Skip to main content

Synthesis of Novel Chain Extended and Crosslinked Polylactones for Tissue Regeneration and Controlled Release Applications

  • Chapter
  • First Online:
Active Implants and Scaffolds for Tissue Regeneration

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 8))

Abstract

In addition to ring opening homo- and co-polymerization, chain extension and crosslinking are attractive routes for synthesizing polylactones. Through manipulation of molecular composition and molecular architecture a wide range of mechanical, thermal and degradation properties can be achieved, and using different coupling chemistries, polylactones belonging to many kinds of linear and network-structured polymer families have been synthesized. The poly(ester-urethanes), poly(ester-amides), poly(ester-urethane-amides), polyphosphoesters, poly(ester-anhydrides) and methacrylated crosslinking polyesters polymer families have great potential in biomedical applications such as surgery, tissue-engineering, and controlled active agent release. Mechanical properties, degradation characteristics and rate, and release properties of these polymers can be adjusted within wide ranges. Biopolymers showing bone-like hardness or soft non-creeping elasticity have been synthesized. Poly(ester-anhydrides) in particular combine useful properties of polyesters and polyanhydrides, and have been shown to degrade by surface-erosion, enabling controlled macromolecular active agent release. Photocuring of liquid pre-polymers enables the use of biopolymers in high precision lithographic techniques like micromolding in capillaries, stereolithography and two-photon polymerization. This makes it possible to design and customize complicated scaffold structures, with desired drug release profiles for various biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nair, L.K., Laurencin, C.T.: Biodegradable polymers as biomaterials. Progress Polym. Sci. 32, 762–798 (2007)

    Article  Google Scholar 

  2. Auras, R., Harte, R., Selke, S.: An overview of polylactides as packaging materials. Macromol. Biosci. 4, 835–864 (2004)

    Article  Google Scholar 

  3. Van de Velde, K., Kiekens, P.: Polymer testing, biopolymers: overview of several properties and consequences on their applications. Polym. Test. 21, 433–442 (2002)

    Article  Google Scholar 

  4. Seppälä, J.V., Korhonen, H., Kylmä, J., Tuominen, J.: General methodology for chemical synthesis of polyester. In: Doi, Y., Steinbüchel, A. (eds.) Biopolymers vol 3b: polyesters II—properties and chemical synthesis, pp. 327–369. Wiley–VCH, Weinheim (2002)

    Google Scholar 

  5. Kowalski, A., Duda, A., Penczek, S.: Mechanism of cyclic ester polymerization initiated with tin(II) octoate. 2. Macromolecules fitted with tin(II) alkoxide species observed directly in MALDI-TOF spectra. Macromolecules 33, 702–709 (2000)

    Article  Google Scholar 

  6. Narayanan, N., Roychoudhury, P.K., Srivastava, A.: L(+) lactic acid fermentation and its product polymerization. Electron. J. Biotechnol. 7, 167–179 (2004)

    Google Scholar 

  7. Seppälä, J.V., Helminen, A.O., Korhonen, H.: Degradable polyesters through chain linking for packaging and biomedical applications. Macromol. Biosci. 282, 208–217 (2004)

    Article  Google Scholar 

  8. Korhonen, H., Helminen, A., Seppälä, J.V.: Synthesis of polylactides in the presence of co-initiators with different numbers of hydroxyl groups. Polymer 42, 7541–7549 (2001)

    Article  Google Scholar 

  9. Korhonen, H., Seppälä, J.V.: Synthesis of poly(ester-anhydride)s based on poly(ε-caprolactone) prepolymer. J. Appl. Polym. Sci. 81, 176–185 (2001)

    Article  Google Scholar 

  10. Korhonen, H., Helminen, A., Seppälä, J.V.: Synthesis of poly(ester-anhydrides) based on different polyester precursors. Macromol. Chem. Phys. 205, 937–945 (2004)

    Article  Google Scholar 

  11. Kim, S.H., Han, Y.K., Kwang-Duk, A., Kim, Y.H., Taihyun, C.: Preparation of star-shaped polylactide with pentaerythritol and stannous octoate. Macromol. Chem. 194, 3229–3236 (1993)

    Article  Google Scholar 

  12. Lang, M., Chu, C.C.: Functionalized multiarm poly(ε-caprolactone)s: synthesis, structure analysis, and network formation. J. Appl. Polym. Sci. 86, 2296–2306 (2002)

    Article  Google Scholar 

  13. Burgath, A., Sunder, A., Neuner, A., Mülhaupt, R., Frey, H.: Multi-arm star block copolymers based on ε-caprolactone with hyperbranched polyglycerol core. Macromol. Chem. Phys. 201, 792–797 (2000)

    Article  Google Scholar 

  14. Hakala, R.A., Korhonen, H., Holappa, S., Seppälä, J.V.: Hydrophobicities of poly(ε-caprolactone) oligomers functionalized with different succinic anhydrides. Eur. Polym. J. 45, 557–564 (2009)

    Article  Google Scholar 

  15. Korhonen, H., Hakala, R.A., Helminen, A.O., Seppälä, J.V.: Synthesis and hydrolysis behaviour of poly(ester-anhydrides) from polyester precursors containing alkenyl moieties. Macromol. Biosci. 6, 496–505 (2006)

    Article  Google Scholar 

  16. Chi, H., Xu, K., Xue, D., Song, C., Zhang, W., Wang, P.: Synthesis of dodecenyl succinic anhydride (DDSA) corn starch. Food Res. Int. 40, 232–238 (2007)

    Article  Google Scholar 

  17. Lin, L.H., Chen, K.M.: Preparation and surface activity of modified soy protein. J. Appl. Polym. Sci. 102, 3498–3503 (2006)

    Article  Google Scholar 

  18. Tangpasuthadol, V., Pongchaisirikul, N., Hoven, V.P.: Surface modification of chitosan films. Effects of hydrophobicity on protein adsorption. Carbohydr. Res. 338, 937–942 (2003)

    Article  Google Scholar 

  19. Hiltunen, K., Seppälä, J., Härkönen, M.: Lactic acid based poly(ester-urethanes). Use of hydroxyl terminated pre-polymer in urethane synthesis. J. Appl. Polym. Sci. 63, 1091–1100 (1997)

    Article  Google Scholar 

  20. Hiltunen, K., Seppälä, J., Härkönen, M.: Lactic acid based poly(ester-urethanes). The effects of different polymerization conditions on the polymer structure and properties. J. Appl. Polym. Sci. 64, 865–873 (1997)

    Article  Google Scholar 

  21. Helminen, A., Kylmä, J., Tuominen, J., Seppälä, J.V.: Effect of structure modification on rheological properties of biodegradable poly(ester-urethane). Polym. Eng. Sci. 40, 1655–1662 (2000)

    Article  Google Scholar 

  22. Kylmä, J., Seppälä, J.: Synthesis and characterization of biodegradable thermoplastic Poly(ester-urethane) elastomer. Macromolecules 30, 2876–2883 (1997)

    Article  Google Scholar 

  23. Kylmä, J., Härkönen, M., Seppälä, J.: The modification of lactic acid based poly(ester-urethane) by copolymerization. J. Appl. Polym. Sci. 63, 1865–1872 (1997)

    Article  Google Scholar 

  24. Hiljanen-Vainio, M., Kylmä, J., Hiltunen, K., Seppälä, J.: Impact modification of lactic acid based poly(ester-urethanes) by blending. J. Appl. Polym. Sci. 63, 1335–1343 (1997)

    Article  Google Scholar 

  25. Kylmä, J., Hiljanen-Vainio, M., Seppälä, J.: Miscibility, morphology and mechanical properties of rubber-modified biodegradable poly(ester-urethanes). J. Appl. Polym. Sci. 76, 1074–1084 (2000)

    Article  Google Scholar 

  26. Tuominen, J., Kylmä, J., Seppälä, J., Kapanen, A., Venelampi, O., Itävaara, M.: Biodegradation of lactic acid based polymers under controlled composting conditions and evaluation of the ecotoxicological impact. Biomacromolecules 3, 445–455 (2002)

    Article  Google Scholar 

  27. Tokiwa, Y., Suzuki, T., Ando, T.: Synthesis of copolyamide-esters and some aspects involved in their hydrolysis by lipase. J. Appl. Polym. Sci. 24, 1701–1711 (1979)

    Article  Google Scholar 

  28. Tuominen, J., Korhonen, H., Seppälä, J.: The synthesis of lactic acid and ε-caprolactone based poly(ester-amides). In: International Symposium on Recent Advances in Ring Opening (Metathesis) Polymerization, Mons, Belgium, April 12–15 (1999)

    Google Scholar 

  29. Tuominen, J., Seppälä, J.: Synthesis and characterization of lactic acid based poly(ester-amide). Macromolecules 33, 3530–3535 (2000)

    Article  Google Scholar 

  30. Tuominen, J., Kylmä, J., Seppälä, J.: Chain extending of lactic acid oligomers. 2. Increase of molecular weight with 1, 6-hexamethylene diisocyanate and 2, 2′-bis(2-oxazoline). Polymer 43, 3–10 (2002)

    Article  Google Scholar 

  31. Tarvainen, T., Karjalainen, T., Malin, M., Pohjolainen, S., Tuominen, J., Seppälä, J., Järvinen, K.: Degradation of and drug release from a novel 2, 2-bis(2-oxazoline) linked poly(lactic acid) polymer. J. Control. Drug Release 81, 251–261 (2002)

    Article  Google Scholar 

  32. Tarvainen, T., Malin, M., Barragan, I., Tuominen, J., Seppälä, J., Järvinen, K.: Effects of incorporated drugs on degradation of novel 2, 2′-bi(2-oxazoline) linked poly(lactic acid) films. Int. J. Pharm. 310, 162–167 (2006)

    Article  Google Scholar 

  33. Tarvainen, T., Karjalainen, T., Malin, M., Peräkorpi, K., Tuominen, J., Seppälä, J., Järvinen, K.: Drug release profiles from and degradation of a novel biodegradable polymer, 2, 2-bis(2-oxazoline) linked poly(ε-caprolactone). Eur. J. Pharm. Sci. 16, 323–331 (2002)

    Article  Google Scholar 

  34. Tarvainen, T., Malin, M., Suutari, T., Pöllänen, M., Tuominen, J., Seppälä, J., Järvinen, K.: Pancreatin enhanced erosion of and macromolecule release from 2, 2-bis(2-oxazoline)-linked poly(ε-caprolactone). J. Control. Release 86, 213–222 (2003)

    Article  Google Scholar 

  35. Pulkkinen, M., Malin, M., Tarvainen, T., Saarimäki, T., Seppälä, J., Järvinen, K.: Effects of block length on the enzymatic degradation and erosion of oxazoline linked poly-ε-caprolactone. Eur. J. Pharm. Sci. 31, 119–128 (2007)

    Article  Google Scholar 

  36. Pulkkinen, M., Palmgrén, J.J., Auriola, S., Malin, M., Seppälä, J., Järvinen, K.: High-performance liquid chromatography/electrospray ionization tandem mass spectrometry for characterization of enzymatic degradation of 2, 2′-bis(2-oxazoline)-linked poly-ε-caprolactone. Rapid Commun. Mass Spectrom. 22, 121–129 (2008)

    Article  Google Scholar 

  37. Pulkkinen, M., Malin, M., Böhm, J., Tarvainen, T., Wirth, T., Seppälä, J., Järvinen, K.: In vivo implantation of 2, 2′-bis(oxazoline)-linked poly-ε-caprolactone: Proof for enzyme sensitive surface erosion and biocompatibility. Eur. J. Pharm. Sci. 36, 310–319 (2009)

    Article  Google Scholar 

  38. Zhao, Z., Wang, J., Mao, H.-Q., Leong, K.W.: Polyphosphoesters in drug and gene delivery. Adv. Drug Deliv. Rev. 55, 483–499 (2003)

    Article  Google Scholar 

  39. Allcock, H.R., O’Connor, S.J.M., Olmeijer, D.L., Napierala, M.E., Cameron, C.G.: Polyphosphazenes bearing branched and linear oligoethyleneoxy side groups as solid solvents for ionic conduction. Macromolecules 29, 7544–7552 (1996)

    Article  Google Scholar 

  40. Pretula, J., Kaluzynski, K., Szymanski, R., Penczek, S.: Transesterification of oligomeric dialkyl phosphonates leading to the high-molecular-weight poly-H-phosphonates. J. Polym. Sci. A Polym. Chem. 37(9), 1365–1381 (1999)

    Article  Google Scholar 

  41. Shimasaki, C., Kitano, H.: Phosphorus-containing polymers (overview). In: Salamone, J.C. (ed.) Polymeric materials encyclopedia. CRC Press, New York (1996)

    Google Scholar 

  42. Puska, M., Silva-Nykänen, V.R., Korventausta, J., Nykänen, A., Närhi, T., Ruokolainen, J., Seppälä, J.: Calcium phosphate formation on ethylphosphoester of poly(ε-caprolactone) and poly[bis(methacrylate)]phosphazene in vitro. Key Eng. Mater. (Bioceramics 21) 396–398, 171–174 (2009)

    Google Scholar 

  43. Miao, H., Fan, Y., Liu, Y., Hao, J., Deng, X.: Biodegradable poly(sebacic anhydride-co-ε-caprolactone) multi-block copolymers: synthesis, characterization, crystallinity and crystalline morphology. Eur. Polym. J. 43, 1055–1064 (2007)

    Article  Google Scholar 

  44. Storey, R.F., Taylor, A.E.: Synthesis of novel biodegradable poly(ester-anhydride)s. J. Macromol. Sci. Pure Appl. Chem. 34, 265–280 (1997)

    Article  Google Scholar 

  45. Xiao, C., Zhu, K.J.: Synthesis and in vitro degradation properties of poly[(tetramethylene carbonate)-co-(sebacic anhydride)]. Polym. Int. 50, 414–420 (2001)

    Article  Google Scholar 

  46. Pfeifer, B.A., Burdick, J.A., Langer, R.: Formulation and surface modification of poly(ester-anhydride) micro- and nanosphres. Biomaterials 26, 117–124 (2005)

    Article  Google Scholar 

  47. Pfeifer, B.A., Burdick, J.A., Langer, R.: Poly(ester-anhydride): poly(β-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection. Int. J. Pharm. 34, 210–219 (2005)

    Article  Google Scholar 

  48. Domb, A.J., Manor, N., Elmalak, O.: Biodegradable bone cement compositions based on acrylate and epoxide terminated poly(propylene fumarate) oligomers and calcium salt compositions. Biomaterials 17, 411–417 (1996)

    Article  Google Scholar 

  49. Wang, Y., Ameer, G.A., Sheppard, B.J., Langer, R.: A tough biodegradable elastomer. Nat. Biotechnol. 20, 602–606 (2002)

    Article  Google Scholar 

  50. Anseth, K.S., Shastri, V.R., Langer, R.: Photopolymerizable degradable polyanhydrides with osteocompatibility. Nat. Biotechnol. 17, 156–159 (1999)

    Article  Google Scholar 

  51. Burdick, J.A., Philpott, L.M., Anseth, K.S.: Synthesis and characterization of tetrafunctional lactic acid oligomers: a potential in situ forming degradable orthopaedic biomaterial. J. Polym. Sci. A Polym. Chem. 39, 683–692 (2001)

    Article  Google Scholar 

  52. Peter, S.J., Miller, M.J., Yaszemski, M.J., Mikos, A.G.: Poly(propylene fumarate). In: Domb, A.J., Kost, J., Wiseman, D.M. (eds.) Handbook of Biodegradable Polymers. Harwood Academic Publishers, Amsterdam (1997)

    Google Scholar 

  53. Helminen, A., Korhonen, H., Seppälä, J.V.: Structure modification and crosslinking of methacrylated polylactide oligomers. J. Appl. Polym. Sci. 86(14), 3616–3624 (2002)

    Article  Google Scholar 

  54. Helminen, A., Korhonen, H., Seppälä, J.V.: Crosslinked poly(ε-caprolactone/d, l-lactide) copolymers with elastic properties. Macromol. Chem. Phys. 203(18), 2630–2639 (2002)

    Article  Google Scholar 

  55. Turunen, M.P.K., Korhonen, H., Tuominen, J., Seppälä, J.V.: Synthesis, characterization and crosslinking of functional star-shaped poly(ε-caprolactone). Polym. Int. 51, 92–100 (2001)

    Article  Google Scholar 

  56. Aoyagi, T., Miyata, F., Nagase, Y.: Preparation of cross-linked aliphatic polyester and application to thermo-responsive material. J. Control. Release 32, 87–96 (1994)

    Article  Google Scholar 

  57. Davis, K.A., Burdick, J.A., Anseth, K.S.: Photoinitiated crosslinked degradable copolymer networks for tissue engineering applications. Biomaterials 24, 2485–2495 (2003)

    Article  Google Scholar 

  58. Sawhney, A.S., Pathak, C.P., Hubbell, J.A.: Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxy acid) diacrylate macromers. Macromolecules 26, 581–587 (1993)

    Article  Google Scholar 

  59. Storey, R.F., Warren, S.C., Allison, C.J., Puckett, A.D.: Methacrylate-endcapped poly(d, l-lactide-co-trimethylene carbonate) oligomers. Network formation by thermal free-radical curing. Polymer 38, 6295–6301 (1997)

    Article  Google Scholar 

  60. Helminen, A., Korhonen, H., Seppälä, J.V.: Crosslinked poly(ester-anhydrides) based on poly(ε-caprolactone) and polylactide oligomers. J. Polym. Sci. A Polym. Chem. 41, 3788–3797 (2003)

    Article  Google Scholar 

  61. Kim, B.S., Hrkach, J.S., Langer, R.: Synthesis and characterization of novel degradable photocrosslinked poly(ether-anhydride) networks. J. Polym. Sci. A Polym. Chem. 38, 1277–1282 (2000)

    Article  Google Scholar 

  62. Quick, D.J., Macdonald, K.K., Anseth, K.S.: Delivering DNA from crosslinked, surface eroding polyanhydrides. J. Control. Release 97, 333–343 (2004)

    Article  Google Scholar 

  63. Elomaa, L.: Preparation of polycaprolactone based tissue engineering scaffolds by stereolithography. Master’s thesis, Helsinki University of Technology, Espoo (2009)

    Google Scholar 

  64. Mönkäre, J., Hakala, R.A., Vlasova, M.A., Huotari, A., Kilpeläinen, M., Kiviniemi, A., Meretoja, V., Herzig, K.H., Korhonen, H., Seppälä, J.V., Järvinen, K.: Biocompatible photocrosslinked poly(ester anhydride) based on functionalized poly(ε-caprolactone) prepolymer shows surface erosion controlled drug release in vitro and in vivo. J. Control. Release 146, 349–355 (2010)

    Article  Google Scholar 

  65. Mönkäre, J., Hakala, R.A., Kilpeläinen, M., Herzig, K.H., Korhonen, H., Seppälä, J.V., Järvinen, K.: Photocrosslinked poly(ester anhydride) for controlled delivery of peptide YY3-36. In: 23rd European Conference on Biomaterials, ESB2010, September 11–15, 2010 Tampere, Finland (2010)

    Google Scholar 

  66. Rich, J., Korhonen, H., Hakala, R., Korventausta, J., Elomaa, L., Seppälä, J.: Porous biodegradable scaffold: predetermined porosity by dissolution of poly(ester-anhydride) fibers from polyester matrix. Macromol. Biosci. 9, 654–660 (2009)

    Article  Google Scholar 

  67. Storey, R.F., Wiggins, J.S., Mauritz, K.A., Puckett, A.D.: Bioabsorbable composites. II: nontoxic, l-lysine-based poly(ester-urethane) matrix composites. Polym. Compos. 14, 17–25 (1993)

    Article  Google Scholar 

  68. Grijpma, D.W., Altpeter, H., Bevis, M.J., Feijen, J.: Improvement of the mechanical properties of poly(d, l-lactide) by orientation. Polym. Int. 51, 845–851 (2002)

    Article  Google Scholar 

  69. Amsden, B.G., Misra, G., Gu, F., Younes, H.M.: Synthesis and characterization of a photo-cross-linked biodegradable elastomer. Biomacromolecules 5, 2479–2486 (2004)

    Article  Google Scholar 

  70. Amsden, B.: Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering. Soft Matter 3, 1335–1348 (2007)

    Article  Google Scholar 

  71. Storey, R.F., Wiggins, J.S., Puckett, A.D.: Hydrolyzable poly(ester-urethane) networks from l-lysine diisocyanate and d, l-lactide/ε-caprolactone homo- and copolyester triols. J. Polym. Sci. A Polym. Chem. 32, 2345–2363 (1994)

    Article  Google Scholar 

  72. Baroli, B.: Photopolymerization of biomaterials: issues and potentialities in drug delivery, tissue engineering, and cell encapsulation applications. J. Chem. Technol. Biotechnol. 81, 491–499 (2006)

    Article  Google Scholar 

  73. Elisseeff, J., Anseth, K., Sims, D., Mcintosh, W., Randolph, M., Langer, R.: Transdermal photopolymerization for minimally invasive implantation. Proc. Natl Acad. Sci. USA 96, 3104–3107 (1999)

    Article  Google Scholar 

  74. Meretoja, V., Helminen, A., Korventausta, J., Haapa-aho, V., Seppälä, J., Närhi, T.: Crosslinked poly(ε-caprolactone/d,l-lactide) bioactive glass composite scaffolds for bone tissue engineering. J. Biomed. Mater. Res. A 77A, 261–268 (2006)

    Article  Google Scholar 

  75. Malin, M., Korventausta, J., Meretoja, V., Seppälä, J.: Elastic ceramic-polymer scaffold with interconnected pore structure: preparation and in vitro reactivity. Key Eng. Mater. 361–363 (Bioceramics 20), 395–398 (2008)

    Google Scholar 

  76. Meretoja, V.V., Malin, M., Seppälä, J.V., Närhi, T.O.: Osteoblast response to continuous phase macroporous scaffold under static and dynamic culture conditions. J. Biomed. Mater. Res. A 89A, 317–325 (2008)

    Google Scholar 

  77. Meretoja, V., Tirri, T., Malin, M., Seppälä, J., Närhi, T.: Subcutaneous implantation of continuous phase macroporous scaffolds with and without cells. In: Word Biomaterials Conference, May 28-June 1, 2008 Amsterdam, The Netherlands (2008)

    Google Scholar 

  78. Xia, Y., Kim, E., Whitesides, G.M.: Micromolding of polymers in capillaries: applications in microfabrication. Chem. Mater. 8, 1558–1567 (1996)

    Article  Google Scholar 

  79. Jansen, J., Melchels, F.P.W., Feijen, J., Grjpma, D.W.: Fumaric acid monoethyl ester-functionalized poly(d, l-lactide/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography. Biomacromolecules 10, 214–220 (2009)

    Article  Google Scholar 

  80. Melchels, F.P.W., Feijen, J., Grjpma, D.W.: A poly(d, l-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30, 3801–3809 (2009)

    Article  Google Scholar 

  81. Koskela, J.: Light-induced biomaterial microfabrication for advanced cell culturing—a comparative study. Master’s thesis, Tampere University of Technology, Tampere (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka Seppälä .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seppälä, J., Korhonen, H., Hakala, R., Malin, M. (2011). Synthesis of Novel Chain Extended and Crosslinked Polylactones for Tissue Regeneration and Controlled Release Applications. In: Zilberman, M. (eds) Active Implants and Scaffolds for Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2010_52

Download citation

  • DOI: https://doi.org/10.1007/8415_2010_52

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18064-4

  • Online ISBN: 978-3-642-18065-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics