Skip to main content

Gene Regulation, Two Component Regulatory Systems, and Adaptive Responses in Treponema Denticola

  • Chapter
  • First Online:
Spirochete Biology: The Post Genomic Era

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 415))

Abstract

The oral microbiome consists of a remarkably diverse group of 500–700 bacterial species. The microbial etiology of periodontal disease is similarly complex. Of the ~400 bacterial species identified in subgingival plaque, at least 50 belong to the genus Treponema. As periodontal disease develops and progresses, T. denticola transitions from a low to high abundance species in the subgingival crevice. Changes in the overall composition of the bacterial population trigger significant changes in the local physical, immunological and physiochemical conditions. For T. denticola to thrive in periodontal pockets, it must be nimble and adapt to rapidly changing environmental conditions. The purpose of this chapter is to review the current understanding of the molecular basis of these essential adaptive responses, with a focus on the role of two component regulatory systems with global regulatory potential.

The original version of this chapter was revised: Copyright line have been corrected. The erratum to this chapter is available at https://doi.org/10.1007/82_2018_95

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdelnour A, Arvidson S, Bremell T, Ryden C, Tarkowski A (1993) The accessory gene regulator (agr) controls Staphylococcus aureus virulence in a murine arthritis model. Infect Immun 61:3879–3885

    PubMed  PubMed Central  CAS  Google Scholar 

  • Amako K (2014) Little animals observed by Antony van Leeuwenhoek. Nihon Saikingaku Zasshi 69:315–330

    Article  PubMed  Google Scholar 

  • Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22:3–6

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakthavatchalu V, Meka A, Mans JJ and other authors (2011) Polymicrobial periodontal pathogen transcriptomes in calvarial bone and soft tissue. Mol Oral Microbiol 26:303–320

    Google Scholar 

  • Ba-Thein W, Lyristis M, Ohtani K, Nisbet IT, Hayashi H, Rood JI, Shimizu T (1996) The virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens. J Bacteriol 178:2514–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belete B, Lu H, Wozniak DJ (2008) Pseudomonas aeruginosa AlgR regulates type IV pilus biosynthesis by activating transcription of the fimU-pilVWXY1Y2E operon. J Bacteriol 190:2023–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian J, Liu X, Cheng YQ, Li C (2013) Inactivation of cyclic Di-GMP binding protein TDE0214 affects the motility, biofilm formation, and virulence of Treponema denticola. J Bacteriol 195:3897–3905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boackle RJ (1991) The interaction of salivary secretions with the human complement system–a model for the study of host defense systems on inflamed mucosal surfaces. Crit Rev Oral Biol Med 2:355–367

    Article  CAS  PubMed  Google Scholar 

  • Boackle RJ, Pruitt KM, Silverman MS, Glymph JL Jr (1978) The effects of human saliva on the hemolytic activity of complement. J Dent Res 57:103–110

    Article  CAS  PubMed  Google Scholar 

  • Caimano MJ, Dunham-Ems S, Allard AM, Cassera MB, Kenedy M, Radolf JD (2015) Cyclic di-GMP modulates gene expression in lyme disease spirochetes at the tick-mammal interface to promote spirochete survival during the blood meal and tick-to-mammal transmission. Infect Immun 83:3043–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi B, Qi M, Kuramitsu HK (2003) Role of dentilisin in Treponema denticola epithelial cell layer penetration. Res Microbiol 154:637–643

    Article  CAS  PubMed  Google Scholar 

  • Chu L, Dong Z, Xu X, Cochran DL, Ebersole JL (2002) Role of glutathione metabolism of Treponema denticola in bacterial growth and virulence expression. Infect Immun 70:1113–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu L, Lai Y, Xu X, Eddy S, Yang S, Song L, Kolodrubetz D (2008) A 52-kDa leucyl aminopeptidase from Treponema denticola is a cysteinylglycinase that mediates the second step of glutathione metabolism. J Biol Chem 283:19351–19358

    Google Scholar 

  • D’Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28:655–662

    Article  CAS  PubMed  Google Scholar 

  • Darveau RP (2009) The oral microbial consortium’s interaction with the periodontal innate defense system. DNA Cell Biol 28:389–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darveau RP (2010) Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol 8:481–490

    Article  CAS  PubMed  Google Scholar 

  • Dashper SG, Seers CA, Tan KH, Reynolds EC (2010) Virulence factors of the oral spirochete Treponema denticola. J Dent Res 90:691–703

    Article  CAS  PubMed  Google Scholar 

  • de Saizieu A, Gardes C, Flint N, Wagner C, Kamber M, Mitchell TJ, Keck W, Amrein KE, Lange R (2000) Microarray-based identification of a novel Streptococcus pneumoniae regulon controlled by an autoinduced peptide. J Bacteriol 182:4696–4703

    Article  PubMed  PubMed Central  Google Scholar 

  • Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG (2010) The human oral microbiome. J Bacteriol 192:5002–5017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewhirst FE, Klein EA, Thompson EC and other authors (2012) The canine oral microbiome. PLoS One 7:e36067

    Google Scholar 

  • Ebersole JL, Steffen MJ, Gonzalez-Martinez J, Novak MJ (2008) Effects of age and oral disease on systemic inflammatory and immune parameters in nonhuman primates. Clin Vaccine Immunol 15:1067–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellen RP, Ko KS, Lo CM, Grove DA, Ishihara K (2000) Insertional inactivation of the prtP gene of Treponema denticola confirms dentilisin’s disruption of epithelial junctions. J Mol Microbiol Biotech 2:581–586

    CAS  Google Scholar 

  • Fenno J, McBride B (1998) Virulence factors of oral treponemes. Anaerobe 4:1–17

    Article  CAS  PubMed  Google Scholar 

  • Fenno JC, Hannam PM, Leung WK, Tamura M, Uitto VJ, McBride BC (1998) Cytopathic effects of the major surface protein and the chymotrypsinlike protease of Treponema denticola. Infect Immun 66:1869–1877

    PubMed  PubMed Central  CAS  Google Scholar 

  • Frederick JR, Rogers EA, Marconi RT (2008) Analysis of a growth-phase-regulated two-component regulatory system in the periodontal pathogen Treponema denticola. J Bacteriol 190:6162–6169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frederick JR, Sarkar J, McDowell JV, Marconi RT (2011) Molecular signaling mechanisms of the periopathogen, Treponema denticola. J Dent Res 90:1155–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galperin MY (2006) Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188:4169–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galperin MY (2008) Telling bacteria: do not LytTR. Structure 16:657–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao R, Mack TR, Stock AM (2007) Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem Sci 32:225–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant CE, Bailey TL, Noble WS (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics 27:1017–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajishengallis G, Liang S, Payne MA and other authors (2011) Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 10:497–506

    Google Scholar 

  • Hajishengallis G, Lamont RJ (2012) Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol 27:409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajishengallis G, Darveau RP, Curtis MA (2012) The keystone-pathogen hypothesis. Nat Rev Microbiol 10:717–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haririan H, Andrukhov O, Bertl K, Lettner S, Kierstein S, Moritz A, Rausch-Fan X (2014) Microbial analysis of subgingival plaque samples compared to that of whole saliva in patients with periodontitis. J Periodontol 85:819–828

    Article  PubMed  Google Scholar 

  • Hefti MH, Francoijs KJ, de Vries SC, Dixon R, Vervoort J (2004) The PAS fold. A redefinition of the PAS domain based upon structural prediction. Eur J Biochem 271:1198–1208

    Article  CAS  PubMed  Google Scholar 

  • Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273

    Article  CAS  PubMed  Google Scholar 

  • How KY, Song KP, Chan KG (2016) Porphyromonas gingivalis: An overview of periodontopathic pathogen below the Gum Line. Front Microbiol 7:53

    Google Scholar 

  • Ishihara K (2010) Virulence factors of Treponema denticola. Periodontol 2000(54):117–135

    Article  Google Scholar 

  • Ishihara K, Miura T, Kuramitsu HK, Okuda K (1996) Characterization of the Treponema denticola prtP gene encoding a prolyl-phenylalanine-specific protease (dentilisin). Infect Immun 64:5178–5186

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ishihara K, Kuramitsu HK, Miura T, Okuda K (1998) Dentilisin activity affects the organization of the outer sheath of Treponema denticola. J Bacteriol 180:3837–3844

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jarva H, Jokirant TS, Hellwage J, Zipfel PF, Meri S (1999) Regulation of complement activation by C-reactive protein: Targeting then complement regulatory activity of factor H by an interaction with short consensus repeat domains 7 and 8–11. J Immunol 163:3957–3962

    PubMed  CAS  Google Scholar 

  • Jonsson D, Ramberg P, Demmer RT, Kebschull M, Dahlen G, Papapanou PN (2011) Gingival tissue transcriptomes in experimental gingivitis. J Clin Periodontol 38:599–611

    Article  PubMed  PubMed Central  Google Scholar 

  • Koenig RL, Ray JL, Maleki SJ, Smeltzer MS, Hurlburt BK (2004) Staphylococcus aureus AgrA binding to the RNAIII-agr regulatory region. J Bacteriol 186:7549–7555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konovalova A, Schwalm JA, Silhavy TJ (2016) A Suppressor mutation that creates a faster and more robust sigmae envelope stress response. J Bacteriol 198:2345–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostick JL, Szkotnicki LT, Rogers EA, Bocci P, Raffaelli N, Marconi RT (2011) The diguanylate cyclase, Rrp1, regulates critical steps in the enzootic cycle of the Lyme disease spirochetes. Mol Microbiol 81:219–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krupka HI, Huber R, Holt SC, Clausen T (2000) Crystal structure of cystalysin from Treponema denticola: a pyridoxal 5’-phosphate-dependent protein acting as a haemolytic enzyme. EMBO J 19:3168–3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard PG, Bezar IF, Sidote DJ, Stock AM (2012) Identification of a hydrophobic cleft in the LytTR domain of AgrA as a locus for small molecule interactions that inhibit DNA binding. Biochem 51:10035–10043

    Article  CAS  Google Scholar 

  • Lizewski SE, Schurr JR, Jackson DW, Frisk A, Carterson AJ, Schurr MJ (2004) Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. J Bacteriol 186:5672–5684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyristis M, Bryant AE, Sloan J, Awad MM, Nisbet IT, Stevens DL, Rood JI (1994) Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens. Mol Microbiol 12:761–777

    Article  CAS  PubMed  Google Scholar 

  • Mallory KL, Miller DP, Oliver LD Jr, Freedman JC, Kostick-Dunn JL, Carlyon JA, Marion JD, Bell JK, Marconi RT (2016) Cyclic-di-GMP binding induces structural rearrangements in the PlzA and PlzC proteins of the Lyme disease and relapsing fever spirochetes: a possible switch mechanism for c-di-GMP-mediated effector functions. Pathog Dis 74:1–8

    Article  CAS  Google Scholar 

  • Martin MJ, Clare S, Goulding D, Faulds-Pain A, Barquist L, Browne HP, Pettit L, Dougan G, Lawley TD, Wren BW (2013) The agr locus regulates virulence and colonization genes in Clostridium difficile 027. J Bacteriol 195:3672–3681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDowell JV, Lankford J, Stamm L, Sadlon T, Gordon DL, Marconi RT (2005) Demonstration of factor H-like protein 1 binding to Treponema denticola, a pathogen associated with periodontal disease in humans. Infect Immun 73:7126–7132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDowell JV, Frederick J, Stamm L, Marconi RT (2007) Identification of the gene encoding the FhbB protein of Treponema denticola, a highly unique factor H-like protein 1 binding protein. Infect Immun 75:1050–1054

    Article  CAS  PubMed  Google Scholar 

  • McDowell JV, Huang B, Fenno JC, Marconi RT (2009) Analysis of a unique interaction between the complement regulatory protein factor H and the periodontal pathogen Treponema denticola. Infect Immun 77:1417–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDowell JV, Frederick J, Miller DP, Goetting-Minesky MP, Goodman H, Fenno JC, Marconi RT (2011) Identification of the primary mechanism of complement evasion by the periodontal pathogen, Treponema denticola. Mol Oral Microbiol 26:140–149

    Article  CAS  PubMed  Google Scholar 

  • McDowell JV, Miller DP, Mallory KL Marconi RT (2012) Treponema denticola: FhbB, dentilisin, complement evasion and the paradox of factor H cleavage. In: Embers ME (ed) The pathogenic spirochetes: strategies for evasion of host immunity and persistance. New York: Springer Science+Business Media, pp 43–62

    Google Scholar 

  • Megson E, Fitzsimmons T, Dharmapatni K, Mark Bartold P (2010) C-reactive protein in gingival crevicular fluid may be indicative of systemic inflammation. J Clin Periodontol 37:797–804

    Article  CAS  PubMed  Google Scholar 

  • Mihlan M, Stippa S, Jozsi M, Zipfel PF (2009) Monomeric CRP contributes to complement control in fluid phase and on cellular surfaces and increases phagocytosis by recruiting factor H. Cell Death Differ 16:1630–1640

    Article  CAS  PubMed  Google Scholar 

  • Miller DP, Bell JK, McDowell JV, Conrad DH, Burgner JW, Heroux A, Marconi RT (2012) Structure of factor H binding protein B (FhbB) of the periopathogen, Treponema denticola: insights into the progression of periodontal disease. J Biol Chem 287:12715–12722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller DP, Frederick JR, Sarkar J, Marconi RT (2014a) The Treponema denticola AtcR LytTR domain-containing response regulator interacts with three architecturally distinct promoter elements: implications for understanding the molecular signaling mechanisms that drive the progression of periodontal disease. Mol Oral Microbiol 29:219–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller DP, McDowell JV, Bell JK, Goetting-Minesky MP, Fenno JC, Marconi RT (2014b) Analysis of the complement sensitivity of oral treponemes and the potential influence of FH binding, FH cleavage and dentilisin activity on the pathogenesis of periodontal disease. Mol Oral Microbiol 29:194–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller DP, Oliver LD, Jr, Tegels BK and other authors (2016) The Treponema denticola FhbB protein is a dominant early antigen that elicits FhbB variant-specific antibodies that block factor H binding and cleavage by dentilisin. Infect Immun 84:2051–2058

    Google Scholar 

  • Moglich A, Ayers RA, Moffat K (2009) Structure and signaling mechanism of Per-ARNT-Sim domains. Structure 17:1282–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morici LA, Carterson AJ, Wagner VE and other authors (2007) Pseudomonas aeruginosa AlgR represses the Rhl quorum-sensing system in a biofilm-specific manner. J Bacteriol 189:7752–7764

    Google Scholar 

  • Munch R, Hiller K, Grote A, Scheer M, Klein J, Schobert M, Jahn D (2005) Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. Bioinformatics 21:4187–4189

    Article  CAS  PubMed  Google Scholar 

  • Mysak J, Podzimek S, Sommerova P, Lyuya-Mi Y, Bartova J, Janatova T, Prochazkova J, Duskova J (2014) Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res 2014, article ID: 476068

    Google Scholar 

  • Nicod SS, Weinzierl RO, Burchell L, Escalera-Maurer A, James EH, Wigneshweraraj S (2014) Systematic mutational analysis of the LytTR DNA binding domain of Staphylococcus aureus virulence gene transcription factor AgrA. Nucleic Acids Res 42:12523–12536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolskaya AN, Galperin MY (2002) A novel type of conserved DNA-binding domain in the transcriptional regulators of the AlgR/AgrA/LytR family. Nucleic Acids Res 30:2453–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang Z, Blevins JS, Norgard MV (2008) Transcriptional interplay among the regulators Rrp2, RpoN and RpoS in Borrelia burgdorferi. Microbiol 154:2641–2658

    Article  CAS  Google Scholar 

  • Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, Sahasrabudhe A, Dewhirst FE (2001) Bacterial diversity in human subgingival plaque. J Bacteriol 183:3770–3783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paster BJ, Olsen I, Aas JA, Dewhirst FE (2006) The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000(42):80–87

    Article  Google Scholar 

  • Pitzer JE, Sultan SZ, Hayakawa Y, Hobbs G, Miller MR, Motaleb MA (2011) Analysis of the Borrelia burgdorferi cyclic-di-GMP binding protein PlzA reveals a role in motility and virulence. Infect Immun 79:1815–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podzimek S, Mysak J, Janatova T, Duskova J (2015) C-Reactive protein in peripheral blood of patients with chronic and aggressive periodontitis, gingivitis, and gingival recessions. Mediators Inflamm 2015:564858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risoen PA, Havarstein LS, Diep DB, Nes IF (1998) Identification of the DNA-binding sites for two response regulators involved in control of bacteriocin synthesis in Lactobacillus plantarum C11. Mol Gen Genet 259:224–232

    PubMed  CAS  Google Scholar 

  • Ritalahti KM, Justicia-Leon SD, Cusick KD, Ramos-Hernandez N, Rubin M, Dornbush J, Loffler FE (2012) Sphaerochaeta globosa gen. nov., sp. nov. and Sphaerochaeta pleomorpha sp. nov., free-living, spherical spirochaetes. Int J Syst Evol Microbiol 62:210–216

    Article  CAS  PubMed  Google Scholar 

  • Rode TM, Langsrud S, Holck A, Moretro T (2007) Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. Int J Food Microbiol 116:372–383

    Article  CAS  PubMed  Google Scholar 

  • Rogers EA, Terekhova D, Zhang HM, Hovis KM, Schwartz I, Marconi RT (2009) Rrp1, a cyclic-di-GMP-producing response regulator, is an important regulator of Borrelia burgdorferi core cellular functions. Mol Microbiol 71:1551–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruby JD, Li H, Kuramitsu H, Norris SJ, Goldstein SF, Buttle KF, Charon NW (1997) Relationship of Treponema denticola periplasmic flagella to irregular cell morphology. J Bacteriol 179:1628–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruddy S, Austen KF (1971) C3b inactivator of man. II. Fragments produced by C3b inactivator cleavage of cell-bound or fluid phase C3b. J Immunol 107:742–750

    PubMed  CAS  Google Scholar 

  • Ryjenkov DA, Tarutina M, Moskvin OV, Gomelsky M (2005) Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 187:1792–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuels DS (2011) Gene regulation in Borrelia burgdorferi. Annu Rev Microbiol 65:479–499

    Article  CAS  PubMed  Google Scholar 

  • Sanchez D, Boudes M, van Tilbeurgh H, Durand D, Quevillon-Cheruel S (2015) Modeling the ComD/ComE/comcde interaction network using small angle X-ray scattering. FEBS J 282:1538–1553

    Article  CAS  PubMed  Google Scholar 

  • Sarkar J, Frederick J, Marconi RT (2010) The Hpk2-Rrp2 two-component regulatory system of Treponema denticola: a potential regulator of environmental and adaptive responses. Mol Oral Microbiol 25:241–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seshadri R, Myers GSA, Tettelin H and other authors (2004) Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. PNAS 101:5646–5651

    Google Scholar 

  • Sharma A (2010) Virulence mechanisms of Tannerella forsythia. Periodontol 2000(54):106–116

    Google Scholar 

  • Sidote DJ, Barbieri CM, Wu T, Stock AM (2008) Structure of the Staphylococcus aureus AgrA LytTR domain bound to DNA reveals a beta fold with an unusual mode of binding. Structure 16:727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siqueira JF, Rocas IN (2004) Treponema species associated with abscesses of endodontic origin. Oral Microbiol Immunol 19:336–339

    Article  PubMed  Google Scholar 

  • Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144

    Article  CAS  PubMed  Google Scholar 

  • Socransky SS, Smith C, Haffajee AD (2002) Subgingival microbial profiles in refractory periodontal disease. J Clin Periodontol 29:260–268

    Article  PubMed  Google Scholar 

  • Stadler AF, Angst PD, Arce RM, Gomes SC, Oppermann RV, Susin C (2016) Gingival crevicular fluid levels of cytokines/chemokines in chronic periodontitis: a meta-analysis. J Clin Periodontol 43:727–745

    Article  CAS  PubMed  Google Scholar 

  • Stanton TB (1984) Glucose metabolism of Treponema bryantii, an anaerobic rumen spirochete. Can J Microbiol 30:526–531

    Article  CAS  PubMed  Google Scholar 

  • Stanton TB, Canale-Parola E (1980) Treponema bryantii sp. nov., a rumen spirochete that interacts with cellulolytic bacteria. Arch Microbiol 127:145–156

    Article  CAS  PubMed  Google Scholar 

  • Sultan SZ, Pitzer JE, Miller MR, Motaleb MA (2010) Analysis of a Borrelia burgdorferi phosphodiesterase demonstrates a role for cyclic-di-guanosine monophosphate in motility and virulence. Mol Microbiol 77:128–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traber K, Novick R (2006) A slipped-mispairing mutation in AgrA of laboratory strains and clinical isolates results in delayed activation of agr and failure to translate delta- and alpha-haemolysins. Mol Microbiol 59:1519–1530

    Article  CAS  PubMed  Google Scholar 

  • Uitto VJ, Grenier D, Chan EC, McBride BC (1988) Isolation of a chymotrypsinlike enzyme from Treponema denticola. Infect Immun 56:2717–2722

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vieira ML, Nascimento AL (2016) Interaction of spirochetes with the host fibrinolytic system and potential roles in pathogenesis. Crit Rev Microbiol 42:573–587

    PubMed  CAS  Google Scholar 

  • Yamazaki T, Miyamoto M, Yamada S, Okuda K, Ishihara K (2006) Surface protease of Treponema denticola hydrolyzes C3 and influences function of polymorphonuclear leukocytes. Microbes Infect 8:1758–1763

    Article  CAS  PubMed  Google Scholar 

  • Yang XF, Alani SM, Norgard MV (2003) The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi. Proc Natl Acad Sci USA 100:11001–11006

    Article  CAS  PubMed  Google Scholar 

  • Zhang JH, Dong Z, Chu L (2010) Hydrogen sulfide induces apoptosis in human periodontium cells. J Periodontal Res 45:71–78

    Article  CAS  PubMed  Google Scholar 

  • Zijnge V, van Leeuwen MB, Degener JE, Abbas F, Thurnheer T, Gmur R, Harmsen HJ (2010) Oral biofilm architecture on natural teeth. PLoS ONE 5:e9321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9:729–740

    Article  CAS  PubMed  Google Scholar 

  • Zipfel PF, Skerka C, Hellwage J, Jokiranta ST, Meri S, Brade V, Kraiczy P, Noris M, Remuzzi G (2002) Factor H family proteins: on complement, microbes and human diseases. Biochem Soc Trans 30:971–978

    Article  CAS  PubMed  Google Scholar 

  • Zschiedrich CP, Keidel V, Szurmant H (2016) Molecular mechanisms of two-component signal transduction. J Mol Biol 428:3752–3775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Marconi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Marconi, R.T. (2017). Gene Regulation, Two Component Regulatory Systems, and Adaptive Responses in Treponema Denticola. In: Adler, B. (eds) Spirochete Biology: The Post Genomic Era. Current Topics in Microbiology and Immunology, vol 415. Springer, Cham. https://doi.org/10.1007/82_2017_66

Download citation

Publish with us

Policies and ethics