: central role of a twin-arginine motif in transfer signals for the delta pH-dependent thylakoidal protein translocase. EMBO J 14(12):2715–2722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cline K, Mori H (2001) Thylakoid DeltapH-dependent precursor proteins bind to a cpTatC-Hcf106 complex before Tha4-dependent transport. J Cell Biol 154(4):719–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cristobal S, de Gier JW, Nielsen H, von Heijne G (1999) Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO J 18(11):2982–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabney-Smith C, Mori H, Cline K (2006) Oligomers of Tha4 organize at the thylakoid Tat translocase during protein transport. J Biol Chem 281(9):5476–5483

    Article  CAS  PubMed  Google Scholar 

  • Darwin AJ (2005) The phage-shock-protein response. Mol Microbiol 57(3):621–628

    Article  CAS  PubMed  Google Scholar 

  • De Buck E, Vranckx L, Meyen E, Maes L, Vandersmissen L, Anne J, Lammertyn E (2007) The twin-arginine translocation pathway is necessary for correct membrane insertion of the Rieske Fe/S protein in Legionella pneumophila. FEBS Lett 581(2):259–264

    Article  PubMed  CAS  Google Scholar 

  • De Buck E, Lammertyn E, Anne J (2008) The importance of the twin-arginine translocation pathway for bacterial virulence. Trends Microbiol 16(9):442–453

    Article  PubMed  CAS  Google Scholar 

  • De Keersmaeker S, Van Mellaert L, Lammertyn E, Vrancken K, Anne J, Geukens N (2005a) Functional analysis of TatA and TatB in Streptomyces lividans. Biochem Biophys Res Commun 335(3):973–982

    Article  PubMed  CAS  Google Scholar 

  • De Keersmaeker S, Van Mellaert L, Schaerlaekens K, Van Dessel W, Vrancken K, Lammertyn E, Anne J, Geukens N (2005b) Structural organization of the twin-arginine translocation system in Streptomyces lividans. FEBS Lett 579(3):797–802

    Article  PubMed  CAS  Google Scholar 

  • De Keersmaeker S, Vrancken K, Van Mellaert L, Lammertyn E, Anne J, Geukens N (2006) Evaluation of TatABC overproduction on Tat- and Sec-dependent protein secretion in Streptomyces lividans. Arch Microbiol 186(6):507–512

    Article  CAS  PubMed  Google Scholar 

  • De Keersmaeker S, Vrancken K, Van Mellaert L, Anne J, Geukens N (2007) The Tat pathway in Streptomyces lividans: interaction of Tat subunits and their role in translocation. Microbiology 153(Pt 4):1087–1094

    Article  PubMed  CAS  Google Scholar 

  • DeLisa MP, Samuelson P, Palmer T, Georgiou G (2002) Genetic analysis of the twin arginine translocator secretion pathway in bacteria. J Biol Chem 277(33):29825–29831

    Article  CAS  PubMed  Google Scholar 

  • DeLisa MP, Tullman D, Georgiou G (2003) Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci USA 100(10):6115–6120

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLisa MP, Lee P, Palmer T, Georgiou G (2004) Phage shock protein PspA of Escherichia coli relieves saturation of protein export via the Tat pathway. J Bacteriol 186(2):366–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desvaux M, Hebraud M (2006) The protein secretion systems in Listeria: inside out bacterial virulence. FEMS Microbiol Rev 30(5):774–805

    Article  CAS  PubMed  Google Scholar 

  • Eder S, Shi L, Jensen K, Yamane K, Hulett FM (1996) A Bacillus subtilis secreted phosphodiesterase/alkaline phosphatase is the product of a Pho regulon gene, phoD. Microbiology 142:2041–2047

    Article  CAS  PubMed  Google Scholar 

  • Eijlander RT, Jongbloed JD, Kuipers OP (2009a) Relaxed specificity of the Bacillus subtilis TatAdCd translocase in Tat-dependent protein secretion. J Bacteriol 191(1):196–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eijlander RT, Kolbusz MA, Berendsen EM, Kuipers OP (2009b) Effects of altered TatC proteins on protein secretion efficiency via the twin-arginine translocation pathway of Bacillus subtilis. Microbiology 155(Pt 6):1776–1785

    Article  CAS  PubMed  Google Scholar 

  • Eymann C, Dreisbach A, Albrecht D, Bernhardt J, Becher D, Gentner S, Le Tam T, Buttner K, Buurman G, Scharf C, Venz S, Volker U, Hecker M (2004) A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 4(10):2849–2876

    Google Scholar 

  • Friedrich CG, Quentmeier A, Bardischewsky F, Rother D, Kraft R, Kostka S, Prinz H (2000) Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol 182(17):4677–4687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frielingsdorf S, Jakob M, Klosgen RB (2008) A stromal pool of TatA promotes Tat-dependent protein transport across the thylakoid membrane. J Biol Chem 283(49):33838–33845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frobel J, Rose P, Muller M (2011) Early contacts between substrate proteins and TatA translocase component in twin-arginine translocation. J Biol Chem 286(51):43679–43689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frobel J, Rose P, Lausberg F, Blummel AS, Freudl R, Muller M (2012) Transmembrane insertion of twin-arginine signal peptides is driven by TatC and regulated by TatB. Nat Commun 3:1311

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Gohlke U, Pullan L, McDevitt CA, Porcelli I, de Leeuw E, Palmer T, Saibil HR, Berks BC (2005) The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc Natl Acad Sci USA 102(30):10482–10486

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Goosens VJ, Otto A, Glasner C, Monteferrante CC, van der Ploeg R, Hecker M, Becher D, van Dijl JM (2013) Novel twin-arginine translocation pathway-dependent phenotypes of Bacillus subtilis unveiled by quantitative proteomics. J Proteome Res 12(2):796–807

    Article  CAS  PubMed  Google Scholar 

  • Goosens VJ, Monteferrante CG, van Dijl JM (2014a) Co-factor insertion and disulfide bond requirements for twin-arginine translocase-dependent export of the Bacillus subtilis Rieske protein QcrA. J Biol Chem 289(19):13124–13131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goosens VJ, Monteferrante CG, van Dijl JM (2014b) The Tat system of Gram-positive bacteria. Biochim Biophys Acta 1843(8):1698–1706

    Article  CAS  PubMed  Google Scholar 

  • Goosens VJ, De-San-Eustaquio-Campillo A, Carballido-Lopez R, van Dijl JM (2015) A Tat menage a trois—the role of Bacillus subtilis TatAc in twin-arginine protein translocation. Biochim Biophys Acta 1853(10 Pt A):2745–2753

    Google Scholar 

  • Gouffi K, Gerard F, Santini CL, Wu LF (2004) Dual topology of the Escherichia coli TatA protein. J Biol Chem 279(12):11608–11615

    Article  CAS  PubMed  Google Scholar 

  • Graumann P (2011) Bacillus: Cellular and Molecular Biology. Caister Academic Press, Wymondham, United Kingdom

    Google Scholar 

  • Halbedel S, Reiss S, Hahn B, Albrecht D, Mannala GK, Chakraborty T, Hain T, Engelmann S, Flieger A (2014) A systematic proteomic analysis of Listeria monocytogenes house-keeping protein secretion systems. Mol Cell Proteomics 13(11):3063–3081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hicks MG, de Leeuw E, Porcelli I, Buchanan G, Berks BC, Palmer T (2003) The Escherichia coli twin-arginine translocase: conserved residues of TatA and TatB family components involved in protein transport. FEBS Lett 539(1–3):61–67

    Article  ADS  CAS  PubMed  Google Scholar 

  • Holzapfel E, Eisner G, Alami M, Barrett CM, Buchanan G, Luke I, Betton JM, Robinson C, Palmer T, Moser M, Muller M (2007) The entire N-terminal half of TatC is involved in twin-arginine precursor binding. Biochemistry 46(10):2892–2898

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Zhao E, Li H, Xia B, Jin C (2010) Solution NMR structure of the TatA component of the twin-arginine protein transport system from gram-positive bacterium Bacillus subtilis. J J Am Chem Soc 132(45):15942–15944

    Article  CAS  PubMed  Google Scholar 

  • Hunsicker-Wang LM, Heine A, Chen Y, Luna EP, Todaro T, Zhang YM, Williams PA, McRee DE, Hirst J, Stout CD, Fee JA (2003) High-resolution structure of the soluble, respiratory-type Rieske protein from Thermus thermophilus: analysis and comparison. Biochemistry 42(24):7303–7317

    Article  CAS  PubMed  Google Scholar 

  • Hutcheon GW, Bolhuis A (2003) The archaeal twin-arginine translocation pathway. Biochem Soc Trans 31(Pt 3):686–689

    Article  CAS  PubMed  Google Scholar 

  • Hynds PJ, Robinson D, Robinson C (1998) The sec-independent twin-arginine translocation system can transport both tightly folded and malfolded proteins across the thylakoid membrane. J Biol Chem 273(52):34868–34874

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62(2–3):99–109

    Article  CAS  PubMed  Google Scholar 

  • Iwata S, Saynovits M, Link TA, Michel H (1996) Structure of a water soluble fragment of the ‘Rieske’ iron-sulfur protein of the bovine heart mitochondrial cytochrome bc1 complex determined by MAD phasing at 1.5 A resolution. Structure (London, England: 1993) 4(5):567–579

    Google Scholar 

  • Jack RL, Buchanan G, Dubini A, Hatzixanthis K, Palmer T, Sargent F (2004) Coordinating assembly and export of complex bacterial proteins. EMBO J 23(20):3962–3972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jongbloed JD, Martin U, Antelmann H, Hecker M, Tjalsma H, Venema G, Bron S, van Dijl JM, Muller J (2000) TatC is a specificity determinant for protein secretion via the twin-arginine translocation pathway. J Biol Chem 275(52):41350–41357

    Article  CAS  PubMed  Google Scholar 

  • Jongbloed JD, Antelmann H, Hecker M, Nijland R, Bron S, Airaksinen U, Pries F, Quax WJ, van Dijl JM, Braun PG (2002) Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. J Biol Chem 277(46):44068–44078

    Article  CAS  PubMed  Google Scholar 

  • Jongbloed JD, Grieger U, Antelmann H, Hecker M, Nijland R, Bron S, van Dijl JM (2004) Two minimal Tat translocases in Bacillus. Mol Microbiol 54(5):1319–1325

    Article  CAS  PubMed  Google Scholar 

  • Joshi MV, Mann SG, Antelmann H, Widdick DA, Fyans JK, Chandra G, Hutchings MI, Toth I, Hecker M, Loria R, Palmer T (2010) The twin arginine protein transport pathway exports multiple virulence proteins in the plant pathogen Streptomyces scabies. Mol Microbiol 77(1):252–271

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104(1–3):5–25

    Article  CAS  PubMed  Google Scholar 

  • Keller R, de Keyzer J, Driessen AJ, Palmer T (2012) Co-operation between different targeting pathways during integration of a membrane protein. J Cell Biol 199(2):303–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MT, Duncan SH, Stams AJ, van Dijl JM, Flint HJ, Harmsen HJ (2012) The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME J 6(8):1578–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi Y, Date M, Itaya H, Matsui K, Wu LF (2006) Functional analysis of the twin-arginine translocation pathway in Corynebacterium glutamicum ATCC 13869. Appl Environ Microbiol 72(11):7183–7192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi Y, Itaya H, Date M, Matsui K, Wu LF (2008) Production of Chryseobacterium proteolyticum protein-glutaminase using the twin-arginine translocation pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 78(1):67–74

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Fogarty EA, Lu FJ, Zhu H, Wheelock GD, Henderson LA, DeLisa MP (2005) Twin-arginine translocation of active human tissue plasminogen activator in Escherichia coli. Appl Environ Microbiol 71(12):8451–8459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100(4):1990–1995

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kneuper H, Maldonado B, Jager F, Krehenbrink M, Buchanan G, Keller R, Muller M, Berks BC, Palmer T (2012) Molecular dissection of TatC defines critical regions essential for protein transport and a TatB-TatC contact site. Mol Microbiol 85(5):945–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi R, Suzuki T, Yoshida M (2007) Escherichia coli phage-shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes. Mol Microbiol 66(1):100–109

    Article  CAS  PubMed  Google Scholar 

  • Kolkman MA, van der Ploeg R, Bertels M, van Dijk M, van der Laan J, van Dijl JM, Ferrari E (2008) The twin-arginine signal peptide of Bacillus subtilis YwbN can direct either Tat- or Sec-dependent secretion of different cargo proteins: secretion of active subtilisin via the B. subtilis Tat pathway. Appl Environ Microbiol 74(24):7507–7513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouwen TR, van der Ploeg R, Antelmann H, Hecker M, Homuth G, Mader U, van Dijl JM (2009) Overflow of a hyper-produced secretory protein from the Bacillus Sec pathway into the Tat pathway for protein secretion as revealed by proteogenomics. Proteomics 9(4):1018–1032

    Article  CAS  PubMed  Google Scholar 

  • Krishnappa L, Monteferrante CG, van Dijl JM (2012) Degradation of the Twin-Arginine Translocation Substrate YwbN by Extracytoplasmic Proteases of Bacillus subtilis. Appl Environ Microbiol 78(21):7801–7804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Danchin A (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–256

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lange C, Muller SD, Walther TH, Burck J, Ulrich AS (2007) Structure analysis of the protein translocating channel TatA in membranes using a multi-construct approach. Biochim Biophys Acta 1768(10):2627–2634

    Article  CAS  PubMed  Google Scholar 

  • Leake MC, Greene NP, Godun RM, Granjon T, Buchanan G, Chen S, Berry RM, Palmer T, Berks BC (2008) Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging. Proc Natl Acad Sci USA 105(40):15376–15381

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledala N, Sengupta M, Muthaiyan A, Wilkinson BJ, Jayaswal RK (2010) Transcriptomic response of Listeria monocytogenes to iron limitation and Fur mutation. Appl Environ Microbiol 76(2):406–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Link TA, Saynovits M, Assmann C, Iwata S, Ohnishi T, von Jagow G (1996) Isolation, characterisation and crystallisation of a water-soluble fragment of the Rieske iron-sulfur protein of bovine heart mitochondrial bc1 complex. Eur J Biochem 237(1):71–75

    Article  CAS  PubMed  Google Scholar 

  • Liu YW, Hitchcock A, Salmon RC, Kelly DJ (2014) It takes two to tango: two TatA paralogues and two redox enzyme-specific chaperones are involved in the localization of twin-arginine translocase substrates in Campylobacter jejuni. Microbiology 160(Pt 9):2053–2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luke I, Handford JI, Palmer T, Sargent F (2009) Proteolytic processing of Escherichia coli twin-arginine signal peptides by LepB. Arch Microbiol 191(12):919–925

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Cline K (2013) Mapping the signal peptide binding and oligomer contact sites of the core subunit of the pea twin arginine protein translocase. Plant Cell 25(3):999–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado H, Lourenco A, Carvalho F, Cabanes D, Kallipolitis BH, Brito L (2013) The Tat pathway is prevalent in Listeria monocytogenes lineage II and is not required for infection and spread in host cells. J Mol Microbiol Biotechnol 23(3):209–218

    Article  CAS  PubMed  Google Scholar 

  • Matos CF, Robinson C, Di Cola A (2008) The Tat system proofreads FeS protein substrates and directly initiates the disposal of rejected molecules. EMBO J 27(15):2055–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matos CF, Robinson C, Alanen HI, Prus P, Uchida Y, Ruddock LW, Freedman RB, Keshavarz-Moore E (2013) Efficient export of prefolded, disulfide-bonded recombinant proteins to the periplasm by the Tat pathway in Escherichia coli CyDisCo strains. Biotechnol Prog 30(2):281–290

    Article  CAS  Google Scholar 

  • Maurer C, Panahandeh S, Moser M, Muller M (2009) Impairment of twin-arginine-dependent export by seemingly small alterations of substrate conformation. FEBS Lett 583(17):2849–2853

    Article  CAS  PubMed  Google Scholar 

  • McDevitt CA, Buchanan G, Sargent F, Palmer T, Berks BC (2006) Subunit composition and in vivo substrate-binding characteristics of Escherichia coli Tat protein complexes expressed at native levels. FEBS J 273(24):5656–5668

    Article  CAS  PubMed  Google Scholar 

  • McDonough JA, Hacker KE, Flores AR, Pavelka MS Jr, Braunstein M (2005) The twin-arginine translocation pathway of Mycobacterium smegmatis is functional and required for the export of mycobacterial beta-lactamases. J Bacteriol 187(22):7667–7679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehner D, Osadnik H, Lunsdorf H, Bruser T (2012) The Tat system for membrane translocation of folded proteins recruits the membrane-stabilizing Psp machinery in Escherichia coli. J Biol Chem 287(33):27834–27842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meissner D, Vollstedt A, van Dijl JM, Freudl R (2007) Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria. Appl Microbiol Biotechnol 76(3):633–642

    Article  CAS  PubMed  Google Scholar 

  • Mendel S, McCarthy A, Barnett JP, Eijlander RT, Nenninger A, Kuipers OP, Robinson C (2008) The Escherichia coli TatABC system and a Bacillus subtilis TatAC-type system recognise three distinct targeting determinants in twin-arginine signal peptides. J Mol Biol 375(3):661–672

    Article  CAS  PubMed  Google Scholar 

  • Miethke M, Monteferrante CG, Marahiel MA, van Dijl JM (2013) The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron. Biochim Biophys Acta 1833:2267–2278

    Article  CAS  PubMed  Google Scholar 

  • Molik S, Karnauchov I, Weidlich C, Herrmann RG, Klosgen RB (2001) The Rieske Fe/S protein of the cytochrome b6/f complex in chloroplasts: missing link in the evolution of protein transport pathways in chloroplasts? J Biol Chem 276(46):42761–42766

    Article  CAS  PubMed  Google Scholar 

  • Monteferrante CG, Baglieri J, Robinson C, van Dijl JM (2012a) TatAc, the third TatA subunit of Bacillus subtilis, can form active twin-arginine translocases with the TatCd and TatCy subunits. Appl Environ Microbiol 78(14):4999–5001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteferrante CG, Miethke M, van der Ploeg R, Glasner C, van Dijl JM (2012b) Specific targeting of the metallophosphoesterase YkuE to the bacillus cell wall requires the twin-arginine translocation system. J Biol Chem 287(35):29789–29800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteferrante CG, Mackichan C, Marchadier E, Prejean MV, Carballido-Lopez R, van Dijl JM (2013) Mapping the twin-arginine protein translocation network of Bacillus subtilis. Proteomics 13(5):800–811

    Article  CAS  PubMed  Google Scholar 

  • Mori H, Cline K (2001) Post-translational protein translocation into thylakoids by the Sec and DeltapH-dependent pathways. Biochim Biophys Acta 1541(1–2):80–90

    Article  CAS  PubMed  Google Scholar 

  • Mori H, Cline K (2002) A twin arginine signal peptide and the pH gradient trigger reversible assembly of the thylakoid [Delta]pH/Tat translocase. J Cell Biol 157(2):205–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E, Hoebeke M, Aymerich S, Becher D, Bisicchia P, Botella E, Delumeau O, Doherty G, Denham EL, Fogg MJ, Fromion V, Goelzer A, Hansen A, Hartig E, Harwood CR, Homuth G, Jarmer H, Jules M, Klipp E, Le Chat L, Lecointe F, Lewis P, Liebermeister W, March A, Mars RA, Nannapaneni P, Noone D, Pohl S, Rinn B, Rugheimer F, Sappa PK, Samson F, Schaffer M, Schwikowski B, Steil L, Stulke J, Wiegert T, Devine KM, Wilkinson AJ, van Dijl JM, Hecker M, Volker U, Bessieres P, Noirot P (2012) Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335(6072):1103–1106

    Article  ADS  CAS  PubMed  Google Scholar 

  • Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S, Matsui K, Yamagishi A, Kikuchi H, Ikeo K, Gojobori T (2003) Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 13(7):1572–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oates J, Barrett CM, Barnett JP, Byrne KG, Bolhuis A, Robinson C (2005) The Escherichia coli twin-arginine translocation apparatus incorporates a distinct form of TatABC complex, spectrum of modular TatA complexes and minor TatAB complex. J Mol Biol 346(1):295–305

    Article  CAS  PubMed  Google Scholar 

  • Oertel D, Schmitz S, Freudl R (2015) A TatABC-Type Tat translocase is required for unimpaired aerobic growth of Corynebacterium glutamicum ATCC13032. PLoS ONE 10(4):e0123413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oresnik IJ, Ladner CL, Turner RJ (2001) Identification of a twin-arginine leader-binding protein. Mol Microbiol 40(2):323–331

    Article  CAS  PubMed  Google Scholar 

  • Palmer T, Berks BC (2012) The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 10(7):483–496

    CAS  PubMed  Google Scholar 

  • Panahandeh S, Maurer C, Moser M, DeLisa MP, Muller M (2008) Following the path of a twin-arginine precursor along the TatABC translocase of Escherichia coli. J Biol Chem 283(48):33267–33275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papish AL, Ladner CL, Turner RJ (2003) The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase. J Biol Chem 278(35):32501–32506

    Article  CAS  PubMed  Google Scholar 

  • Patel R, Smith SM, Robinson C (2014) Protein transport by the bacterial Tat pathway. Biochim Biophys Acta 1843(8):1620–1628

    Article  CAS  PubMed  Google Scholar 

  • Pett W, Lavrov DV (2013a) The twin-arginine subunit C in Oscarella: origin, evolution, and potential functional significance. Integr Comp Biol 53(3):495–502

    Article  CAS  PubMed  Google Scholar 

  • Pett W, Lavrov DV (2013b) The twin-arginine subunit C in oscarella: origin, evolution, and potential functional significance. Integr Comp Biol 53(3):495–502

    Article  CAS  PubMed  Google Scholar 

  • Pop OI, Westermann M, Volkmer-Engert R, Schulz D, Lemke C, Schreiber S, Gerlach R, Wetzker R, Muller JP (2003) Sequence-specific binding of prePhoD to soluble TatAd indicates protein-mediated targeting of the Tat export in Bacillus subtilis. J Biol Chem 278(40):38428–38436

    Article  CAS  PubMed  Google Scholar 

  • Punginelli C, Maldonado B, Grahl S, Jack R, Alami M, Schroder J, Berks BC, Palmer T (2007) Cysteine scanning mutagenesis and topological mapping of the Escherichia coli twin-arginine translocase TatC Component. J Bacteriol 189(15):5482–5494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raynaud C, Guilhot C, Rauzier J, Bordat Y, Pelicic V, Manganelli R, Smith I, Gicquel B, Jackson M (2002) Phospholipases C are involved in the virulence of Mycobacterium tuberculosis. Mol Microbiol 45(1):203–217

    Article  CAS  PubMed  Google Scholar 

  • Ribnicky B, Van Blarcom T, Georgiou G (2007) A scFv antibody mutant isolated in a genetic screen for improved export via the twin arginine transporter pathway exhibits faster folding. J Mol Biol 369(3):631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter S, Lindenstrauss U, Lucke C, Bayliss R, Bruser T (2007) Functional Tat transport of unstructured, small, hydrophilic proteins. J Biol Chem 282(46):33257–33264

    Article  CAS  PubMed  Google Scholar 

  • Ridder AN, de Jong EJ, Jongbloed JD, Kuipers OP (2009) Subcellular localization of TatAd of Bacillus subtilis depends on the presence of TatCd or TatCy. J Bacteriol 191(13):4410–4418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson C, Matos CF, Beck D, Ren C, Lawrence J, Vasisht N, Mendel S (2011) Transport and proofreading of proteins by the twin-arginine translocation (Tat) system in bacteria. Biochim Biophys Acta 1808(3):876–884

    Article  CAS  PubMed  Google Scholar 

  • Rocco MA, Waraho-Zhmayev D, DeLisa MP (2012) Twin-arginine translocase mutations that suppress folding quality control and permit export of misfolded substrate proteins. Proc Natl Acad Sci USA 109(33):13392–13397

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigue A, Chanal A, Beck K, Muller M, Wu LF (1999) Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial tat pathway. J Biol Chem 274(19):13223–13228

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez F, Rouse SL, Tait CE, Harmer J, De Riso A, Timmel CR, Sansom MS, Berks BC, Schnell JR (2013) Structural model for the protein-translocating element of the twin-arginine transport system. Proc Natl Acad Sci U S A 110(12):E1092–1101

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez F, Lillington J, Johnson S, Timmel CR, Lea SM, Berks BC (2014) Crystal structure of the Bacillus subtilis phosphodiesterase PhoD reveals an iron and calcium-containing active site. J Biol Chem 289(45):30889–30899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose RW, Bruser T, Kissinger JC, Pohlschroder M (2002) Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 45(4):943–950

    Article  CAS  PubMed  Google Scholar 

  • Sargent F, Stanley NR, Berks BC, Palmer T (1999) Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein. J Biol Chem 274(51):36073–36082

    Article  CAS  PubMed  Google Scholar 

  • Schaerlaekens K, Schierova M, Lammertyn E, Geukens N, Anne J, Van Mellaert L (2001) Twin-arginine translocation pathway in Streptomyces lividans. J Bacteriol 183(23):6727–6732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaerlaekens K, Lammertyn E, Geukens N, De Keersmaeker S, Anne J, Van Mellaert L (2004a) Comparison of the Sec and Tat secretion pathways for heterologous protein production by Streptomyces lividans. J Biotechnol 112(3):279–288

    Article  CAS  PubMed  Google Scholar 

  • Schaerlaekens K, Van Mellaert L, Lammertyn E, Geukens N, Anne J (2004b) The importance of the Tat-dependent protein secretion pathway in Streptomyces as revealed by phenotypic changes in tat deletion mutants and genome analysis. Microbiology 150(Pt 1):21–31

    Article  CAS  PubMed  Google Scholar 

  • Scheele S, Oertel D, Bongaerts J, Evers S, Hellmuth H, Maurer KH, Bott M, Freudl R (2013) Secretory production of an FAD cofactor-containing cytosolic enzyme (sorbitol-xylitol oxidase from Streptomyces coelicolor) using the twin-arginine translocation (Tat) pathway of Corynebacterium glutamicum. Microb Biotechnol 6(2):202–206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt CL, Shaw L (2001) A comprehensive phylogenetic analysis of Rieske and Rieske-type iron-sulfur proteins. J Bioenerg Biomembr 33(1):9–26

    Article  CAS  PubMed  Google Scholar 

  • Schneider D, Schmidt CL (2005) Multiple Rieske proteins in prokaryotes: where and why? Biochim Biophys Acta 1710(1):1–12

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Schreiber S, Stengel R, Westermann M, Volkmer-Engert R, Pop OI, Muller JP (2006) Affinity of TatCd for TatAd elucidates its receptor function in the Bacillus subtilis twin arginine translocation (Tat) translocase system. J Biol Chem 281(29):19977–19984

    Article  CAS  PubMed  Google Scholar 

  • Simone D, Bay DC, Leach T, Turner RJ (2013) Diversity and evolution of bacterial twin arginine translocase protein, TatC, reveals a protein secretion system that is evolving to fit its environmental niche. PLoS ONE 8(11):e78742

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Solans L, Gonzalo-Asensio J, Sala C, Benjak A, Uplekar S, Rougemont J, Guilhot C, Malaga W, Martin C, Cole ST (2014) The PhoP-dependent ncRNA Mcr7 modulates the TAT secretion system in Mycobacterium tuberculosis. PLoS Pathog 10(5):e1004183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sousa PM, Videira MA, Santos FA, Hood BL, Conrads TP, Melo AM (2013) The bc:caa3 supercomplexes from the Gram positive bacterium Bacillus subtilis respiratory chain: a megacomplex organization? Arch Biochem Biophys 537(1):153–160

    Article  CAS  PubMed  Google Scholar 

  • Standar K, Mehner D, Osadnik H, Berthelmann F, Hause G, Lunsdorf H, Bruser T (2008) PspA can form large scaffolds in Escherichia coli. FEBS Lett 582(25–26):3585–3589

    Article  CAS  PubMed  Google Scholar 

  • Stanley NR, Palmer T, Berks BC (2000) The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. J Biol Chem 275(16):11591–11596

    Article  CAS  PubMed  Google Scholar 

  • Strauch EM, Georgiou G (2007) Escherichia coli tatC mutations that suppress defective twin-arginine transporter signal peptides. J Mol Biol 374(2):283–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiemann V, Saake B, Vollstedt A, Schafer T, Puls J, Bertoldo C, Freudl R, Antranikian G (2006) Heterologous expression and characterization of a novel branching enzyme from the thermoalkaliphilic anaerobic bacterium Anaerobranca gottschalkii. Appl Microbiol Biotechnol 72(1):60–71

    Article  CAS  PubMed  Google Scholar 

  • Tiwari KB, Birlingmair J, Wilkinson BJ, Jayaswal RK (2015) Role of the twin-arginine translocase (tat) system in iron uptake in Listeria monocytogenes. Microbiology 161(Pt 2):264–271

    Article  CAS  PubMed  Google Scholar 

  • Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64(3):515–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjalsma H, Antelmann H, Jongbloed JD, Braun PG, Darmon E, Dorenbos R, Dubois JY, Westers H, Zanen G, Quax WJ, Kuipers OP, Bron S, Hecker M, van Dijl JM (2004) Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol Mol Biol Rev 68(2):207–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tottey S, Waldron KJ, Firbank SJ, Reale B, Bessant C, Sato K, Cheek TR, Gray J, Banfield MJ, Dennison C, Robinson NJ (2008) Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 455(7216):1138–1142

    Article  ADS  CAS  PubMed  Google Scholar 

  • Turlin E, Debarbouille M, Augustyniak K, Gilles AM, Wandersman C (2013) Staphylococcus aureus FepA and FepB proteins drive heme iron utilization in Escherichia coli. PLoS ONE 8(2):e56529

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Ploeg R, Barnett JP, Vasisht N, Goosens VJ, Pother DC, Robinson C, van Dijl JM (2011a) Salt sensitivity of minimal twin arginine translocases. J Biol Chem 286(51):43759–43770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Ploeg R, Mader U, Homuth G, Schaffer M, Denham EL, Monteferrante CG, Miethke M, Marahiel MA, Harwood CR, Winter T, Hecker M, Antelmann H, van Dijl JM (2011b) Environmental salinity determines the specificity and need for Tat-dependent secretion of the YwbN protein in Bacillus subtilis. PLoS ONE 6(3):e18140

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Ploeg R, Monteferrante CG, Piersma S, Barnett JP, Kouwen TR, Robinson C, van Dijl JM (2012) High-salinity growth conditions promote Tat-independent secretion of tat substrates in Bacillus subtilis. Appl Environ Microbiol 78(21):7733–7744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Dijl JM, Braun PG, Robinson C, Quax WJ, Antelmann H, Hecker M, Muller J, Tjalsma H, Bron S, Jongbloed JD (2002) Functional genomic analysis of the Bacillus subtilis Tat pathway for protein secretion. J Biotechnol 98(2–3):243–254

    Article  PubMed  Google Scholar 

  • Vrancken K, De Keersmaeker S, Geukens N, Lammertyn E, Anne J, Van Mellaert L (2007) pspA overexpression in Streptomyces lividans improves both Sec- and Tat-dependent protein secretion. Appl Microbiol Biotechnol 73(5):1150–1157

    Article  CAS  PubMed  Google Scholar 

  • Vrancken K, Van Mellaert L, Anne J (2008) Characterization of the Streptomyces lividans PspA response. J Bacteriol 190(10):3475–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walther TH, Grage SL, Roth N, Ulrich AS (2010) Membrane alignment of the pore-forming component TatA(d) of the twin-arginine translocase from Bacillus subtilis resolved by solid-state NMR spectroscopy. J Am Chem Soc 132(45):15945–15956

    Article  CAS  PubMed  Google Scholar 

  • Walther TH, Gottselig C, Grage SL, Wolf M, Vargiu AV, Klein MJ, Vollmer S, Prock S, Hartmann M, Afonin S, Stockwald E, Heinzmann H, Nolandt OV, Wenzel W, Ruggerone P, Ulrich AS (2013) Folding and self-assembly of the TatA translocation pore based on a charge zipper mechanism. Cell 152(1–2):316–326

    Article  CAS  PubMed  Google Scholar 

  • Weatherspoon-Griffin N, Zhao G, Kong W, Kong Y, Morigen H, Andrews-Polymenis M McClelland, Shi Y (2011) The CpxR/CpxA two-component system up-regulates two Tat-dependent peptidoglycan amidases to confer bacterial resistance to antimicrobial peptide. J Biol Chem 286(7):5529–5539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westermann M, Pop OI, Gerlach R, Appel TR, Schlormann W, Schreiber S, Muller JP (2006) The TatAd component of the Bacillus subtilis twin-arginine protein transport system forms homo-multimeric complexes in its cytosolic and membrane embedded localisation. Biochim Biophys Acta 1758(4):443–451

    Article  CAS  PubMed  Google Scholar 

  • Wexler M, Sargent F, Jack RL, Stanley NR, Bogsch EG, Robinson C, Berks BC, Palmer T (2000) TatD is a cytoplasmic protein with DNase activity. No requirement for TatD family proteins in sec-independent protein export. J Biol Chem 275(22):16717–16722

    Article  CAS  PubMed  Google Scholar 

  • Whitaker N, Bageshwar UK, Musser SM (2012) Kinetics of precursor interactions with the bacterial Tat translocase detected by real-time FRET. J Biol Chem 287(14):11252–11260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widdick DA, Dilks K, Chandra G, Bottrill A, Naldrett M, Pohlschroder M, Palmer T (2006) The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proc Natl Acad Sci USA 103(47):17927–17932

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Widdick DA, Eijlander RT, van Dijl JM, Kuipers OP, Palmer T (2008) A facile reporter system for the experimental identification of twin-arginine translocation (Tat) signal peptides from all kingdoms of life. J Mol Biol 375(3):595–603

    Article  CAS  PubMed  Google Scholar 

  • Widdick DA, Hicks MG, Thompson BJ, Tschumi A, Chandra G, Sutcliffe IC, Brulle JK, Sander P, Palmer T, Hutchings MI (2011) Dissecting the complete lipoprotein biogenesis pathway in Streptomyces scabies. Mol Microbiol 80(5):1395–1412

    Article  CAS  PubMed  Google Scholar 

  • Wolff S, Antelmann H, Albrecht D, Becher D, Bernhardt J, Bron S, Buttner K, van Dijl JM, Eymann C, Otto A, Le Tam T, Hecker M (2007) Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches. J Chromatogr B Analyt Technol Biomed Life Sci 849(1–2):129–140

    Article  CAS  PubMed  Google Scholar 

  • Wu LF, Chanal A, Rodrigue A (2000a) Membrane targeting and translocation of bacterial hydrogenases. Arch Microbiol 173(5–6):319–324

    Article  CAS  PubMed  Google Scholar 

  • Wu LF, Ize B, Chanal A, Quentin Y, Fichant G (2000b) Bacterial twin-arginine signal peptide-dependent protein translocation pathway: evolution and mechanism. J Mol Microbiol Biotechnol 2(2):179–189

    CAS  PubMed  Google Scholar 

  • Xu P, Alves JM, Kitten T, Brown A, Chen Z, Ozaki LS, Manque P, Ge X, Serrano MG, Puiu D, Hendricks S, Wang Y, Chaplin MD, Akan D, Paik S, Peterson DL, Macrina FL, Buck GA (2007) Genome of the opportunistic pathogen Streptococcus sanguinis. J Bacteriol 189(8):3166–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada K, Sanzen I, Ohkura T, Okamoto A, Torii K, Hasegawa T, Ohta M (2007) Analysis of twin-arginine translocation pathway homologue in Staphylococcus aureus. Curr Microbiol 55(1):14–19

    Article  CAS  PubMed  Google Scholar 

  • Yen MR, Tseng YH, Nguyen EH, Wu LF, Saier MH Jr (2002) Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Arch Microbiol 177(6):441–450

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Hederstedt L, Piggot PJ (1995) The cytochrome bc complex (menaquinone:cytochrome c reductase) in Bacillus subtilis has a nontraditional subunit organization. J Bacteriol 177(23):6751–6760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Xin Y, Wang Y, Guo T, Lu S, Kong J (2015) Identification of a novel dye-decolorizing peroxidase, EfeBs, translocated by twin-arginine translocation system in Streptococcus thermophilus CGMCC 7.179. Appl Environ Microbiol 81(18):6108–6119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoufaly S, Frobel J, Rose P, Flecken T, Maurer C, Moser M, Muller M (2012) Mapping precursor-binding site on TatC subunit of twin arginine-specific protein translocase by site-specific photo cross-linking. J Biol Chem 287(16):13430–13441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

VJG and JMvD were in parts supported by the CEU projects PITN-GA-2008-215524 (TranSys), LSHG-CT-2006-037469 and 244093, and the transnational SysMO initiative through projects BACELL SysMO1 and 2 with funding from the Research Council for Earth and Life Sciences of the Netherlands Organization for Scientific Research (NWO-ALW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Maarten van Dijl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Goosens, V.J., van Dijl, J.M. (2016). Twin-Arginine Protein Translocation. In: Bagnoli, F., Rappuoli, R. (eds) Protein and Sugar Export and Assembly in Gram-positive Bacteria . Current Topics in Microbiology and Immunology, vol 404. Springer, Cham. https://doi.org/10.1007/82_2016_7

Download citation

Publish with us

Policies and ethics