Skip to main content

Human Three-Dimensional Models for Studying Skin Pathogens

  • Chapter
  • First Online:
Three Dimensional Human Organotypic Models for Biomedical Research

Abstract

Skin is the most exposed surface of the human body, separating the microbe-rich external environment, from the sterile inner part. When skin is breached or its homeostasis is perturbed, bacterial, fungal and viral pathogens can cause local infections or use the skin as an entry site to spread to other organs. In the last decades, it has become clear that skin provides niches for permanent microbial colonization, and it actively interacts with microorganisms. This crosstalk promotes skin homeostasis and immune maturation, preventing expansion of harmful organisms. Skin commensals, however, are often found to be skin most prevalent and dangerous pathogens. Despite the medical interest, mechanisms of colonization and invasion for most skin pathogens are poorly understood. This limitation is due to the lack of reliable skin models. Indeed, animal models do not adequately mimic neither the anatomy nor the immune response of human skin. Human 3D skin models overcome these limitations and can provide new insights into the molecular mechanisms of microbial pathogenesis. Herein, we address the strengths and weaknesses of different types of human skin models and we review the main findings obtained using these models to study skin pathogens.

Elena Boero and Malgorzata Ewa Mnich—These authors contributed equally to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Atopic dermatitis

APC:

Antigen-presenting cell

cDC:

Conventional DC

CHIPS:

Chemotaxis inhibitory protein of Staphylococcus aureus

CLA:

Cutaneous lymphocyte antigen

ClfA:

Clumping factor A

ClfB:

Clumping factor B

DC:

Dendritic cell

GAS:

Group A Streptococcus

GFP:

Green fluorescent protein

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

GvH:

Graft-versus-host

GvHD:

Graft-versus-host disease

HIV:

Human immunodeficiency virus

HPV:

Human papillomavirus

HSE:

Human skin equivalent

HSV:

Herpes simplex virus

IFN:

Interferon

IL:

Interleukin

LC:

Langerhans cell

MCPyV:

Merkel cell polyomavirus

moDC:

Monocyte-derived DC

NSTI:

Necrotizing soft tissue infection

PBMCs:

Peripheral blood mononuclear cells

PIA:

Polysaccharide intracellular adhesin

PSMα:

Phenol-soluble modulins α

PVL:

Panton–Valentine leukocidin

ROS:

Reactive oxygen species

SCIN:

Staphylococcal complement inhibitor

SEA:

Staphylococcal enterotoxin A

SEB:

Staphylococcal enterotoxin B

SLS:

Streptolysin S

SLO:

Streptolysin O

SSI:

Surgical site infection

SSS:

Scalded skin syndrome

SSTI:

Skin and soft tissues infection

TEff:

Effector T cell

TEM:

Effector memory T cell

TRM:

Tissue-resident memory T cells

TLR2:

Toll-like receptor 2

TNFα:

Tumour necrosis factor α

VZV:

Varicella zoster virus

WGS:

Whole genome shotgun

Bibliography

  • Abd E, Yousef SA, Pastore MN et al (2016) Skin models for the testing of transdermal drugs. Clin Pharmacol Adv Appl 8:163–176

    CAS  Google Scholar 

  • Ahmed SS, Whritenour J, Ahmed MM, et al (2019) Evaluation of a human in vitro skin test for predicting drug hypersensitivity reactions. Toxicol Appl Pharmacol 369:39–48

    Google Scholar 

  • Albrecht VS, Limbago BM, Moran GJ et al (2015) Staphylococcus aureus colonization and strain type at various body sites among patients with a closed abscess and uninfected controls at U.S. emergency departments. J Clin Microbiol 53:3478–3484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bacaj P, Burch D (2018) Human papillomavirus infection of the skin. Arch Pathol Lab Med 142:700–705

    CAS  PubMed  Google Scholar 

  • Ball SC, Abraha A, Collins KR et al (2003) Comparing the ex vivo fitness of CCR5-tropic human immunodeficiency virus type 1 isolates of subtypes B and C. J Virol 77:1021–1038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bendel CM (2003) Colonization and epithelial adhesion in the pathogenesis of Neonatal candidiasis. Semin Perinatol 27:357–364

    PubMed  Google Scholar 

  • Benichou G, Yamada Y, Yun SH et al (2011) Immune recognition and rejection of allogeneic skin grafts. Immunotherapy 3:757–770

    CAS  PubMed  Google Scholar 

  • Bliven KA, Maurelli AT (2016) Evolution of bacterial pathogens within the human host. In: Virulence mechanisms of bacterial pathogens, 5th edn. NIH Public Access, pp 3–13

    Google Scholar 

  • Burke VE, Lopez FA (2017) Approach to skin and soft tissue infections in non-HIV immunocompromised hosts. Curr Opin Infect Dis 30:354–363

    PubMed  Google Scholar 

  • Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16:143–155

    CAS  PubMed  Google Scholar 

  • Carlson MW, Alt-Holland A, Egles C, Garlick JA (2008) Three-dimensional tissue models of normal and diseased skin. Curr Protoc, Cell Biol

    Google Scholar 

  • Chau DYS, Johnson C, MacNeil S et al (2013) The development of a 3D immuno competent model of human skin. Biofabrication 5:35011

    CAS  Google Scholar 

  • Chen X, Anstey AV, Bugert JJ (2013) Molluscum contagiosum virus infection. Lancet Infect Dis 13:877–888

    PubMed  Google Scholar 

  • Christensen GJM, Brüggemann H (2014) Bacterial skin commensals and their role as host guardians. Benef Microbes 5:201–215

    CAS  PubMed  Google Scholar 

  • Clark RA, Chong B, Mirchandani N et al (2006) The vast majority of CLA + T cells are resident in normal skin. J Immunol 176:4431–4439

    CAS  PubMed  Google Scholar 

  • Cogen AL, Nizet V, Gallo RL (2008) Skin microbiota: a source of disease or defence? Br J Dermatol 158:442–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corzo-León DE, Munro CA, MacCallum DM (2019) An ex vivo human skin model to study superficial fungal infections. Front Microbiol 10

    Google Scholar 

  • Crousilles A, Maunders E, Bartlett S et al (2015) Which microbial factors really are important in Pseudomonas aeruginosa infections? Future Microbiol 10:1825–1836

    CAS  PubMed  Google Scholar 

  • Damour A, Garcia M, Seneschal J et al (2019) Eczema herpeticum: clinical and pathophysiological aspects. Clin Rev Allergy Immunol. https://doi.org/10.1007/s12016-019-08768-3

    Article  Google Scholar 

  • Davis KA, Stewart JJ, Crouch HK et al (2004) Methicillin-resistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection. Clin Infect Dis 39:776–782

    PubMed  Google Scholar 

  • De Breij A, Haisma EM, Rietveld M et al (2012) Three-dimensional human skin equivalent as a tool to study Acinetobacter baumannii colonization. Antimicrob Agents Chemother 56:2459–2464

    PubMed  PubMed Central  Google Scholar 

  • Dickinson AM, Hromadníková I, Sviland L et al (1999) Use of a skin explant model for predicting GVHD in HLA-matched bone marrow transplants: Effect of GVHD prophylaxis. Bone Marrow Transplant 24:857–863

    CAS  PubMed  Google Scholar 

  • Doorbar J, Egawa N, Griffin H et al (2015) Human papillomavirus molecular biology and disease association. Rev Med Virol 25:2–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dréno B, Pécastaings S, Corvec S et al (2018) Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatology Venereol 32:5–14

    Google Scholar 

  • Duckney P, Wong HK, Serrano J et al (2013) The role of the skin barrier in modulating the effects of common skin microbial species on the inflammation, differentiation and proliferation status of epidermal keratinocytes. BMC Res Notes 6

    Google Scholar 

  • Duerkop BA, Hooper LV (2013) Resident viruses and their interactions with the immune system. Nat Immunol 14:654–659

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Ghalbzouri A, Gibbs S, Lamme E et al (2002) Effect of fibroblasts on epidermal regeneration. Br J Dermatol 147:230–243

    CAS  PubMed  Google Scholar 

  • Erin Chen Y, Fischbach MA, Belkaid Y (2018) Skin microbiota-host interactions. Nature 553:427–436

    PubMed  PubMed Central  Google Scholar 

  • Foulongne V, Sauvage V, Hebert C et al (2012) Human skin Microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS One 7

    Google Scholar 

  • Frank KL, del Pozo JL, Patel R (2008) From clinical microbiology to infection pathogenesis: how daring to be different works for Staphylococcus lugdunensis. Clin Microbiol Rev 21:111–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaitanis G, Magiatis P, Hantschke M et al (2012) The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev 25:106–141

    PubMed  PubMed Central  Google Scholar 

  • Geoghegan JA, Irvine AD, Foster TJ (2018) Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship. Trends Microbiol 26:484–497

    CAS  PubMed  Google Scholar 

  • Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9:244–253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrero DM, Perez F, Conger NG et al (2010) Acinetobacter baumannii—associated skin and soft tissue infections: recognizing a broadening spectrum of disease. Surg Infect (Larchmt) 11:49–57

    Google Scholar 

  • Hannigan GD, Meisel JS, Tyldsley AS et al (2015) The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. MBio 6

    Google Scholar 

  • Harding CM, Hennon SW, Feldman MF (2018) Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol 16:91–102

    CAS  PubMed  Google Scholar 

  • Harrison OJ, Linehan JL, Shih H-Y et al (2019) Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science (80)363:eaat6280

    Google Scholar 

  • Heldt Manica LA, Cohen PR (2017) Staphylococcus lugdunensis infections of the skin and soft tissue: a case series and review. Dermatol Ther (Heidelb) 7:555–562

    Google Scholar 

  • Hendriks A, Cruz AR, Soldaini E et al (2018) Human organotypic models for anti-infective research. Springer, Berlin, Heidelberg, pp 1–22

    Google Scholar 

  • Holland DB, Bojar RA, Farrar MD, Holland KT (2009) Differential innate immune responses of a living skin equivalent model colonized by Staphylococcus epidermidis or Staphylococcus aureus. FEMS Microbiol Lett 290:149–155

    CAS  PubMed  Google Scholar 

  • Holland DB, Bojar RA, Jeremy AHT et al (2008) Microbial colonization of an in vitro model of a tissue engineered human skin equivalent—a novel approach. FEMS Microbiol Lett 279:110–115

    CAS  PubMed  Google Scholar 

  • Hort W, Mayser P (2011) Malassezia virulence determinants. Curr Opin Infect Dis 24:100–105

    PubMed  Google Scholar 

  • Jarrousse V, Castex-Rizzi N, Khammari A et al (2007) Modulation of integrins and filaggrin expression by Propionibacterium acnes extracts on keratinocytes. Arch Dermatol Res 299:441–447

    CAS  PubMed  Google Scholar 

  • Kabashima K, Honda T, Ginhoux F, Egawa G (2019) The immunological anatomy of the skin. Nat Rev Immunol 19:19–30

    CAS  PubMed  Google Scholar 

  • Kantor R, Silverberg JI (2017) Environmental risk factors and their role in the management of atopic dermatitis. Expert Rev Clin Immunol 13:15–26

    CAS  PubMed  Google Scholar 

  • Kashem SW, Haniffa M, Kaplan DH (2017) Antigen-presenting cells in the skin. Annu Rev Immunol 35:469–499

    CAS  PubMed  Google Scholar 

  • Kawamura T, Cohen SS, Borris DL et al (2000) Candidate microbicides block HIV-1 infection of human immature Langerhans cells within epithelial tissue explants. J Exp Med 192:1491–1500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JJ, Ellett F, Thomas CN et al (2019) A microscale, full-thickness, human skin on a chip assay simulating neutrophil responses to skin infection and antibiotic treatments. Lab Chip. https://doi.org/10.1039/C9LC00399A

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim M, Truong NR, James V et al (2015) Relay of herpes simplex virus between Langerhans cells and dermal dendritic cells in human skin. PLoS Pathog 11:e1004812

    PubMed  PubMed Central  Google Scholar 

  • Kippenberger S, Bernd A, Menzel I et al (1997) Candida albicans suppresses transcription of melanogenesis enzymes in cultured melanocytes. Mycoses 40:373–375

    CAS  PubMed  Google Scholar 

  • Kirchhoff L, Olsowski M, Rath P-M, Steinmann J (2019) Exophiala dermatitidis: key issues of an opportunistic fungal pathogen. Virulence 10:984–998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klaka P, Grüdl S, Banowski B et al (2017) A novel organotypic 3D sweat gland model with physiological functionality. PLoS ONE 12:e0182752

    PubMed  PubMed Central  Google Scholar 

  • Klicznik MM, Morawski PA, Höllbacher B et al (2019) Human CD4+ CD103+ cutaneous resident memory T cells are found in the circulation of healthy individuals. Sci Immunol 4:eaav8995

    Google Scholar 

  • Kühbacher A, Burger-Kentischer A, Rupp S (2017a) Interaction of Candida species with the skin. Microorganisms 5:32

    PubMed Central  Google Scholar 

  • Kühbacher A, Henkel H, Stevens P et al (2017b) Central role for dermal fibroblasts in skin model protection against Candida albicans. J Infect Dis 215:1742–1752

    PubMed  Google Scholar 

  • Lacey KA, Geoghegan JA, McLoughlin RM (2016) The role of Staphylococcus aureus virulence factors in skin infection and their potential as vaccine antigens. Pathogens 5

    Google Scholar 

  • Lambe DW, Ferguson KP, Keplinger JL, Gemmell CG (1990) Pathogenicity of Staphylococcus lugdunensis, Staphylococcus schleiferi, and three other coagulase-negative staphylococci in a mouse model and possible virulence factors. Can J Microbiol 455–63

    Google Scholar 

  • Lange-Asschenfeldt B, Marenbach D, Lang C et al (2011) Distribution of bacteria in the epidermal layers and hair follicles of the human skin. Skin Pharmacol Physiol 24:305–311

    CAS  PubMed  Google Scholar 

  • Lee C-R, Lee JH, Park M et al (2017) Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect Microbiol 7

    Google Scholar 

  • Lee WS, Park SY (2015) Deep dermatophytosis induced by Trichophyton rubrum. Korean J Dermatology 53:666–667

    Google Scholar 

  • Li H, Chen L, Zeng S et al (2015) Matrigel basement membrane matrix induces eccrine sweat gland cells to reconstitute sweat gland-like structures in nude mice. Exp Cell Res 332:67–77

    CAS  PubMed  Google Scholar 

  • Li H, Li X, Zhang B et al (2016) Changes in keratins and alpha-smooth muscle actin during three-dimensional reconstitution of eccrine sweat glands. Cell Tissue Res 113–122

    Google Scholar 

  • Limon-Flores AY, Perez-Tapia M, Estrada-Garcia I et al (2005) Dengue virus inoculation to human skin explants: An effective approach to assess in situ the early infection and the effects on cutaneous dendritic cells. Int J Exp Pathol. https://doi.org/10.1111/j.0959-9673.2005.00445.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez CM, Wallich R, Riesbeck K et al (2014) Candida albicans uses the surface protein Gpm1 to attach to human endothelial cells and to Keratinocytes via the adhesive protein vitronectin. PLOS ONE 9

    Google Scholar 

  • Ma Y, Madupu R, Karaoz U et al (2014) Human Papillomavirus community in healthy persons, defined by metagenomics analysis of human microbiome project shotgun sequencing data sets. J Virol 88:4786–4797

    PubMed  PubMed Central  Google Scholar 

  • Mason LMKK, Wagemakers A, Van’t Veer C et al (2016) Borrelia burgdorferi induces TLR2-mediated migration of activated dendritic cells in an ex vivo human skin model. PLoS ONE 11:439–449

    Google Scholar 

  • Mathes SH, Ruffner H, Graf-Hausner U (2014) The use of skin models in drug development. Adv Drug Deliv, Rev

    Google Scholar 

  • Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4:119–128

    PubMed  PubMed Central  Google Scholar 

  • McConnell MJ, Actis L, Pachón J (2013) Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev 37:130–155

    CAS  PubMed  Google Scholar 

  • Miao Y, Sun Y Bin, Liu BC (2014) Controllable production of transplantable adult human high-passage dermal papilla spheroids. Tissue Eng Part A 20:2329–2338

    Google Scholar 

  • Modi SR, Lee HH, Spina CS, Collins JJ (2013) Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499:219–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakazawa K, Nakazawa H, Sahuc F et al (1997) Pigmented human skin equivalent: new method of reconstitution by grafting an epithelial sheet onto a non-contractile dermal equivalent. Pigment Cell Res 10:382–390

    CAS  PubMed  Google Scholar 

  • Natsis NE, Cohen PR (2018) Coagulase-negative Staphylococcus skin and soft tissue infections. Am J Clin Dermatol 19:671–677

    PubMed  Google Scholar 

  • Nguyen TH, Park MD, Otto M (2017) Host response to Staphylococcus epidermidis colonization and infections. Front Cell Infect Microbiol

    Google Scholar 

  • Oh J, Freeman AF, Park M et al (2013) The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res 23:2103–2114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olaniyi RO, Pancotto L, Grimaldi L, Bagnoli F (2018) Deciphering the pathological role of staphylococcal α-Toxin and panton-valentine leukocidin using a novel ex vivo human skin model. Front Immunol 9:951

    PubMed  PubMed Central  Google Scholar 

  • Ortiz AM, Flynn JK, DiNapoli SR et al (2019) Antiretroviral therapy administration in healthy rhesus macaques is associated with transient shifts in intestinal bacterial diversity and modest immunological perturbations. J Virol 93

    Google Scholar 

  • Otto M (2009) Staphylococcus epidermidis—the “accidental” pathogen. Nat Rev Microbiol 7:555–567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otto M (2014) Staphylococcus epidermidis pathogenesis. Humana Press, Totowa, NJ. pp 17–31

    Google Scholar 

  • Park CO, Fu X, Jiang X et al (2018) Staged development of long-lived T-cell receptor αβ T H 17 resident memory T-cell population to Candida albicans after skin infection. J Allergy Clin Immunol 142:647–662

    CAS  PubMed  Google Scholar 

  • Parker D (2017) Humanized mouse models of Staphylococcus aureus infection. Front Immunol 8:1–6

    Google Scholar 

  • Peres NTDA, da Silva LG, da Santos RS et al (2016) In vitro and ex vivo infection models help assess the molecular aspects of the interaction of Trichophyton rubrum with the host milieu. Med Mycol 54:420–427

    CAS  PubMed  Google Scholar 

  • Popov L, Kovalski J, Grandi G et al (2014) Three-dimensional human skin models to understand Staphylococcus aureus skin colonization and infection. Front Immunol 5:41

    PubMed  PubMed Central  Google Scholar 

  • Poulakou G, Lagou S, Tsiodras S (2019) Whatʼs new in the epidemiology of skin and soft tissue infections in 2018? Curr Opin Infect Dis 32:77–86

    PubMed  Google Scholar 

  • Poyntner C, Blasi B, Arcalis E et al (2016) The transcriptome of Exophiala dermatitidis during ex-vivo skin model infection. Front Cell Infect Microbiol 6:136

    PubMed  PubMed Central  Google Scholar 

  • Prohic A, Jovovic Sadikovic T, Krupalija-Fazlic M, Kuskunovic-Vlahovljak S (2016) Malassezia species in healthy skin and in dermatological conditions. Int J Dermatol 55:494–504

    PubMed  Google Scholar 

  • Prunieras M, Regnier M, Woodley D (1983) Methods for cultivation of keratinocytes with an air-liquid interface. J Invest Dermatol 81:S28–S33

    Google Scholar 

  • Pupovac A, Senturk B, Griffoni C et al (2018) Toward immuno competent 3D skin models. Adv Healthc Mater 7:1–11

    Google Scholar 

  • Qesari M, Richter A, Ogonek J et al (2016) Cytomegalovirus-specific T cells isolated by IFN-γ secretion assay do not induce significant graft-versus-host reactions in vitro. Transplantation 100:2352–2361

    CAS  PubMed  Google Scholar 

  • Ray GT, Suaya JA, Baxter R (2013) Incidence, microbiology, and patient characteristics of skin and soft-tissue infections in a U.S. population: a retrospective population-based study. BMC Infect Dis 13:1

    Google Scholar 

  • Raz-Pasteur A, Ullmann Y, Berdicevsky I (2011) The pathogenesis of Candida infections in a human skin model: scanning electron microscope observations. ISRN Dermatol 2011:1–6

    Google Scholar 

  • Régnier M, Patwardhan A, Scheynius A, Schmidt R (1998) Reconstructed human epidermis composed of keratinocytes, melanocytes and Langerhans cells. Med Biol Eng Comput 36:821–824

    PubMed  Google Scholar 

  • Rudramurthy SM, Honnavar P, Chakrabarti A et al (2014) Association of Malassezia species with psoriatic lesions. Mycoses 57:483–488

    CAS  PubMed  Google Scholar 

  • Rupp ME (2014) Clinical characteristics of infections in humans due to Staphylococcus epidermidis. Methods Mol Biol 1–16

    Google Scholar 

  • Saintive S, Abad E, Ferreira DDC et al (2017) What is the role of Staphylococcus aureus and herpes virus infections in the pathogenesis of atopic dermatitis? Future Microbiol 12:1327–1334

    CAS  PubMed  Google Scholar 

  • Sakr A, Brégeon F, Mège JL,et al (2018) Staphylococcus aureus nasal colonization: an update on mechanisms, epidemiology, risk factors, and subsequent infections. Front Microbiol 9

    Google Scholar 

  • Salgado G, Ng YZ, Koh LF et al (2017) Human reconstructed skin xenografts on mice to model skin physiology. Differentiation 98:14–24

    CAS  PubMed  Google Scholar 

  • Sanmiguel A, Grice EA (2015) Interactions between host factors and the skin microbiome. Cell Mol Life Sci 72:1499–1515

    CAS  PubMed  Google Scholar 

  • Schaudinn C, Dittmann C, Jurisch J et al (2017) Development, standardization and testing of a bacterial wound infection model based on ex vivo human skin. 12:e0186946

    Google Scholar 

  • Schulz A, Jiang L, de Vor L et al (2019) Neutrophil recruitment to noninvasive MRSA at the stratum corneum of human skin mediates transient colonization. Cell Rep. https://doi.org/10.1016/j.celrep.2019.09.055

    Article  PubMed  PubMed Central  Google Scholar 

  • Seebacher C, Bouchara JP, Mignon B (2008) Updates on the epidemiology of dermatophyte infections. Mycopathologia 166:335–352

    PubMed  Google Scholar 

  • Serra R, Grande R, Butrico L et al (2015) Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev Anti Infect Ther 13:605–613

    CAS  PubMed  Google Scholar 

  • Shisler JL (2015) Immune evasion strategies of Molluscum contagiosum virus. In: Advances in virus research, 1st edn. Elsevier Inc., pp 201–252

    Google Scholar 

  • Shu M, Wang Y, Yu J et al (2013) Fermentation of Propionibacterium acnes, a Commensal Bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS ONE 8:e55380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shumba P, Shambat SM, Siemens N (2019) The role of streptococcal and staphylococcal exotoxins and proteases in human necrotizing soft tissue infections. Toxins (Basel) 11

    Google Scholar 

  • Spaan AN, Surewaard BGJ, Nijland R, van Strijp JAG (2013) Neutrophils versus Staphylococcus aureus: a biological tug of war. Annu Rev Microbiol 67:629–650

    CAS  PubMed  Google Scholar 

  • Steinstraesser L, Niederbichler MSAD, Stupka MBJ et al (2010) A novel human skin chamber model to study wound infection ex vivo. 357–365

    Google Scholar 

  • Stevens DL, Bryant AE (2016) Impetigo, erysipelas and cellulitis. In: Ferretti JJ, Stevens DL, Fischetti VA (eds) Streptococcus pyogenes: basic biology to clinical manifestations. Oklahoma City: University of Oklahoma Health Sciences Center. Available at: https://www.ncbi.nlm.nih.gov/books/NBK333408/

  • Sun W, Luo Z, Lee J et al (2019) Organ-on-a-chip for cancer and immune organs modeling. Adv Healthc Mater 8

    Google Scholar 

  • Taylor SL, Moffat JF (2005) Replication of varicella-zoster virus in human skin organ culture. J Virol 79:11501–11506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Theelen B, Cafarchia C, Gaitanis G et al (2018) Malassezia ecology, pathophysiology, and treatment. Med Mycol 56:S10–S25

    CAS  PubMed  Google Scholar 

  • Tognarelli EI, Palomino TF, Corrales N et al (2019) Herpes simplex virus evasion of early host antiviral responses. Front Cell Infect Microbiol 9

    Google Scholar 

  • Toussaint F, Sticherling M (2019) Multiple dermal abscesses by Trichophyton rubrum in an immunocompromised patient. Front Med 6:1–4

    Google Scholar 

  • Valencia-Herrera A, Toledo-Bahena M, Ramírez-Cortés E et al (2018) Association of Malassezia to atopic dermatitis. Curr Fungal Infect Rep 12:201–206

    Google Scholar 

  • Van Den Bogaard EH, Tjabringa GS, Joosten I et al (2014) Crosstalk between keratinocytes and T Cells in a 3D microenvironment: a model to study inflammatory skin diseases. J Invest Dermatol 134:719–727

    PubMed  Google Scholar 

  • Vono M, Lin A, Norrby-Teglund A et al (2017) Neutrophils acquire the capacity for antigen presentation to memory CD4+ T cells in vitro and ex vivo. Blood 129:1991–2001

    PubMed  PubMed Central  Google Scholar 

  • Walker MJ, Barnett TC, McArthur JD et al (2014) Disease manifestations and pathogenic mechanisms of group A Streptococcus. Clin Microbiol Rev 27:264–301

    PubMed  PubMed Central  Google Scholar 

  • Wang L, Ding Y, Lin Z et al (2017) Tailoring the binding properties of SpA Ig binding domains by in vitro molecular evolution. Int J Clin Exp Med 10:14244–14255

    Google Scholar 

  • Watanabe R, Gehad A, Yang C et al (2015) Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci Transl Med 7

    Google Scholar 

  • White TC, Findley K, Dawson TL et al (2014) Fungi on the skin: dermatophytes and Malassezia. Cold Spring Harb Perspect Med 4

    Google Scholar 

  • Williams MR, Costa SK, Zaramela LS et al (2019) Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Sci Transl Med 11

    Google Scholar 

  • Winkel BMF, de Korne CM, van Oosterom MN et al (2019) A tracer-based method enables tracking of Plasmodium falciparum malaria parasites during human skin infection. Theranostics 9:2768–2778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Zhao H, Li C et al (2015) Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PLoS Genet 11:1–26

    Google Scholar 

  • Wu SJL, Grouard-Vogel G, Sun W et al (2000) Human skin Langerhans cells are targets of dengue virus infection. Nat Med 6:816–820

    CAS  PubMed  Google Scholar 

  • Yang J-J, Chang T-W, Jiang Y et al (2018) Commensal Staphylococcus aureus provokes immunity to protect against skin infection of methicillin-resistant Staphylococcus aureus. Int J Mol Sci 19

    Google Scholar 

  • Zeng JS, Sutton DA, Fothergill AW et al (2007) Spectrum of clinically relevant Exophiala species in the United States. J Clin Microbiol 45:3713–3720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Peng T, Johnston C et al (2013) Immune surveillance by CD8αα+ skin-resident T cells in human herpes virus infection. Nature 497:494–497

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Competing Interests

Elena Boero (EB) and Malgorzata Ewa Mnich are participating in a postgraduate studentship programme (DISSection) at GSK. Andrea Guido Oreste Manetti, Elisabetta Soldaini and Fabio Bagnoli are employees of GSK. Fabio Bagnoli reports ownership of GSK stocks and owns patents on S. aureus vaccine candidates. Luca Grimaldi is an employee of the University of Siena, Italy, and previously was involved in a collaboration between GSK and the Azienda Ospedaliera Universitaria Senese, Siena, Italy, providing human samples for research work conducted in GSK. The study was approved by local ethical committees and conducted according to good clinical practice in accordance with the declaration of Helsinki. Patients had given their written consent to the study. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript, apart from those disclosed.

Funding

This work was undertaken at the request of and sponsored by GlaxoSmithKline Biologicals SA, and it was also supported by the European Union’s Horizon 2020 research H2020-MSCA-ITN (No. 675106 coordinated by Dr. Fabio Bagnoli, GSK, Siena, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Bagnoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boero, E., Mnich, M.E., Manetti, A.G.O., Soldaini, E., Grimaldi, L., Bagnoli, F. (2021). Human Three-Dimensional Models for Studying Skin Pathogens. In: Bagnoli, F., Rappuoli, R. (eds) Three Dimensional Human Organotypic Models for Biomedical Research. Current Topics in Microbiology and Immunology, vol 430. Springer, Cham. https://doi.org/10.1007/82_2020_219

Download citation

Publish with us

Policies and ethics