Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  2. Edwards WD, Tajik AJ, Seward JB (1981) Standardized nomenclature and anatomic basis for regional tomographic analysis of the heart. Mayo Clin Proc 56:479–497

    CAS  PubMed  Google Scholar 

  3. Higgins CB, De Roos A (2003) Cardiovascular MRI and MRA. Lippincott Williams & Wilkins Philadelphia

    Google Scholar 

References

  1. Ho KK, Pinsky JL, Kannel WB, Levy D (1993) The epidemiology of heart failure: The Framingham Study. J Am Coll Cardiol 22:6A–13A

    CAS  PubMed  Google Scholar 

  2. Teichholz LE, Kreulen T, Herman MV, Gorlin R (1976) Problems in echocardiographic volume determination: Echocardiographic-angiographic correlation in presence or absence of asynergy. Am J Cardiol 37:7–11

    Article  CAS  PubMed  Google Scholar 

  3. Zehender M, Kasper W, Kauder E, Schonthaler M, Geibel A, Olschewski M, Just H (1993) Right ventricular infarction as an independent predictor of prognosis after acute inferior myocardial infarction. N Engl J Med 328:981–988

    Article  CAS  PubMed  Google Scholar 

  4. Amico AF, Lichtenberg GS, Reisner SA et al (1989) Superiority of visual versus computerized echocardiography estimation of radionuclide left ventricular ejection fraction. Am Heart J 118:1259–1265

    Article  CAS  PubMed  Google Scholar 

  5. Bellenger NG, Francis JM, Davies CL et al (2000) Establishment and performance of a magnetic resonance of cardiac function clinic. J Cardiovasc Magn Reson 2:15–22

    CAS  PubMed  Google Scholar 

  6. Chuang ML, Hibberd MG, Salton CJ et al (2000) Importance of imaging method over imaging modality in non invasive determination of left ventricular volumes and ejection fraction: assessment by two-and three-dimensional echocardiography and magnetic resonance imaging. J Am Coll Cardiol 35:477–484

    Article  CAS  PubMed  Google Scholar 

  7. Mohiaddin RH, Longmore DB (1993) Functional aspects of cardiovascular nuclear magnetic resonance imaging: techniques and application. Circulation 88:264–281

    CAS  PubMed  Google Scholar 

  8. Mogelvang J, Lindvig K, Sondergaard L, Saunamaki K, Henriksen O (1993) Reproducibility of cardiac volume measurements including left ventricular mass determined by MRI. Clin Physiol 13:587–597

    CAS  PubMed  Google Scholar 

  9. Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJS, Cleland JGF, Pennel DJ (2000) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance: are they interchangeable? Eur Heart J 21:1387–1396

    Article  CAS  PubMed  Google Scholar 

  10. Morales MA, Positano V, Lombardi M, Rodriguez O, Passera M, Rovai D (2004) Semiautomatic detection of left ventricular contours in contrast-enhanced echocardiographic images: comparison with magnetic resonance imaging. J Am Soc Echocardiogr 17:876–882

    PubMed  Google Scholar 

  11. Lorenz CH, Walker ES, Morgan VL, Graham TP, Klein SS (1999) Normal human right and left ventricular mass, systolic function and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1:7–21

    CAS  PubMed  Google Scholar 

  12. Marcus JT, DeWaal LK, Gotte MJ, van der Geest RJ, Heethaar RM, Van Rossum AC (1999) MRI-derived left ventricular function parameters and mass in healthy young adults: relation with gender and body size. Int J Card Imaging 15:411–419

    Article  CAS  PubMed  Google Scholar 

  13. Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329

    Article  PubMed  Google Scholar 

  14. Pennel DJ (2002) Ventricular volume and mass by CMR. J Cardiovasc Magn Reson 4:4

    Google Scholar 

  15. Bellenger NG, Davies LC, Francis JM, Coats AJS, Pennel DJ (2000) Reduction in sample size for studies of remodelling in heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2:271

    CAS  PubMed  Google Scholar 

  16. Zile MR, Brutsaert DL (2002) New concepts in diastolic dysfunction and diastolic heart failure: Part I: diagnosis, prognosis, and measurements of diastolic function. Circulation 105:1387–1393.

    PubMed  Google Scholar 

  17. Zile MR, Brutsaert DL (2002) New concepts in diastolic dysfunction and diastolic heart failure: Part II: causal mechanisms and treatment. Circulation 105:1503–1508

    PubMed  Google Scholar 

  18. Paelinck BP, Lamb HJ, Bax JJ, Van der Wall EE, de Roos A (2002) Assessment of diastolic function by cardiovascular magnetic resonance. Am Heart J 144:198–205

    Article  PubMed  Google Scholar 

  19. Mohiaddin RH, Gatehouse PD, Henien M et al (1997) Cine MR Fourier velocimetry of blood flow through cardiac valves: comparison with Doppler echocardiography. J Magn Reson Imaging 7:657–663

    CAS  PubMed  Google Scholar 

  20. Hartiala JJ, Mostbeck GH, Foster E et al (1993) Velocity-encoded cine MRI in the evaluation of left ventricular diastolic function. Measurement of mitral valve and pulmonary vein flow velocities and flow across the mitral valve. Am Heart J 125:1054–1066

    Article  CAS  PubMed  Google Scholar 

  21. Lamb HJ, Beyerbacht HP, van der Laarse A, Stoel BC, Doornbos J, van der Wall EE, de Roos A (1999) Diastolic dysfunction in hypertensive heart disease is associated with altered myocardial metabolism. Circulation 99:2261–2267

    CAS  PubMed  Google Scholar 

  22. Osman NF, Kerwin WS, McVeigh E and Prince LJ (1999) Cardiac motion tracking using CINE harmonic phase (HARP), magnetic resonance imaging. Magnetic Resonance in Medicine 42:1048–1060

    Article  CAS  PubMed  Google Scholar 

References

  1. Epstein SE, Cannon III RO, Talbot TL (1985) Hemodynamic principles in the control of coronary blood flow. Am J Cardiol 56:4E–10E

    Article  CAS  PubMed  Google Scholar 

  2. Klocke FJ (1982) Clinical and experimental evaluation of the functional severity of coronary stenoses. Newsletter of the Council on Clinical Cardiology of the American Heart Association, Inc 7:1–9

    Google Scholar 

  3. Gould KL (1980) Dynamic coronary stenosis. Am J Cardiol 45:286–292

    Article  CAS  PubMed  Google Scholar 

  4. Heyndrickx CR, Baic H, Nelkins P et al (1978) Depression of regional blood flow and wall thickening after brief coronary occlusion. Am J Physiol 234:H653–H660

    CAS  PubMed  Google Scholar 

  5. The European Society of Cardiology. Management of stable angina pectoris (1997) Recommendations of the task force of the European Society of Cardiology. Eur Heart J 18:394–413

    Google Scholar 

  6. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American Heart Association. Circulation 105: 539–542

    Article  PubMed  Google Scholar 

  7. Forrester JS, Wyatt HL, da Luz PL et al (1976) Functional significance of regional ischemic contraction abnormalities. Circulation 54:64–70

    CAS  PubMed  Google Scholar 

  8. Gallagher KP, Kumada T, Koziol JA et al (1980) Significance of regional wall thickening abnormalities relative to transmural myocardial perfusion in anesthetized dogs. Circulation 62:1266–1274

    CAS  PubMed  Google Scholar 

  9. Picano E (1997) Stress Echocardiography. 3rd Edition Springer Verlag

    Google Scholar 

  10. Wahl A, Roethemeyer S, Paetsch I et al (2001) Simultaneous assessment of wall motion and perfusion during high-dose dobutamine-atropine stress MRI improves diagnosis of ischemia. Eur Heart J 184:P1058

    Google Scholar 

  11. Schalla S, Nagel E, Paetsch I et al (2001) Real-time magnetic resonance image acquisition during dobutamine stress for the detection of left ventricular wall motion abnormalities in patients with coronary artery disease J Am Coll Cardiol 391A:1108

    Google Scholar 

  12. Whal A, Roethemeyer S, Paetsch I et al (2001) Value of high-dose dobutamine stress MRI for follow-up after coronary revascularization procedures. Circulation II-769:3622

    Google Scholar 

  13. Hundley WG, Hamilton CA, Thomas MS et al (1999) Utility of fast cine magnetic resonance imaging and display for the detection of miocardial ischemia in patients not well suited for second harmonic stress echocardiography. Circulation 100:1697–1702

    CAS  PubMed  Google Scholar 

  14. Nagel E, Lehmkuhl HB, Bocksch W et al (1999) Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation. 99:763–770

    CAS  PubMed  Google Scholar 

  15. van Rugge FP, van der Wall EE, de Roos A, Bruschke AV (1993) Dobutamine stress magnetic resonance imaging for detection coronary artery disease. J Am Coll Cardiol 22:431–439

    PubMed  Google Scholar 

  16. Zhao S, Croisille P, Janier M et al (1997) Comparison between qualitative and quantitative wall motion analyses using dipyridamole stress breath-hold cine magnetic resonance imaging in patients with severe coronary artery stenosis. Magn Reson Imaging 15:891–898

    CAS  PubMed  Google Scholar 

  17. Baer FM, Smolarz K, Theissen P et al (1993) Identification of hemodynamically significant coronary artery stenoses by dipyridamole-magnetic resonance imaging and 99mTc-methoxyisobutyl-isonitrile-SPECT. Int J Card Imaging 9:133–145

    Article  CAS  PubMed  Google Scholar 

  18. Mazeika PK, Nadazdin A, Oakley CM (1992) Dobutamine stress echocardiography for detection assessment of coronary artery disease. Am J Cardiol 69:1269–1273

    Article  Google Scholar 

  19. Mcneill AJ, Fioretti PM, El-Said EM et al (1992) Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dobutamine stress echocardiography. Am J Cardiol 70:41–46

    Article  CAS  PubMed  Google Scholar 

  20. Picano E, Lattanzi F, Masini M, Distante A, l’Abbate A (1986) High dose dipyridamole echocardiography test in effort angina pectoris. J Am Coll Cardiol 8:848–854

    CAS  PubMed  Google Scholar 

  21. Picano E, Pingitore A, Conti U et al (1993) Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dipyridamole echocardiography. Eur Heart J 14:1216–1222

    CAS  PubMed  Google Scholar 

  22. Lima JCA, Jeremy R, Guier W et al (1993) Accurate systolic wall thickening by nuclear magnetic resonance imaging with tissue tagging: correlation with sonomicrometers in normal and ischemic myocardium. J Am Coll Cardiol 21:1741–1751

    CAS  PubMed  Google Scholar 

  23. Power TP, Kramer CM, Shaffer AL et al (1997) Breath-hold dobutamine magnetic resonance myocardial tagging: normal left ventricular response. Am J Cardiol 80:1203–1207

    Article  CAS  PubMed  Google Scholar 

  24. Kuijpers D, Ho KY, van Dijkman PRM, Vliegenthart R, Oudkerk M (2003) Dobutamine cardiovascular magnetic resonance for the detection of myocardial ischemia with the use of myocardial tagging. Circulation 107:1592–1597

    Article  PubMed  Google Scholar 

References

  1. Atkinson DJ, Burnstein D, Edelman RR (1990) First pass cardiac perfusion evaluation with ultrafast MR Imaging. Radiology 174:757–762

    CAS  PubMed  Google Scholar 

  2. Matheijssen NA, Louwerenburg HW, van Rugge FP et al (1996) Comparison of ultrafast dipyridamole magnetic resonance imaging with dipyridamole SestaMIBI SPECT for detection of perfusion abnormalities in patients with one-vessel coronary artery disease: assessment by quantitative model fitting. Magn Reson Med 35:221–288

    CAS  PubMed  Google Scholar 

  3. Schwitter J, Nanz D, Kneifel S et al (2001) Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 103:2230–2235

    CAS  PubMed  Google Scholar 

  4. Ibrahim T, Nekolla SG, Schreiber K et al (2002) Assessment of coronary flow reserve: comparison between contrast-enhanced magnetic resonance imaging and positron emission tomography J Am Coll Cardiol 39:864–870

    Article  PubMed  Google Scholar 

  5. Nagel E, Klein C, Paetsch I et al (2003) Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 108:432–437

    Article  PubMed  Google Scholar 

  6. Giang TH, Nanz D, Coulden R, Friedrich M, Graves M, Al-Saadi N, Luscher TF, von Schulthess GK, Schwitter J (2004) Detection of coronary artery disease by magnetic resonance myocardial perfusion imaging with various contrast medium doses: first European multi-centre experience. Eur Heart J 25:1657–1665

    Article  CAS  PubMed  Google Scholar 

  7. Lombardi M, Jones RA, Westby J et al (1999) Use of the mean transit time of an intravascular contrast agent as an exchange-insensitive index of myocardial perfusion. J Magn Reson Imaging 9:402–408

    Article  CAS  PubMed  Google Scholar 

  8. Wilke N, Simm C, Zhang J et al (1993) Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med 29:485–497

    CAS  PubMed  Google Scholar 

  9. Wilke N, Jerosch-Herold M, Wang Y et al (1997) Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 204:373–384

    CAS  PubMed  Google Scholar 

  10. Wilke NM, Jerosch-Herold M, Zenovich A, Stillman AE (1999) Magnetic resonance first-pass myocardial perfusion imaging: clinical validation and future applications. J Magn Reson Imaging 10:676–685

    Article  CAS  PubMed  Google Scholar 

  11. Jerosch-Herold M, Wilke N, Stillman AE (1998) Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 25:73–84

    Article  CAS  PubMed  Google Scholar 

  12. Jerosch-Herold M, Wilke N (1997) MR first pass imaging: quantitative assessment of transmural perfusion and collateral flow. Int J Card Imaging 13:205–218

    Article  CAS  PubMed  Google Scholar 

  13. Cullen JH, Horsfield MA, Reek CR, et al (1999) Myocardial perfusion reserve index in humans using first-pass contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol 33:1386–1394

    Article  CAS  PubMed  Google Scholar 

  14. Santarelli MF, Landini L, Lombardi M et al (2000) A model-based method for myocardium flow estimation MAGMA. 11:87–88

    CAS  PubMed  Google Scholar 

  15. Eichenberger AC, Schuiki E, Kochli VD et al. (1994) Ischemic heart disease: assessment with gadolinium-enhanced ultrafast MR imaging and dipyridamole stress. J Magn Reson Imaging 4:425–431

    CAS  PubMed  Google Scholar 

  16. Wilke N, Kroll K, Merkle H et al. (1995) Regional myocardial blood volume and flow: first-pass MR imaging with polylysine-Gd-DTPA. J Magn Reson Imaging 5:227–237

    CAS  PubMed  Google Scholar 

  17. Saeed M, Wendland MF, Higgins CB (2000) Blood pool MR contrast agents for cardiovascular imaging. J Magn Reson Imaging 12:890–898

    Article  CAS  PubMed  Google Scholar 

  18. Al-Saadi N, Nagel E, Gross M et al (2000) Improvement of myocardial perfusion reserve early after coronary intervention: assessment with cardiac magnetic resonance imaging. J Am Coll Cardiol 36:1557–1564

    Article  CAS  PubMed  Google Scholar 

  19. Kwong RY, Schussheim AE, Rekhraj S et al. (2003) Detecting acute coronary syndrome in the emergency department with cardiac magnetic resonance imaging. Circulation 4;107:531–537

    Google Scholar 

References

  1. Pierard LA, De Landsheere CM, Berthe C et al (1990). Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: comparison with positron emission tomography. J Am Coll Cardiol 15:1021–1031

    CAS  PubMed  Google Scholar 

  2. Picano E, Marzullo P, Gigli G et al (1992) Identification of viable myocardium by dypiridamole induced improvement in regional left ventricular function assessed by echocardiography in myocardial infarction and comparison with thallium function scintigraphy at rest. Am J Cardiol 70:703–710

    CAS  PubMed  Google Scholar 

  3. Gheorghiade M, Cody RJ, Francis GS et al (1998) Current medical therapy for advanced heart failure. Am Heart J 135:231–248

    Article  Google Scholar 

  4. Braunwald E, Rutherford JD (1986) Reversible ischemic left ventricular dysfunction: evidence for the “hibernating” myocardium. J Am Coll Cardiol 8:1467–1470

    CAS  PubMed  Google Scholar 

  5. Eitzman D, Al-Aouar Z, Kanter HL et al (1992) Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 20:559–565

    CAS  PubMed  Google Scholar 

  6. Lee KS, Marwick TH, Cook SA et al (1994) Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation 90:2687–2694

    CAS  PubMed  Google Scholar 

  7. Nixon JV, Brown CN, Smitherman TC (1982) Identification of transient and persistent segmental wall motion abnormalities in patients with unstable angina by two-dimensional echocardiography. Circulation 65:1497–1503

    CAS  PubMed  Google Scholar 

  8. Kloner RA, Allen J, Cox TA, Zheng Y, Ruiz CE (1991) Stunned left ventricular myocardium after exercise treadmill testing in coronary artery disease. Am J Cardiol 68:329–334

    Article  CAS  PubMed  Google Scholar 

  9. Breisblatt WM, Stein KL, Wolfe CJ et al (1990) Acute myocardial dysfunction and recovery: a common occurrence after coronary by-pass surgery. J Am Coll Cardiol 15:1261–1269

    CAS  PubMed  Google Scholar 

  10. Touchstone DA, Beller GA, Nygaard TW, Tedesco C, Kaul S (1989) Effects of successful intravenous reperfusion therapy on regional myocardial function and geometry in humans: a tomographic assessment using two-dimensional echocardiography. J Am Coll Cardiol 13:1506–1513

    CAS  PubMed  Google Scholar 

  11. Rahimtoola SH (1985) A perspective on the three large multivessel randomised clinical trials of coronary bypass surgery for chronic stable angina. Circulation 72(Suppl V):V123–V135

    CAS  PubMed  Google Scholar 

  12. Sicari R, Picano E, Landi P. et al (1997) The prognostic value of dobutamine-atropine stress echocardiography early after acute myocadilal infarction. J Am Coll Cardiol 29:254–260

    CAS  PubMed  Google Scholar 

  13. Picano E, Sicari R, Landi P et al (1998) Prognostic value of myocardial viability in medically treated patients with global left ventricular dysfunction early after an acute uncomplicated myocardial infarction: a dobutamine stress echocardiography study. Circulation 98:1078–1084

    CAS  PubMed  Google Scholar 

  14. Meluzin J, Cerny J, Frelich M et al (1998) Prognostic value of the amount of dysfunctional but viable myocardium in revascularized patients with coronary artery disease and left ventricular dysfunction. J Al Coll Cardiol 32:912–920

    CAS  Google Scholar 

  15. Bax JJ, Cornel JH, Visser FC et al (1996) Prediction of recovery of myocardial dysfunction after revascularization. Comparison of fluorine-18 fluorodeoxyglucose/thallium-201 SPECT, thallium-201 stress-reinjection SPECT and dobutamine echocardiography. J Am Coll Cardiol 28:558–564

    Article  CAS  PubMed  Google Scholar 

  16. Zamorano J, Delgado J, Almeria C et al (2002) Reason for Discrepancies in Identifying Myocardial Viability by Thallium-201 Redistribution, Magnetic Resonance Imaging, and Dobutamine Echocardiography. Am J Cardiol 90:455–459

    Article  PubMed  Google Scholar 

  17. Gunning MA, Anagnostopoulos C, Knight CJ et al (1998) Comparison of 201 TL, 99mTc-Tetrofosmin, and dobutamine magnetic resonance imaging for identifying hibernating myocardium. Circulation 98:1869–1874

    CAS  PubMed  Google Scholar 

  18. Roberts CS, Maclean D, Maroko P, Kloner RA (1984) Early and late remodeling of the left ventricle after acute myocardial infarction. Am J Cardiol 54:407–410

    CAS  PubMed  Google Scholar 

  19. Dubnow MH, Burchell HB, Titus JL (1965) Post infarction ventricular aneurysm.A clinicomorphologic and electocardiographic study of 80 cases. Am Heart J 70:753–760

    Article  CAS  PubMed  Google Scholar 

  20. Pirolo JS, Hutchins GM, Moore GW (1986) Infarct expansion: pathologic analysis of 204 patients witha a single myocardial infarct. J Am Coll Cardiol 7:349–354

    CAS  PubMed  Google Scholar 

  21. Faletra F, Crivellaro W, Pirelli S et al (1995) Value of transthoracic two-dimensional echocardiography in predicting viability in patients with healed Q-wave anterior wall myocardial infarction. Am J Cardiol 76:1002–1006

    Article  CAS  PubMed  Google Scholar 

  22. Cwaig MJ, Cxaig E, Nagueh SF et al (2000) End-diastolic wall thickness as a predictor of recovery of function in myocardial hibernation: relation to rest-redistribution TL-201 tomography and dobutamine stress echocardiography. J Am Coll Cardiol 35:1152–1161

    Google Scholar 

  23. van Rugge FP, van der Wall EE, Spanjersberg SJ et al (1994) Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of centerline method. Circulation 90:127–138

    PubMed  Google Scholar 

  24. Baer FM, Voth E, Schneider CA et al (1995) Comparison of low dose dobutamine gradient echo magnetic resonance imaging and positron emission tomography with 18F fluorodeoxyglucose in patients with chronic coronary artery disease: a functional and morphological approach to the detection of residual myocardial viability. Circulation 91:1006–1015

    CAS  PubMed  Google Scholar 

  25. Baer FM, Theissen P, Schneider CA et al (1998) Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol 31:1040–1048

    Article  CAS  PubMed  Google Scholar 

  26. Perrone Filardi P, Bacharach SL, Dilsizian V et al (1992) Metabolic evidence of viable myocardium in regions with reduced wall thickness and absent wall thickening in patients with chornic ischemic left ventricular dysfunction. J Am Coll Cardiol 20:161–168

    CAS  PubMed  Google Scholar 

  27. Dendale P, Franken PR, Block P, Pratikakis Y, De Roos A (1998) Contrast enhanced and functional magnetic resonance imaging for the detection of viable myocardium after infarction. Am Heart J 135:875–880

    Article  CAS  PubMed  Google Scholar 

  28. Dakik HA, Howell JF, Lawrie GM et al (1997) Assessment of myocardial viability with 99mTc-sestamibi tomography before coronary by-pass graft surgery: correlation with histopathology and postoperative improvement in cardiac function. Circulation 96:2892–2898

    CAS  PubMed  Google Scholar 

  29. Gascho JA, Copenhaver GL, Heitjan DL (1990) Systolic thickening increases from subepicardium to subendocardium. Cardiovascular Research 24:777–780

    CAS  PubMed  Google Scholar 

  30. Clark N, Reicheck N, Bergey P et al (1991) Circumferential myocardial shortening in the normal human left ventricle. Assessment by magnetic resonance imaging using spatial modulation of magnetization. Circulation 84:67–74

    CAS  PubMed  Google Scholar 

  31. Power T, Kramer CM, Shaffer AL et al (1997) Breath-hold dobutamine magnetic resonance myocardial tagging: normal left ventricular response. Am J Cardiol 80:1203–1207

    Article  CAS  PubMed  Google Scholar 

  32. Geskin G, Kramer CM, Rogers WJ et al (1998) Quantitative assessment of myocardial viability after infarction by dobutamine magnetic resonance tagging. Circulation 98:217–223

    CAS  PubMed  Google Scholar 

  33. Bogaert J, Maes A, Van de Werf F et al (1999) Functional recovery of subepicardial myocardial tissue in transmural myocardial infarction after successful reperfusion: an important contribution to the improvement of regional and global left ventricular function. Circulation 99:36–43

    CAS  PubMed  Google Scholar 

  34. Williams ES, Kaplan JI, Thatcher F Zimmerman G, Knoebel SB (1980) Prolongation of proton spin lattice relaxation times in regionally ischemic tissue from dog hearts. J Nucl Med 21:449–453

    CAS  PubMed  Google Scholar 

  35. van Rugge FP, van der Wall EE, van Dijkman PR et al (1992) Usefulness of ultrafast magnetic resonance imaging in healed myocardial infarction. Am J Cardiol 70:1233–1237

    PubMed  Google Scholar 

  36. McNamara MT, Higgins CB, Schechtmann N et al (1985) Detection and characterization of acute myocardial infarction in man with the use of gated magnetic resonance. Circulation 71:717–724

    CAS  PubMed  Google Scholar 

  37. Pflugfelder PW, Wisenberg G, Prato FS, Carrol SE (1986) Serial imaging of canine myocardial infarction by in vivo nuclear magnetic resonance. J Am Coll Cardiol 7:843–849

    CAS  PubMed  Google Scholar 

  38. Tscholakoff D, Higgins CB, McNamara MT, Derugin N (1986) Early-phase myocardial infarction by MR imaging. Radiology 159:667–672

    CAS  PubMed  Google Scholar 

  39. Wesbey G, Higgins CB, Lanzer P Botvinick E, Lipton MJ (1984) Imaging and characterisation of acute myocardial infarction in vivo by gated nuclear magnetic resonance. Circulation 69:125–130

    CAS  PubMed  Google Scholar 

  40. McNamara MT, Tscholakoff D, Revel D et al (1986) Differentiation of reversible and irreversible myocardial injury by MR imaging with and without gadolinium-DTPA. Radiology 158:765–769

    CAS  PubMed  Google Scholar 

  41. Simonetti OP, Kim RJ, Fieno DS et al (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218:215–223

    CAS  PubMed  Google Scholar 

  42. Fieno DS, Kim RJ, Chen EL et al (2000) Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 36:1985–1991

    Article  CAS  PubMed  Google Scholar 

  43. Oshinski JN, Yang Z, Jones JR, Mata JF, French BA (2001) Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 104:2838–2842

    CAS  PubMed  Google Scholar 

  44. Choi SI, Jiang CZ, Lim KH et al (2000) Application of breath-hold T2 weighted, first pass perfusion and gadolinium-enhanced T1-weighted MR imaging for assessment of myocardial viability in a pig model. J Magn Reson Imaging 11:476–480

    Article  CAS  PubMed  Google Scholar 

  45. Lima JAC, Judd RM, Bazille A et al (1995) Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI: potential mechanisms. Circulation 92:1117–1125

    CAS  PubMed  Google Scholar 

  46. Wu KC, Zerhouni EA, Judd RM et al (1998) Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardail infarction. Circulation 97:765–772

    CAS  PubMed  Google Scholar 

  47. Judd RM, Lugo-Olivieri CH, Arai M et al (1995) Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-odl reperfused canine infarcts. Circulation 92:1902–1910

    CAS  PubMed  Google Scholar 

  48. Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54:1496–1508

    CAS  PubMed  Google Scholar 

  49. Rogers WJ, Kramer CM, Geskin G et al (1999) Early contrast-enhanced MRI predicts late functional recovery after reperfused myocardial infarction. Circulation 99:744–750

    PubMed  Google Scholar 

  50. Kim RJ, Fieno DS, Parrish TB, (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002

    CAS  PubMed  Google Scholar 

  51. Hillebrand HB, Kim RJ, Parker MA, Fieno DS, Judd RM (2000) Early assessment of myocardial salvage by contrast enhanced magnetic resonance imaging. Circulation 102:1678–1683

    Google Scholar 

  52. Wellnhofer E, Olariu A, Klein C, Grafe M, Wahl A, Fleck E, Nagel E (2004) Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation 109:2172–2184

    Article  PubMed  Google Scholar 

  53. Hsu JCM, Johnson A, Smith WM et al (1994) Magnetic Resonance imaging of chronic myocardial infarcts in formalin-fixed human autopsy hearts. Circulation 89:2133–2140

    CAS  PubMed  Google Scholar 

  54. Bouchard A, Reeves RC, Cranney G et al (1989) Assessment of myocardial infarct size by means of T2-weighted 1H nuclear magnetic resonance imaging. Am Heart J 117:281–289

    CAS  PubMed  Google Scholar 

  55. Wu E, Judd RM, Vargas JD et al (2001) Visualization of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 357:21–28

    Article  CAS  PubMed  Google Scholar 

  56. Ramani K, Judd RM, Holly TA et al (1998) Contrast magnetic resonance imaging in the assessment of myocardial viability in patients with stable coronary artery disease and left ventricular dysfunction. Circulation 98:2687–2694

    CAS  PubMed  Google Scholar 

  57. Lieberman AN, Weiss JL, Jugdutt BI et al (1981) Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 63:739–746

    CAS  PubMed  Google Scholar 

  58. Klein C, Nekolla SG, Bengel FM et al (2002) Assessment of myocardial viability with contrast enhanced magnetic resonance imaging: comparison with positorn emission tomography. Circulation 105:162–167

    Article  PubMed  Google Scholar 

  59. Kuhl HP, Beek AM, van der Weerdt AP et al (2003) Myocardial viability in chronic ischemic heart disease: comparison of contrast-enhanced magnetic resonance imaging with (18) F-fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 41:1341–1348

    PubMed  Google Scholar 

  60. Giorgetti A, Pingitore A, Lombardi M et al (2002) Quantitative evaluation of trasmural extent of myocardial necrosis by means of contrast-enhanced magnetic resonance: comparison with nitrate 99mTC-tetrofosmin G_SPECT scintigraphy. J Nucl Med 46:4:92

    Google Scholar 

  61. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  CAS  PubMed  Google Scholar 

  62. Nagueh SF, Mikati I, Weilbaecher D et al (1999) Relation of the contractile reserve of hibernating myocardium to myocardial structure in humans. Circulation 100:490–496

    CAS  PubMed  Google Scholar 

  63. Sciagrà R, Pellegri M, Pupi A et al (2000) Prognostic implications of Tc-99m Sestamibi viability imaging and subsequent therapeutic strategy in patients with chronic coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol 36:739–745

    PubMed  Google Scholar 

  64. Kaul S (1995) There may be more to myocardial viability than meets the eye. Circulation 92:2790–2793

    CAS  PubMed  Google Scholar 

  65. Samady H, Elefteriades JA, Abbott BG et al (1999) Failure to improve left ventricular function after coronary revascularization for ischemic cardiomyopathy is not associated with worse outcome. Circulation 100:1298–1304

    CAS  PubMed  Google Scholar 

References

  1. Basso C, Thiene G, Corrado D et al (1996) Arrhythmogenic right ventricular cardiomyopathy. Displasia, dystrophy, or myocarditis? Circulation 94:983–991

    CAS  PubMed  Google Scholar 

  2. Pinamonti B, Sinagra G, Salvi A et al (1992) Left ventricular involvement in right ventricular dysplasia. Am Heart J 123:711–724

    Article  CAS  PubMed  Google Scholar 

  3. Richardson P, McKenna W, Bristow M et al (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93:841–842

    CAS  PubMed  Google Scholar 

  4. Nava A, Thiene G, Canciani B et al (1988) Familial occurrence of right ventricular dysplasia: a study involving nine families. J Am Coll Cardiol 12:1222–1228

    CAS  PubMed  Google Scholar 

  5. Aman Coonar S, Protonotarius N, Tsatsopoulou A et al (1998) Gene for arrhythmogenic right ventricular cardiomyopathy with diffuse nonepidermolytic palmoplantar keratoderma and wooly hair (Naxos disease) maps to 17q21. Circulation 97:2049–2058

    Google Scholar 

  6. Ahmad F, Li D, Karibe A et al (1998) Localization of a gene responsible for arrhythmogenic right ventricular dysplasia to chromosome 3p23. Circulation 98:2791–2795

    CAS  PubMed  Google Scholar 

  7. Bauce B, Nava A, Ramazzo A et al (2000) Familial effort polymorphic ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy map to chromosome 1942-43. Am J Cardiol 85:573–579

    Article  CAS  PubMed  Google Scholar 

  8. Severini GM, Krajinovic M, Pinamonti B et al (1996) A new locus for arrhythmogenic right ventricular displasia on the long arm of chromosome 14. Genomics 31:193–200

    Article  CAS  PubMed  Google Scholar 

  9. Rampazzo A, Nava A, Miorin M et al (1997) DAVD4, a new locus for arrhythmogenic right ventricular cardiomyopathy, maps to chromosome 2 long arm. Genomics 45: 259–263

    Article  CAS  PubMed  Google Scholar 

  10. Tiso N, Stephan DA, Nava A et al (2001) Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2. Hum Mal Genet 10:189–194

    CAS  Google Scholar 

  11. Li D, Gonzales O, Bachinski LL et al (2000) Human protein tyrosine phosphatase-like gene: expression profile, genomic structure and mutation analysis in families with DAVD. Gene 256:237–243

    Article  CAS  PubMed  Google Scholar 

  12. Li D, Ahmad F, Gardner MJ et al (2000) The locus of a novel gene responsible for arrhythmogenic right ventricular dysplasia characterized by early onset and high penetrance maps to chromosome 10p12-p14. Am J Hum Genet 66:148–156

    Article  CAS  PubMed  Google Scholar 

  13. Melberg A, Oldfors A, Blomstrom-Lundqvist C et al (1999) Autosomal dominant myofibrillar myopathy with arrhythmogenic right ventricular cardiomyopathy linked to chromosome 10q. Ann Neurol 46:684–692

    Article  CAS  Google Scholar 

  14. Thiene C, Corrado D, Nava A et al (1991) Right ventricular cardiomyopathy: is there evidence of an inflammatory aetiology? Eur Heart J 12:22–25

    PubMed  Google Scholar 

  15. Kodama M, Matsumoto Y, Fujwara M (1992) In vivo lymphocyte-mediated transfer of experimental autoimmune myocarditis. Circulation 85:1918–1926

    CAS  PubMed  Google Scholar 

  16. Matsumori A, Kawai C (1980) Coxsackie virus B3 perimyocarditis in BALB/c mice: experimental model of chronic perimyocarditis in the right ventricle. J Pathol 131:97–106

    Article  CAS  PubMed  Google Scholar 

  17. Grumbach IM, Heim A, Vonhof S et al (1998) Coxsackievirus genome in myocardium of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. Cardiology 89:241–245

    Article  CAS  PubMed  Google Scholar 

  18. James TN (1994) Normal and abnormal consequences of apoptosis in the human heart. From postnatal morphogenesis to paroxysmal arrhythmias. Circulation 90:556–573

    CAS  PubMed  Google Scholar 

  19. Mallat Z, Tedgui A, Fontaliran F et al (1996) Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N Engl J Med 335:1190–1196

    Article  CAS  PubMed  Google Scholar 

  20. Valente M, Calabrese F, Thiene G et al (1996) In vivo evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N Engl J Med 335:1190–1196

    Google Scholar 

  21. Colston JT, Chandrasekar B, Freeman GL (1998) Expression of apoptosis-related proteins in experimental coxsackie virus myocarditis. Cardiovasc Res 38:158–168

    Article  CAS  PubMed  Google Scholar 

  22. Fontaliran F, Fontaine G, Fillette F et al (1991) Frontières nosologiques de la dysplasie arythmogène. Variations quantitatives du tissu adipeux ventriculaire droit normal. Arch Mal Coeur 84:33–38

    CAS  PubMed  Google Scholar 

  23. Fontaine G, Guiraudon G, Frank R, Tonet JL et al (1984) Arrhythmogenic right ventricular dysplasia: a clinical model for the study of chronic ventricular tachicardia. Jpn Circ 515–538

    Google Scholar 

  24. Thiene G, Basso C, Calabrese F et al (2000) Pathology and pathogenesis of arrhythmogenic right ventricular cardiomyopathy. Hertz 25:210–215

    CAS  Google Scholar 

  25. Burke AP, Farb A, Tashko G et al (1998) Arrhythmogenic right ventricular cardiomyopathy and fatty replacement of the right ventricular myocardium. Are they different diseases? Circulation 97:1571–1580

    CAS  PubMed  Google Scholar 

  26. Corrado D, Basso C, Thiene G et al (1997) Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol 30:1512–1520

    Article  CAS  PubMed  Google Scholar 

  27. Fontaine G, Fontaliran F, Frank R et al (1998) Arrhythmogenic right ventricular cardiomyopathies. Clinical forms and main differential diagnoses. Circulation 97:1532–1535

    CAS  PubMed  Google Scholar 

  28. Lorenz Ch, Walker ES, Morgan VL et al (1999) Normal human right and left ventricular mass, systolic function and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1:7–21

    CAS  PubMed  Google Scholar 

  29. McKenna WJ, Thiene G, Nava A et al (1994) Diagnosis of arrhythmogenic right ventricula dysplasi/cardiomyopathy. Br Heart J 71:215–218

    CAS  PubMed  Google Scholar 

  30. Maron BJ (2003) Sudden death in young athletes. N Eng J Med 11;349(11):1064–1075

    CAS  Google Scholar 

  31. Thiene G, Nava A, Corrado D et al (1988) Right ventricula cardiomyopathy and sudden death in young people. N Engl J Med 318:129–133

    CAS  PubMed  Google Scholar 

  32. Zeppilli P, La Rosa Gangi M, Santini C et al (1988) Right heart in athletics. Echocardiography 1988: proceedings of the 6th international congress on echocardiography, Rome, 1988. Excerpta Medica eds Amsterdam

    Google Scholar 

  33. Zeppilli P (1995) Cardiologia dello sport. CESI, Roma

    Google Scholar 

  34. Frank S, Braunwald E (1968) Idiopathic hypertrophic subaortic stenosis: clinical analysis of 126 patients with emphasis on the natural history. Circulation 37:59–788

    Google Scholar 

  35. Maron BJ, Bonow RO, Cannon Ro III et al (1987) Hypertrophic cardiomyopathy; interrelations of clinical manifestations, pathophysiology and theraphy. N Engl J Med 316:780–9, 844-852

    CAS  PubMed  Google Scholar 

  36. Spirito P, Seidman CE, McKenna WJ, Maron BJ (1997) The management of hypertrophic cardiomyopathy. N Engl J Med 336:775–785

    Article  CAS  PubMed  Google Scholar 

  37. Marian AJ, Roberts R (2001) The molecular genetic basis for hypertrophic cardiomyopathy. J Moll Cell Cardiol 33:655–670

    Article  CAS  Google Scholar 

  38. Klues HG, Schiffers A, Marron BJ (1995) Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy:morphologic observations and significance as assessed by two dimensional echocardiography in 600 patients. J Am Coll Cardiol 26:1699–1708

    Article  CAS  PubMed  Google Scholar 

  39. Maron BJ, Ferrans VJ, Henry WL, Clarke CE, Redwood DR (1974) Differences in distribution of myocardial abnormalities in patients with obstructive and nonobstructive asymmetric septal hypertrophy (ASH). Light and electron microscopic findings. Circulation 50:436–446

    CAS  PubMed  Google Scholar 

  40. Maron BJ, Roberts WC (1981) Hypertrophic cardiomyopathy and cardiac muscle cell disorganization revisited: relation between the two and significance. Am Heart J 102:95–110

    Article  CAS  PubMed  Google Scholar 

  41. Maron BJ, Wolfson JK, Roberts WC (1992) Relation between extent of cardiac muscle cell disorganization and left ventricular wall thickness in hypertrophic cardiomyopathy. Am J Cardiol 70:785–790

    CAS  PubMed  Google Scholar 

  42. Maron BJ, Anan TJ, Roberts WC (1981) Quantitative analysis of the distribution of cardiac muscle cell disorganization in the left ventricular wall of patients with hypertrophic cardiomyopathy. Circulation 63:882–894

    CAS  PubMed  Google Scholar 

  43. Unverferth D, Baker PB, Pearce LI, Lautman J et al (1987) Regional myocyte hypertrophy and increased interstitial myocardial fibrosis in hypertrophic cardiomyopathy. Am J Cardiol 59:932–936

    Article  CAS  PubMed  Google Scholar 

  44. Maron BJ, Wolfson JK, Epstein SE, Roberts WC (1986) Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol 8:545–557

    CAS  PubMed  Google Scholar 

  45. Schwartzkoff B, Mundhenke M, Strauer BE (1998) Alterations of the architecture of subendocardial arterioles in patients with hypertrophic cardiomiopathy and impaired coronary vasodilatator reserve: a possibile cause for myocardic ischemia. J Am Coll Cardiol 31:1089–1096

    Google Scholar 

  46. Cannan CR, Reeder GS, Bailey KR et al (1995) Natural history of hypertrophic cardiomyopathy; a population-based study, 1976 through 1990. Circulation 92:2488–2495

    CAS  PubMed  Google Scholar 

  47. Maron BJ, Casey SA, Poliac LC et al (1999) Clinical course of hypertrophic cardiomyopathy in a regional United States cohort. JAMA 281:650–655

    Article  CAS  PubMed  Google Scholar 

  48. Spirito P, Bellone P, Harris KM et al (2000) Magnitude of left ventricular hypertrophy predicts the risk of sudden death in hypertrophic cardiomyopathy. N Engl J Med 342:1778–1785

    Article  CAS  PubMed  Google Scholar 

  49. Spirito P, Chiarella F, Carratino L et al (1989) Clinical course and prognosis of hypertrophic cardiomyopathy in an outpatient population. N Engl J Med 320:749–755

    CAS  PubMed  Google Scholar 

  50. Kofflard MJ, Waldestein DJ, Vos J et al (1993) Prognosis in hypertrophic cardiomyopathy: a retrospective study. Am J Cardiol 72:939–943

    Article  CAS  PubMed  Google Scholar 

  51. Cecchi F, Olivotto I, Montereggi A et al (1995) Hypertrophic cardiomyopathy in Tuscany: clinical course and outcome in an unselected regional population. J Am Coll Cardio 26:1529–1536

    CAS  Google Scholar 

  52. Elliott PM, Poloniecki J, Dickie S et al (2000) Sudden death in hypertrophic cardiomyopathy: identification of high risk patients. J Am Coll Cardiol 36:2212–2218

    Article  CAS  PubMed  Google Scholar 

  53. Maron BJ, Shen WK, Link MS et al (2000) Efficacy of implantable cardioverter-defibrillators for the prevention of sudden death in patients with hypertrophic cardiomyopathy. N Engl J Med 342:365–373

    Article  CAS  PubMed  Google Scholar 

  54. Basso C, Thiene G, Corrado D et al (2000) Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol 31:988–998

    Article  CAS  PubMed  Google Scholar 

  55. Maron BJ, Epstein SE, Roberts WC (1979) Hypertrophic cardiomyopathy and transmural myocardial infarction without significant atherosclerosis of the extramural coronary disease. Am J Cardiol 43:1086–1102

    CAS  PubMed  Google Scholar 

  56. McKenna WJ, Spirito P, Desnos M, Dubourg O, Komajada M (1997) Experience from clinical genetics in hypertrophic cardiomyopathy: proposal for new diagnostic criteria in adult members of affected families. Heart 77:130–132

    CAS  PubMed  Google Scholar 

  57. Bottini PB, Carr AA, Prisant LM et al (1995) Magnetic resonance imaging compared to echocardiography to assess left ventricular mass in the hypertensive patient. Am J Hypertens 8:221–228

    Article  CAS  PubMed  Google Scholar 

  58. Posma JL Blanksma PK Van der Wall et al 1996 Assessment of quantitative hypertrophy scores in hypertrophic cardiomyopathy magnetic resonance imaging versus echocardiography. Am Heart J 1321020–1027

    CAS  PubMed  Google Scholar 

  59. Pons Llado G, Carreras F, Borras X et al (1997) Comparison of morphologic assessment of hypertrophic cardiomyopathy by magnetic resonance versus echocardiographic imaging. Am J Cardiol 79:1651–1656

    Google Scholar 

  60. Franke A, Schondube FA, Kuhl HP et al (1998) Quantitative assessment of the operative results after extended myectomy and surgical reconstruction of the subvalvular mitral apparatus in hypertrophic obstructive cardiomyopathy using three dimensional transesofageal echocardiography. J am Coll Cardiol 31:1641–1649

    CAS  PubMed  Google Scholar 

  61. Schultz-Menger J, Strohm O, Waigand J et al (2000) The value of magnetic resonance imaging of the left ventricular outflowtract in patients with hypertrophic obstructive cardiomyopathy after septal artery embolization. Circulation 101:1764–1766

    Google Scholar 

  62. White RD, Obuchowski NA, Gunawardena S et al (1996) Left ventricular outflow tract obstruction in hypertrophic cardiomyopathy: presurgical and post surgical evaluation by computed tomography magnetic resonance imaging. Am J Cardiol Imaging 10:1–13

    CAS  Google Scholar 

  63. Stuber M, Scheidegger M, Fischer S et al (1999) Alterations in local myocardial motion pattern in patients suffering from pressure overload due to aortic stenosis. Circulation 100:361–368

    CAS  PubMed  Google Scholar 

  64. Maier SE, Fischer SE, McKinnon GC et al (1992) Evaluation of left ventricular segmental wall motion in hypertrophic cardiomyopathy with myocardic tagging. Circulation 90:1919–1928

    Google Scholar 

  65. Kramer CM, Reichek N, Ferrari VA et al (1994) Regional heterogeneity of function in hypertrophic cardiomyopathy. Circulation 90:186–194

    CAS  PubMed  Google Scholar 

  66. Wu E, Judd RM, Vargas JD, Klocke FJ, Bonow Ro, Kim RJ (2001) Visualization of presence, location and transmural extent of healed Q-wave and non Q-wave myocardial infarction. Lancet 357:21–28

    Article  CAS  PubMed  Google Scholar 

  67. Kim RJ, Fieno DS, Parrisch TB et al (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infart age and contractile function. Circulation 100:1992–2002

    CAS  PubMed  Google Scholar 

  68. Choi KM, Kim RJ, Gubernikoff G et al (2001) Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation 104:1101–1107

    CAS  PubMed  Google Scholar 

  69. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  CAS  PubMed  Google Scholar 

  70. Choudhury L, Mahrholdot H, Wagner A et al (2002) Myocardial scarring in asymptomatic or middly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 40:2156–2164

    Article  PubMed  Google Scholar 

  71. Moon JCC, Mckenna WJ, McCrohon JA et al (2003) Toward clinical assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol 41:1561–1567

    PubMed  Google Scholar 

  72. Tanaka M, Fujiwura H, Onodera T et al (1986) Quantitative analysis of myocardial fibrosis in normal, hypertensive hearts and hypertrophic cardiomyopathy. Br Heart J 55:575–581

    CAS  PubMed  Google Scholar 

  73. Varnava AM, Elliott PM, Mahon N, Davies MJ, McKenna WJ (2001) Relation between myocyte disarray and outcome in hypertrophic cardiomyopathy. Am J Cardiol 88:275–279

    Article  CAS  PubMed  Google Scholar 

  74. Sedemera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH (2000) Developmental pattering of the myocardium. Anat Rec 258:319–337

    Google Scholar 

  75. Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R (1990) Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation 82:507–513

    CAS  PubMed  Google Scholar 

  76. Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R (2000) Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol 36:493–500

    Article  CAS  PubMed  Google Scholar 

  77. Ichida F, Hamamichi Y, Miyawaki T et al (1999) Clinical features of isolated noncompaction of the ventricular myocardium. J Am Coll Cardiol 34:233–240

    Article  CAS  PubMed  Google Scholar 

  78. Jenni R, Oechslin E, Scheider J, Attenhofer Jost C, Kaufmann P (2001) Echocardiographic and pathoanatomical characteristics of isolated left ventricula noncompaction: a step towards classification as a distinct cardiomyopathy. Heart 86:666–671

    Article  CAS  PubMed  Google Scholar 

  79. Jenni R, Wyss CA, Oechslin EN, Kaufmann PA (2002) Isolated ventricular noncompaction is associated with coronary microcirculatory dysfunction. J Am Coll Cardiol 39:450–454

    Article  PubMed  Google Scholar 

  80. Bleyl SB, Mumford BR, Brown-Harrison MC et al (1997) Xq28-linked noncompaction of the left ventricular myocardium: prenatal diagnosis and pathologic analysis of affected individuals. Am J Med Gent 72:257–265

    CAS  Google Scholar 

  81. Hook S, Ratliff NB, Rosenkranz E, Sterba R (1996) Isolated noncompaction of the ventricular myocardium. Pediatr Cardiol 17:1733–1734

    Article  Google Scholar 

  82. Dusek J, Ostadal B, Duskova M (1975) Postnatal persistence of spongy myocardium with embryonic blood supply. Arch Pathol 99:312–317

    CAS  PubMed  Google Scholar 

  83. Hopkins WE, Waggoner AD, Gussak H (1994) Quantitative ultrasonic tissue characterization of myocardium in cyanotic adults with an unrepaired congenital heart defect. Am J Cardiol 74:930–934

    Article  CAS  PubMed  Google Scholar 

  84. Akiba T, Becker A (1994) Disease of the left ventricle in pulmonary atresia with intact ventricular septum. The limiting factor for long-lasting successful surgical intervention? J Thorac Cardiovascular Surg 108:1–8

    CAS  Google Scholar 

  85. Junga G, Kneifel S, Von Smeka A, Steiner H, Bauersfeld U (1999) Myocardial ischaemia in children with isolated ventricular noncompaction. Eur Heart J 20:910–916

    Article  CAS  PubMed  Google Scholar 

  86. Daimon Y, Watanabe S, Takeda S, Hijikata Y, Komuro I (2002) Two-layered appearance of noncompaction of the ventricular myocardium on magnetic resonance. Circ J 66:619–621

    Article  PubMed  Google Scholar 

  87. Borges AC, Kivelitz D, Baumann G (2003) Isolated left ventricular non-compaction: cardiomyopathy with homogeneous transmural and heterogeneous segmental perfusion. Heart 89:e21

    Article  CAS  PubMed  Google Scholar 

  88. Powell LW, George DK, McDonnell SM et al (1998) Diagnosis of hemochromatosis. An Intern Me 129:925–931

    CAS  Google Scholar 

  89. Olson LJ, Edwards WD, McCall JT, Ilstrup DM, Gersh BJ (1987) Cardiac iron deposition in idiopathic hemochromatosis: Histologic and analytic assessment of 14 hearts from autopsy. J A. Coll Cardiol 10:1239–1243

    CAS  Google Scholar 

  90. Koren A, Garty I, Antonelli D, Katzuni E (1987) Right ventricular cardiac dysfunction in b-thalassemia major. Am J Dis Child 141:93–96

    CAS  PubMed  Google Scholar 

  91. Aessopos A, Stamatelos G, Skoumas V et al (1995) Pulmonary hypertension and right heart failure in patients with b-thalassemia intermedia. Chest 107:50–53

    CAS  PubMed  Google Scholar 

  92. Pennel DJ (2002) Ventricular volume and mass by CMR. J Cardiovasc Magn Reson 4:507–513

    Google Scholar 

  93. Fujita N, Chazouilleres AF, Hartiala JJ et al (1994) Quantification of mitral regurgitation by velocity encoded cine nuclear magnetic resonance imaging. JACC 23:951–958

    CAS  PubMed  Google Scholar 

  94. Kaltwasser J, Werner E (1989) Assessment of iron burden. Bailliere’s Clin Hematol 2:195–207

    Google Scholar 

  95. Waxman S, Eustace S, Hartnell GG (1994) Myocardial involvement in primary hemochromatosis demonstrated by magnetic resonance imaging. Am Heart J 128:1047–1049

    Article  CAS  PubMed  Google Scholar 

  96. Anderson LJ, Holden S, Davis B et al (2001) Cardiovascular T2 star (T2*) magnetic resonance for early diagnosis of myocardial iron overload. EHJ 22:2171–2179

    CAS  Google Scholar 

  97. Westwood M, Anderson LJ, Firmin DN, Gatehouse PD, Charrier CC, Wonke B, Pennel JD (2003) A single breath-hold multiecho T2* cardiovascular magnetic resonance technique for diagnosis of myocardial overload. J Magn Reson Imaging 18:33–39

    PubMed  Google Scholar 

  98. Aso H, Takeda K, Ito T et al (1998) Assessment of myocardial fibrosis in cardiomyopathic hamsters with gadolinium DPTA-enhanced magnetic resonance imaging. Invest Radiol 32:22–32

    Google Scholar 

  99. Friedrich MG, Srom O, Schults-Menger J et al (1998) Contrast-media enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circ 97:1802–1809

    CAS  Google Scholar 

  100. Rivers J et al (1987) Reversible cardiac dysfunction in hemochromatosis. Am Heart J 113:216–217

    Article  CAS  PubMed  Google Scholar 

  101. Mariotti E, Angelucci E, Agostini A et al (1998) Evaluation of cardiac status in iron-loaded thalassemia patients following bone marrow transplantation: improvement in cardiac function during reduction in body iron burden. Br J Haematol 103:916–921

    Article  CAS  PubMed  Google Scholar 

  102. Davis BA, Porter JB (2000) Long-term outcome of continuous 24-hour deferoxamine infusion via inwelling intravenous catheters in high risk b-thalassemia. Blood 95:1229–1236

    CAS  PubMed  Google Scholar 

  103. Parrillo JE (1990) Heart disease and the eosinophil. N Engl J Med 323:1560–1561

    CAS  PubMed  Google Scholar 

  104. Weller PF, Bulbley GJ (1994) The idiopathic hypereosinophilic syndrome. Blood 83:2759–2779

    CAS  PubMed  Google Scholar 

  105. Puvaneswary M, Joshua F, Ratnarajah S (2001) Idiopathic hypereosinophilic syndrome: magnetic resonance imaging finding in endomyocardial fibrosis. Australasian Radiology 45:524–527

    CAS  PubMed  Google Scholar 

  106. Katritsis D, Wilmshurst PT, Wendon JA et al (1991) Primary restrictive cardiomyopathy: clinical and pathologic characteristics. J Am Coll Cardiol 18:1230–1235

    CAS  PubMed  Google Scholar 

  107. Schneider U, Jenni R, Turina J et al (1998) Long term follow up of patients with endomyocardial fibrosis: effects of surgery. Heart 79:362

    CAS  PubMed  Google Scholar 

  108. Chil JS, Perloff JK (1988) The restrictive cardiomyopathies. Cardiol Clinics 6:289–316

    Google Scholar 

  109. D’silva SA, Kohli A, Dalvi BV, Kale PA (1992) MRI in right ventricular endomyocardial fibrosis. Am Heart J 123:1390–1392

    CAS  PubMed  Google Scholar 

  110. Pitt M, Davies MK, Brady AJ (1996) Hypereosinophilic syndrome: endomyocardial fibrosis. Heart 76:377–378

    CAS  PubMed  Google Scholar 

  111. Chandra M, Pettigrew RI, Eley JW, Oshinski JN, Guyton RA (1996) Cine-MRI aided endomyocardetomy in idiopathic hypereosinophilic syndrome. Ann Thorac Surg 62:1856–1858

    Article  CAS  PubMed  Google Scholar 

  112. Bishop G, Bergin J, Kramer C (2001) Hypereosinophilic syndrome and restrictive cardiomyopathy due to apical thrombi. Circulation 104:e3–e4

    CAS  PubMed  Google Scholar 

References

  1. Schwitter J (2000) Valvular heart disease: assessment of valve morphology and quantification using MR. Herz 25:342–355

    Article  CAS  PubMed  Google Scholar 

  2. Kizilbash AM, Hundley WG, Willett DL et al (1998) Comparison of quantitative Doppler with magnetic resonance imaging for assessment of the severity of mitral regurgitation. Am J Cardiol 81:792–795

    Article  CAS  PubMed  Google Scholar 

  3. Hundley WG, Li HF, Willard JE et al (1995) Magnetic resonance imaging assessment of the severity of mitral regurgitation. Comparison with invasive techniques. Circulation 92:1151–1158

    CAS  PubMed  Google Scholar 

  4. Arai AE, Epstein FH, Bove KE, Wolff SD (1999) Visualization of aortic valve leaflets using black blood MRI. J Magn Reson Imaging 10:771–777

    Article  CAS  PubMed  Google Scholar 

  5. Pollak Y, Comeau CR, Wolff SD (2002) Staphylococcus aureus endocarditis of the aortic valve diagnosed on MR imaging. Am J Roentgenol 179:1647

    Google Scholar 

  6. Reynier C, Garcier J, Legault B et al (2001) Cross-sectional imaging of post endocarditis paravalvular myocardial abscesses of native mitral valves: 4 cases. J Radiol 82(6 Pt 1):665–669

    CAS  PubMed  Google Scholar 

  7. Caduff JH, Hernandez RJ, Ludomirsky A (1996) MR visualization of aortic valve vegetations. J Comput Assist Tomogr 20:613–615

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki J, Caputo GR, Kondo C, Higgins CB (1990) Cine MR imaging of valvular heart disease: display and imaging parameters affect the size of the signal void caused by valvular regurgitation. Am J Roentgenol 155:723–727

    CAS  Google Scholar 

  9. Sondergaard L, Lindvig K, Hildebrandt P et al (1993) Quantification of aortic regurgitation by magnetic resonance velocity mapping. Am Heart J 125:1081–1090

    CAS  PubMed  Google Scholar 

  10. Fujita N, Chazouilleres AF, Hartiala JJ et al (1994) Quantification of mitral regurgitation by velocity-encoded cine nuclear magnetic resonance imaging. J Am Coll Cardiol 23:951–958

    CAS  PubMed  Google Scholar 

  11. Karwatowski SP, Brecker SJ, Yang GZ et al (1995) Mitral valve flow measured with cine MR velocity mapping in patients with ischemic heart disease: comparison with Doppler echocardiography. J Magn Reson Imaging 5:89–92

    CAS  PubMed  Google Scholar 

  12. Kozerke S, Schwitter J, Pedersen EM, Boesiger P (2001) Aortic and mitral regurgitation: quantification using moving slice velocity mapping. J Magn Reson Imaging 4:106–112

    Google Scholar 

  13. Heidenreich PA, Steffens J, Fujita N et al (1995) Evaluation of mitral stenosis with velocity-encoded cine-magnetic resonance imaging. Am J Cardiol 75:365–369

    Article  CAS  PubMed  Google Scholar 

  14. Casolo GC, Zampa V, Rega L et al (1992) Evaluation of mitral stenosis by cine magnetic resonance imaging. Am Heart J 123:1252–1260

    Article  CAS  PubMed  Google Scholar 

  15. Sondergaard L, Hildebrandt P, Lindvig K et al (1993) Valve area and cardiac output in aortic stenosis: quantification by magnetic resonance velocity mapping. Am Heart J 126:1156–1164

    Article  CAS  PubMed  Google Scholar 

  16. Kilner PJ, Manzara CC, Mohiaddin RH et al (1993) Magnetic resonance jet velocity mapping in mitral and aortic valve stenosis. Circulation 87:1239–1248

    CAS  PubMed  Google Scholar 

  17. Sondergaard L, Stahlberg F, Thomsen C et al (1993) Accuracy and precision of MR velocity mapping in measurement of stenotic cross-sectional area, flow rate, and pressure gradient. J Magn Reson Imaging 3:433–437

    CAS  PubMed  Google Scholar 

  18. Randall PA, Kohman LJ, Scalzetti EM, Szeverenyi NM, Panicek DM (1988) Magnetic resonance imaging of prosthetic cardiac valves in vitro and in vivo. Am J Cardiol 62:973–976

    Article  CAS  PubMed  Google Scholar 

  19. Sievers B, Tintrup K, Franken U, Kickuth R, Trappe HJ (2002) Cardiovascular magnetic resonance of bioprosthetic mitral valve. Heart Vessels 17:86–88

    Article  PubMed  Google Scholar 

  20. Soulen RL, Budinger TF, Higgins CB (1985) Magnetic resonance imaging of prosthetic heart valves. Radiology 154:705–707

    CAS  PubMed  Google Scholar 

  21. Arrive L, Najmark D, Albert F et al (1994) Cine MRI of mitral regurgitation in planes angled along the intrinsic cardiac axes. J Comput Assist Tomogr 18:569–575

    CAS  PubMed  Google Scholar 

References

  1. O’Rourke RA, Brundage BH, Froelicher VF et al (2000) American College of Cardiology/American Heart Association Expert Consensus Document on Electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease: Committee Members Circulation 102:126–140

    CAS  PubMed  Google Scholar 

  2. Manning WJ, Edelmann RR (1993) A preliminary report comparing magnetic resonance angiography with conventional angiography. N Engl J Med 328:828–832

    CAS  PubMed  Google Scholar 

  3. van Geuns RJ, de Bruin HG, Rensing BJ et al (1999) Magnetic resonance imaging of the coronary arteries: clinical results from three dimensional evaluation of a respiratory gated technique. Heart 82:515–519

    PubMed  Google Scholar 

  4. Hundley WG, Clarke GD, Landau C et al (1995) Noninvasive determination of infarct artery patency by cine magnetic resonance angiography. Circulation 91:1347–1353

    CAS  PubMed  Google Scholar 

  5. Regenfus M, Ropers D, Achenbach S, Kessler W, Laub G, Daniel WG, Moshage W (2000) Noninvasive detection of coronary artery stenosis using contrast-enhanced three-dimensional breath-hold magnetic resonance coronary angiography. J Am Coll Cardiol 36:44–50

    Article  CAS  PubMed  Google Scholar 

  6. Oshinski JN, Mukundan S, Dixon WT, Parks DJ, Pettigrew RI (1996) Two-dimensional coronary MR angiography without breath holding. Radiology 201:737–743

    CAS  PubMed  Google Scholar 

  7. Post JC, van Rossum AC, Hofman MB, de Cock CO, Valk J, Visser CA (1997) Clinical utility of two-dimensional magnetic resonance angiography in detecting coronary artery disease. Eur Heart J 18:426–433

    CAS  PubMed  Google Scholar 

  8. Sardanelli F, Molinari G, Zandrino F, Balbi M (2000) Three-dimensional, navigator-echo MR coronary angiography in detecting stenoses of the major epicardial vessels, with conventional coronary angiography as the standard of reference. Radiology 214:649–650

    Google Scholar 

  9. Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ (1999) Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation 99:3139–3148

    CAS  PubMed  Google Scholar 

  10. Kim WY, Danias PG, Stuber M et al (2001) Coronary magnetic resonance angiography for the detection of coronary artery disease. N Engl J Med 345:1863–1869

    Article  CAS  PubMed  Google Scholar 

  11. Libby P (2001) The vascular biology of atherosclerosis. In: Braunwald, Zipes, Libby (eds) Heart Disease, pp. 995–1009

    Google Scholar 

  12. Furberg CD, Byington RP, Riley W (1995) B-mode ultrasound: a noninvasive method for assessing atherosclerosis. Cardiovascular Medicine. In: Willerson JT, Cohn JN (eds). New York, NY: Churchill Livingstone, pp. 1182–1187

    Google Scholar 

  13. Ward MR, Pasterkamp G, Yeung AC, Borst C (2000) Arterial remodeling: mechanisms and clinical implications. Circulation 102:1186–1191

    CAS  PubMed  Google Scholar 

  14. Langfield M, Gray-Weale AC, Lusby RJ et al (1989) The role of plaque morphology and diameter reduction in the development of new symptoms in asymptomatic carotid arteries. J Vasc Surg 9:548–557

    Google Scholar 

  15. Falk E (1992) Why do plaque rupture? Circulation 86(Suppl III): III-30–III-42

    CAS  Google Scholar 

  16. McCarthy MJ, Loftus IM, Thompson MM et al (1999) Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology. J Vasc Surg 30:261–268

    Article  CAS  PubMed  Google Scholar 

  17. Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C (2002) Classification of human carotid atherosclerosis lesions with in vivo multicontrast magnetic resonance imaging. Circulation 106:1368–1373

    PubMed  Google Scholar 

  18. Pohost GM, Fuisz AR (1998) From the microscope to the clinic: MR assessment of atherosclerotic plaque. Circulation 98:1477–1478

    CAS  PubMed  Google Scholar 

  19. Choundhury RP, Fuster V, Badimon JJ, Fisher EA, Fayad ZA (2002) MRI and characterization of atherosclerotic plaque: emerging applications and molecular imaging. Arterioscler Thromb Vasc Biol 22:1065–1074

    Google Scholar 

  20. Fayad ZA, Fuster V, Fallon JT, Jayasundera T, Worthley SG, Helft G, Aguinaldo G, Badimon JJ, Harma SK (2000) Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 102:506–510

    CAS  PubMed  Google Scholar 

  21. Shinnar M, Fallon JT, Wehrli S, Levin M, Dalmacy D, Fayad ZA, Badimon JJ, Harrington M, Harrington E, Fuster V (1997) The diagnostic accuracy of ex vivo MRI for human atherosclerotic plaque characterization. Arterioscler Thromb Vasc Biol 17:542–546

    Google Scholar 

  22. Toussaint JF, LaMuraglia GM, Southern JF, Fuster V, Kantor HL (1996) Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 94:932–938

    CAS  PubMed  Google Scholar 

  23. Hatsukami TS, Ross R, Polissar NL et al (2000) Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high resolution magnetic resonance imaging. Circulation 102:959–964

    CAS  PubMed  Google Scholar 

  24. Yuan C, Mitsumori LM, Ferguson MS, Polissar NL, Echelard D, Ortiz G, Small R, Davies JW, WS Kerwin, Hatsukami TS (2001) In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 104:2051–2056

    CAS  PubMed  Google Scholar 

  25. Corti R, Osende JI, Fayad ZA, Fallon JT, MD, Fuster V, Mizsei G, Dickstein E, Drayer B, Badimon JJ (2002) In vivo noninvasive detection and age definition of arterial thrombus by MRI. J Am Coll Cardiol 39:1366–1373

    PubMed  Google Scholar 

  26. Yuan C, Kerwin WS, Ferguson MS, Polissar N, Zhang S, Cai J, Hatsukami TS (2002) Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging 15:62–67

    Article  PubMed  Google Scholar 

  27. Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ (2000) Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 102:2582–2587

    CAS  PubMed  Google Scholar 

  28. Gould KL, Lipscomb L (1974) Effects of coronary stenoses on coronary flow reserve and resistence. Am J Cardiol 34:50

    Google Scholar 

  29. Ferrari M, Schnell B, Werner GS, Figulla HR (1999) Safety of deferring angioplasty in patients with normal coronary flow velocity reserve. J Am Coll Cardiol 33:82–87

    CAS  PubMed  Google Scholar 

  30. Kern MJ, de Bruyne B, Pijls NH (1997) From research to clinical practice: current role of intracoronary physiologically based decision making in the cardiac catheterization laboratory. J Am Coll Cardiol 30:613–620

    Article  CAS  PubMed  Google Scholar 

  31. Hundley WG, Lange RA, Clarke GD (1996) Assessment of coronary arterial flow and flow reserve with magnetic resonance imaging. Circulation 93:896–902

    Google Scholar 

  32. Hundley WG, Hillis D, Hamilton CA, Applegate RJ, Herrington DM, Clarke GD, Braden GA, Thomas MS, Lange RA, Peshock RM, Link KM (2000) Assessment of coronary arterial restenosis with phase contrast magnetic resonance imaging measurements of coronary flow reserve. Circulation 101:2375–2381

    CAS  PubMed  Google Scholar 

  33. Galjee MA, van Rossum AC, Doesburg T, van Eenige MJ, Visser CA (1996) Value of magnetic resonance imaging in assessing patency and function of coronary artery bypass grafts: an angiographically controlled study. Circulation 93:660–666

    CAS  PubMed  Google Scholar 

  34. Bedaux WLF, Hofman MBM, Vyt SLA, Bronwaer JGF, Visser CA, van Rossum AC (2002). Assessment of coronary artery bypass graft disease using cardiovascular magnetic resonance determination of flow reserve. J Am Coll Cardiol 40:1848–1855

    Article  PubMed  Google Scholar 

  35. Langerak SE, Vliegen HW, Jukema W, Kunz P, Zwinderman AH, Lamb HJ, van der Wall EE, de Roos A (2003) Value of magnetic resonance imaging for the noninvasive detection of stenosis in coronary artery bypass grafts and recipient coronary arteries. Circulation 107:1502–1508

    Article  CAS  PubMed  Google Scholar 

  36. Nagel E, Thout T, Klein C, Schalla S, Bornstedt A, Schnackenburg B, Hug J, Wellnhofer E, Fleck E (2003) Noninvasive determination of coronary blood flow velocity with cardiovascular magnetic resonance in patients after stent deployment. Circulation 107:1738–1743

    Article  PubMed  Google Scholar 

  37. Gerber TC, Fasseas P, Lennon RJ, Valeti VU, Wood CP, Breen JF, Berger PB (2003) Clinical safety of magnetic resonance imaging early after coronary artery stent placement. J Am Coll Cardiol 42:1295–1298

    Article  PubMed  Google Scholar 

  38. Paetsch I, Huber ME, Bornstedt A et al (2003) Reliable detection of coronary stenoses with contrast enhanced, 3D free breathing coronary MR angiography using a gadolinium based intravascular contrast agent. Circulation 108, IV, 488

    Google Scholar 

References

  1. Burke A, Virmani R (1996) Tumors of the heart and great vessels. Atlas of tumor pathology. 3rd series, fasc 16. Washington, DC: Armed Forces Institute of Pathology

    Google Scholar 

  2. Grebenc ML, Rosado-de-Christenson ML, Green CE, Burke AP, Galvin JR (2002) Cardiac myxoma: imaging features in 83 patients. Radiographics 22(3):673–689

    PubMed  Google Scholar 

  3. Burke AP, Virmani R (1993) Cardiac myxoma: a clinicopathologic study. Am J Clin Pathol 100:671–680

    CAS  PubMed  Google Scholar 

  4. Seelos KC, Caputo GR, Carrol CL, Hricak H, Higgins CB (1992) Cine gradient refocused echo (GRE) imaging of intravascular masses: differentiation between tumor and nontumor thrombus. J Comput Assist Tomogr 16:169–175

    CAS  PubMed  Google Scholar 

  5. Masui T, Takahashi M, Miura K, Naito M, Tawarahara K (1995) Cardiac myxoma: identification of intratumoral hemorrhage and calcification on MR images. AJR Am J Roentgenol 164:850–852

    CAS  PubMed  Google Scholar 

  6. Matsuoka H, Hamada M, Honda T e al (1996) Morphologic and histologic characterization of cardiac myxomas by magnetic resonance imaging. Angiology 47:693–698

    CAS  PubMed  Google Scholar 

  7. Gomes AS, Lois JF, Child JS, Brown K, Batra P (1987) Cardiac tumors and thrombus: evaluation with MR imaging. AJR Am J Roentgenol 149:895–899

    CAS  PubMed  Google Scholar 

  8. Funari M, Fujuta N, Peck WW, Higgins CB (1991) Cardiac tumors: assessment with Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:953–958

    CAS  PubMed  Google Scholar 

  9. Araoz PA, Eklund HE, Welch TJ, Breen JF (1999) CT and MR imaging of primary cardiac malignancies. RadioGraphics 19:1421–1434

    CAS  PubMed  Google Scholar 

  10. Edwards FH, Hale D, Cohen A et al (1991) Primary cardiac valve tumors. Ann Thorac Surg 52:1127–1131

    CAS  PubMed  Google Scholar 

  11. Puvaneswary M, Edwards JRM, Bastian BC, Khatri SK (2000) Pericardial lipoma: US, CT and MRI findings. Australas Radiology 44:321–324

    CAS  Google Scholar 

  12. Kiaffas MG, Powell AJ, Geva T (2002) Magnetic resonance imaging evaluation of cardiac tumor characteristics in infants and children. Am J Cardiol 89(10):1229–1233

    Article  PubMed  Google Scholar 

  13. McCallister HA, Jr (1979) Primary tumors of the heart and pericardium. Curr Probl Cardiol 4:1–51

    Google Scholar 

  14. Ceresoli FL, Ferrei AJM, Bucci E e al (1997) Primary cardiac lymphoma in immunocompetent patients: diagnostic and therapeutic management. Cancer 80:1497–1506

    Article  CAS  PubMed  Google Scholar 

  15. Chiles C, Woodard PK, Gutierriez R, Link KM (2001) Metastatic involvement of the heart and pericardium: CT and MR imaging. Radiographics 21:439–449

    CAS  PubMed  Google Scholar 

References

  1. Haliloglu M, Hoffer FA, Gronemeyer SA (1999) Application of three dimensional gadolinium-enhanced MRI angiography in children Proc. Int Soc Magn Reson Med 7:1222

    Google Scholar 

  2. Vick GW (2000) Three and four-dimensional visualization of magnetic resonance imaging data sets in pediatric cardiology. Pediatr Cardiol 21:27–36

    PubMed  Google Scholar 

  3. Jauhiainen T, Järvinen VM, Hekali PE (2002) Evaluation of methods for MR imaging of human right ventricular heart volumes and mass. Acta Radiol 43:587–592

    Article  CAS  PubMed  Google Scholar 

  4. Fujimoto S, Mizuno R, Nakagawa et al (1998) Estimation of the right ventricular volume and ejection fraction by transthoracic three-dimensional echocardiography. A validation study using magnetic resonance imaging. Int J Card Imaging 14:385–390

    CAS  PubMed  Google Scholar 

  5. Fogel MA, Gupta KB, Weinberg PM et al (1995) Regional wall motion and strain analysis across stages of Fontan reconstruction by magnetic resonance tagging. Am J 269(3 Pt 2):H113.

    Google Scholar 

  6. Powell AJ, Geva T (2000) Blood flow measurement by magnetic resonance imaging in congenital heart disease. Pediatr Cardiol 21:47–58

    CAS  PubMed  Google Scholar 

  7. Powell AJ, Tsai-Goodman B, Prakash A et al (2003) Comparison between phase-velocity cine magnetic resonance imaging and invasive oximetry for quantification of atrial shunts. Am J Cardiol 91:1523–525, A9

    PubMed  Google Scholar 

  8. Chernoff DM, Derugin N, Rajasinghe HA e al (1997) Measurement of collateral blood flow in a porcine model of aortic coarctation by velocity-encoded cine MRI. Magn Reson Imaging 7:557–563

    CAS  Google Scholar 

  9. Oshinski JN, Parks WJ, Markou CP et al (1996) Improved measurement of pressure gradients in aortic coarctation by magnetic resonance imaging. J Am Coll Cardiol 28:1818–2186

    CAS  PubMed  Google Scholar 

  10. Freedom cong. Heart Disease 1997: textbook of Angiocardiography. Armonk NY

    Google Scholar 

  11. Van Praagh S, Carrera ME, Sanders SP et al (1994) Mayer JE, Van Praagh R. Sinus venosus defects: unroofing of the right pulmonary veins-anatomic and echocardiographic findings and surgical treatment. Am Heart J 128:365–379

    PubMed  Google Scholar 

  12. Cardiac Surgery (Kirkling/Barratt-Boyes) (1993) Churchill-Levingston

    Google Scholar 

  13. Zhu W, Cao QL, Rhodes J et al (2000) Measurement of atrial septal defect size: a comparative study between three-dimensional transesophageal echocardiography and the standard balloon sizing methods. Pediatr Cardiol 21:465–469

    Article  CAS  PubMed  Google Scholar 

  14. Beerbaum P, Korperich H, Esdorn H et al (2003) Atrial septal defects in pediatric patients: noninvasive sizing with cardiovascular MR imaging. Radiology 228:361–369

    PubMed  Google Scholar 

  15. Arai AE, Epstein FH, Bove KE et al Visualization of aortic valve leaflet using black blood MRI. J Magn Reson Imaging 10:771–777

    Google Scholar 

  16. Chatzimavroudis GP, Oshinski JN, Franch RH et al (1998) Quantification of the aortic regurgitant volume with magnetic resonance phase velocity mapping: a clinical investigation of the importance of imaging slice location. J Heart Valve Dis 7:94–101

    CAS  PubMed  Google Scholar 

  17. Nora JJ, Nora AH, Toews WH (1974) Letter: Lithium, Ebstein’s anomaly, and other congenital heart defects. Lancet 2:594–595

    CAS  PubMed  Google Scholar 

  18. Choi YH, Park YK, Choe YH (1994) MR imaging of Ebstein’s anomaly of the tricuspid valve. Am J Roentgenol 163:539–543

    CAS  Google Scholar 

  19. Geva T, Greil GF, Marshall AC et al (2002) Gadolinium-enhanced 3-dimensional magnetic resonance angiography of pulmonary blood supply in patients with complex pulmonary stenosis or atresia: comparison with x-ray angiography. Circulation 106:473–478

    Article  PubMed  Google Scholar 

  20. Helbing WA, de Roos (2000) A clinical applications of cardiac magnetic resonance imaging after repair of tetralogy of Fallot. Pediatr Cardiol 21:70–79

    Article  CAS  PubMed  Google Scholar 

  21. Davlouros PA, Kilner PJ et al (2002) Right ventricular function in adults with repaired tetralogy of Fallot assessed with cardiovascular magnetic resonance imaging: detrimental role of right ventricular outflow aneurysms or akinesia and adverse right-to-left ventricular interaction. J Am Coll Cardiol 40:2044–2052

    Article  PubMed  Google Scholar 

  22. Christofer A Loffredo (2000) Epidemiology of cardiovascular malformation. American Journal of Medical Genetica (Semin Med Genet) 97:319–325

    CAS  Google Scholar 

  23. Liebman J, Cullum L, Belloc NB (1969) Natural history of transposition of the great arteries. Anatomy and birth and death characteristics. Circulation 40:237–262

    CAS  PubMed  Google Scholar 

  24. Lorenz CH, Walker ES, Graham TP et al (1995) Right ventricular performance and mass by use of cine MRI late after atrial repair of transposition of the great arteries. Circulation 92(9 Suppl):II233–9

    CAS  PubMed  Google Scholar 

  25. Fogel MA, Hubbard A, Weinberg PM (2001) A simplified approach for assessment of intracardiac baffles and extracardiac conduits in congenital heart surgery with two-and three-dimensional magnetic resonance imaging. Am Heart J 142:1028–1036

    Article  CAS  PubMed  Google Scholar 

  26. Geva T, Vick GW 3rd, Wendt RE et al (1994) Role of spin echo and cine magnetic resonance imaging in presurgical planning of heterotaxy syndrome. Comparison with echocardiography and catheterization. Circulation 90:348–356

    CAS  PubMed  Google Scholar 

  27. Fogel MA, Weinberg PM, Fellows KE et al (1993) Magnetic resonance imaging of constant total heart volume and center of mass in patients with functional single ventricle before and after staged Fontan procedure. Am J Cardiol 72:1435–1443

    Article  CAS  PubMed  Google Scholar 

  28. Tulevski II, van der Wall EE, Groenink M et al (2002) Usefulness of magnetic resonance imaging dobutamine stress in asymptomatic and minimally symptomatic patients with decreased cardiac reserve from congenital heart disease (complete and corrected transposition of the great arteries and subpulmonic obstruction). Am J Cardiol 89:1077–1081

    Article  PubMed  Google Scholar 

  29. Rebergen SA, Ottenkamp J, Doornbos J et al (1993) Postoperative pulmonary flow dynamics after Fontan surgery: assessment with nuclear magnetic resonance velocity mapping. Am Coll Cardiol Jan 21:123–131

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Italia

About this chapter

Cite this chapter

Lombardi, M. et al. (2005). Heart. In: MRI of the Heart and Vessels. Springer, Milano. https://doi.org/10.1007/88-470-0359-8_7

Download citation

  • DOI: https://doi.org/10.1007/88-470-0359-8_7

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0306-4

  • Online ISBN: 978-88-470-0359-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics