Skip to main content

Aerosol Effects on Lightning and Intensity of Landfalling Hurricanes

  • Chapter
  • First Online:
Hurricanes and Climate Change
  • 2697 Accesses

Abstract

Intense and persistent lightning in landfalling hurricanes takes place within the 250-300 km-radius ring around the hurricane center. At the same time the lightning activity in the eye wall takes place only during comparatively short periods of tropical cyclone (TC) intensification related to the replacement of old eyewall by the new one. As soon as the hurricane weakens, the lightning in the eye wall disappears. The mechanisms responsible for most of the phenomena are unknown. In this study we provide some observational evidence and numerical estimations to show that lightning in hurricanes approaching or penetrating the land, especially at their periphery, arises under the influence of continental aerosols, which affect the microphysics and dynamics of clouds in TCs. Numerical simulations using a 2-D mixed phase cloud model with spectral microphysics show that aerosols that penetrate cloud base of maritime clouds dramatically increase the amount of supercooled water as well as ice content and vertical velocities. As a result, in clouds developing in dirty air ice crystals, graupel, frozen drop/hail and supercooled water can coexist within the same cloud zone which allows for collisions and charge separation. Simulation of the possible effects of aerosols on landfalling tropical cyclone has been carried out using a 3-km resolution Weather Research and Forecasting (WRF) mesoscale model. It is shown that aerosols change cloud microstructure in a way that allows one to attribute observed lightning structure to effects of continental aerosols. It is shown also that aerosols, invigorating clouds at 250-300 km from TC center decrease the convection intensity in the TC center leading to some TC weakening. The results suggest that aerosols change the intensity and spatial distribution of precipitation in landfalling TCs. These results can serve as a justification of the observed weekly cycle of intensity and precipitation of landfalling TCs caused, supposedly, by the weekly variation of anthropogenic aerosol concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References:

  • Andreae, M.O., D. Rosenfeld, P. Artaxo, A.A. Costa. G.P. Frank, K.M. Longlo, and M.A.F. Silva-Dias (2004): Smoking rain clouds over the Amazon. Science, 303, 1337–1342.

    Article  Google Scholar 

  • Black R. A. and Hallett J. (1999). Electrification of the hurricane, J. Atmos. Sci, 56, 2004–2028

    Article  Google Scholar 

  • Cecil D.J., E.J. Zipser, and S.W. Nebitt (2002a) Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part 1: Quantitative description. Mon Wea. Rev. 130, 769–784.

    Article  Google Scholar 

  • Cecil D.J., E.J. Zipser, and S.W. Nebitt (2002a) Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part 2: Intercomparison of observations. Mon Wea. Rev. 130, 785–801.

    Article  Google Scholar 

  • Cerveny R. S. and R. C. Balling (1998). Weekly cycles of air pollutants, precipitation and tropical cyclones in the coastal NW Atlantic region. Nature 394 (6693) 561–563.

    Article  Google Scholar 

  • Cotton, W. R., H. Zhang, G.M. McFarquhar, S.M. Saleeby (2007) Should we consider polluting hurricanes to reduce their intensity? J. Weather Modification, 39, 70–73.

    Google Scholar 

  • Fierro A.O. , L. Leslie, E. Mansell, J. Straka, D. MacGorman, and C. Ziegler (2007) A high-resolution simulation of microphysics and electrification in an idealized hurricane-like vortex. Meteorol. Atmos. Phys. 98, 13–33, Doi: 10.1007/s00703-006-0237-0.

    Google Scholar 

  • Jordan, C.L. (1958) Mean soundings for the West Indies area. J. Meteor., 15, 91–97

    Article  Google Scholar 

  • Jorgensen , D. P., E.J. Zipser, and. M.A. LeMone (1985). Vertical motions in intense hurricanes. J. Atmos. Sci. 42, 839–856.

    Article  Google Scholar 

  • Khain, A. P. (1984) Mathematical modeling of tropical cyclones.

    Google Scholar 

  • Khain, A.P. and E. A. Agrenich, (1987) Possible effect of atmospheric humidity and radiation heating of dusty air on tropical cyclone development. Proc. Institute Experim. Meteorol., 42(127), 77–80.

    Google Scholar 

  • Khain, A.P., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak (2000) Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55, 159–224.

    Article  Google Scholar 

  • Khain, A.P., M.B. Pinsky, M. Shapiro and A. Pokrovsky (2001a) Graupel-drop collision efficiencies. J. Atmos. Sci., 58, 2571–2595.

    Google Scholar 

  • Khain A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips (2004) Effects of atmospheric aerosols on deep convective clouds as seen from simulations using a spectral microphysics mixed-phase cumulus cloud model Part 1: Model description. J. Atmos. Sci., 61, 2963–2982.

    Article  Google Scholar 

  • Khain, A., D. Rosenfeld and A. Pokrovsky (2005). Aerosol impact on the dynamics and microphysics of convective clouds. Quart. J. Roy. Meteor. Soc. 131, 2639–2663.

    Article  Google Scholar 

  • Khain A.P., N. BenMoshe, A. Pokrovsky (2008) Factors determining the aerosol effects on precipitation: an attempt of classification. J. Atmos. Sci. 65, 1721–1748.

    Google Scholar 

  • Khain A.P. and B. Lynn (2007) Simulation of a super cell storm in clean and dirty atmosphere. J. Geophys. Research (submitted).

    Google Scholar 

  • Koren I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, Y. Rudich (2005) Aerosol invigoration and restructuring of Atlantic convective clouds, Geophys. Res. Lett., 32, L14828, doi:10.1029/2005GL023187.

    Article  Google Scholar 

  • Lhermitte R.M., and P. Krehbiel (1979): Doppler radar and radio observations of thunderstorms. IEEE Trans Geosci Electron 17, 162–171

    Article  Google Scholar 

  • Lynn B., A. Khain, J. Dudhia, D. Rosenfeld, A. Pokrovsky, and A. Seifert (2005) Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part 1. Model description and first results. Mon. Wea. Rev. 133, 44–58.

    Article  Google Scholar 

  • Lynn B., A. Khain, J. Dudhia, D. Rosenfeld, A. Pokrovsky, and A. Seifert (2005) Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part 2: Simulation of a CaPe rain event with squall line Mon. Wea. Rev., 133, 59–71.

    Article  Google Scholar 

  • Mansell E.R. , D.R. Mac.Gorman and J.M. Straka (2002) Simulated three-dimensional branched lightning in a numerical thunderstorm model. J. Geophys. Res. 107, D9 (doi: 10.1029/2000JD000244).

    Article  Google Scholar 

  • McFarquhar G., and R.A. Black (2004) Observations of particle size and phase in tropical cyclones: implications for mesoscale modeling of microphysical processes. J. Atmos. Sci. 61, 422–439

    Article  Google Scholar 

  • Meyers, M.P., P.J. DeMott, and W.R. Cotton (1992) New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708–721.

    Article  Google Scholar 

  • Molinari J., Moore P., and V. Idone (1998) Convective Structure of hurricane as revealed by lightning locations, Mon. Wea. Rev., 127, 520–534

    Article  Google Scholar 

  • Orville R.E. and J.M. Coyne (1999) Cloud-to-ground lightning in tropical cyclones (1986-1996). Preprints, 23-rd Conf. on Hurricanes and tropical meteorology, Dallas, Amer. Meteor. Soc. , 194pp.

    Google Scholar 

  • Pinsky, M. and A.P. Khain (1998) Some effects of cloud turbulence on water-ice and ice-ice collisions, Atmos. Res., 47–48, 69–86.

    Google Scholar 

  • Pinsky, M., A.P. Khain, and M. Shapiro (2001) Collision efficiency of drops in a wide range of Reynolds numbers: Effects of pressure on spectrum evolution. J. Atmos. Sci., 58, 742–764.

    Article  Google Scholar 

  • Pinsky, M. B., A.P. Khain, and M. Shapiro (2007) Collisions of cloud droplets in a turbulent flow. Part 4. Droplet hydrodynamic interaction. J. Atmos. Sci., 64, 2462–2482.

    Article  Google Scholar 

  • Pruppacher, H.R. and J.D. Klett (1997) Microphysics of clouds and precipitation. 2nd edition, Oxford Press, 1997, 963p.

    Google Scholar 

  • Pinsky, M. and Khain, A. P. (2002). Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds. Quart. J. Roy. Meteorol. Soc., 128, 1–33.

    Article  Google Scholar 

  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl and D. Rosenfeld (2001), Aerosols, climate, and the hydrological cycle, Science, 294, 2119–2124

    Article  Google Scholar 

  • Rogers, R. R. and Yau, M. K. (1989) A short course of cloud physics. Pregamon, Oxford, 293 pp.

    Google Scholar 

  • Rodgers E., J. Weinman, H. Pierce, W. Olson (2000) Tropoical cyclone lightning distribution and its relationship to convection and intensity change. Preprints, 24 th Conf. on Hurricanes and Tropical meteorology, Ft. Lauderdale, Amer. Meteor. Soc. pp. 537-541.

    Google Scholar 

  • Rosenfeld D, R. Lahav, A. Khain, and M. Pinsky (2002) The role of sea spray in cleaning air pollution over ocean via cloud processes. Science 297, 1667–1670.

    Article  Google Scholar 

  • Rosenfeld D., M. Fromm, J. Trentmann, G. Luderer, M. O. Andreae, and R. Servranckx (2007) The Chisholm firestorm: observed microstructure, precipitation and lightning activity of a pyro-Cb. Atmos. Chem. Phys., 7, 645–659.

    Article  Google Scholar 

  • Rosenfeld D., A. Khain, B. Lynn, W.L. Woodley (2007) Simulation of hurricane response to suppression of warm rain by sub-micron aerosols. Atmos. Chem. Phys. Discuss., 7, 5647–5674.

    Article  Google Scholar 

  • Saunders, C.P.R. (1993). A review of thunderstorm electrification processes, J. Appl. Meteor., 32, 642–655.

    Article  Google Scholar 

  • Shepherd, J.M., and S.J. Burian (2003) Detection of urban-induced rainfall anomalies in a major coastal city. Earth Interactions, 7, 1–17.

    Article  Google Scholar 

  • Sherwood S.C., V. Phillips and J. S. Wettlaufer (2006). Small ice crystals and the climatology of lightning. Geophys. Res. Letters, 33, L058804, doi. 10.1029/2005GL.

    Article  Google Scholar 

  • Shao X.M., Harlin J., Stock M., Stanley M., Regan A., Wiens K., Hamlin T., Pongratz M., Suszcynsky D. and Light T. (2005) Katrina and Rita were lit up with lightning, EOS, Vol. 86, No.42, page 398–399.

    Article  Google Scholar 

  • Simpson, R.H., and Malkus J.S. (1964) Experiments in hurricane modification. Sci. Amer., 211, 27–37.

    Article  Google Scholar 

  • Skamarock, W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Wang W., and Powers J.G. (2005) A description of the Advanced Research WRF Version 2. NCAR Tech Notes-468+STR.

    Google Scholar 

  • Straka J.M. and E.R. Mansell (2005) A bulk microphysics parameterization with multiple ice precipitation categories. J. Appl. Meteorol. 44, 445–466.

    Article  Google Scholar 

  • Takahashi, T.(1978) Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 1536–1548.

    Article  Google Scholar 

  • Takahashi, T., T. Endoh, and G. Wakahama (1991) Vapor diffusional growth of free-falling snow crystals between –3 and –23 C. J. Meteor. Soc. Japan, 69, 15–30.

    Google Scholar 

  • Thompson, G., P. R. Field, W. D. Hall, and R. Rasmussen (2006) A new bulk microphysical parameterization for WRF (& MM5). Presented at WRF conference, NCAR, June 2006.

    Google Scholar 

  • Wang C. A (2005) Modelling study of the response of tropical deep convection to the increase of cloud condensational nuclei concentration: 1. Dynamics and microphysics. J. Geophys. Res., v. 110; D21211, doi:10.1029/2004JD005720.

    Article  Google Scholar 

  • Williams E, G. Satori (2004) Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys. J. Atmos. And Solar-Terrestrial Phys. 66, 1213–1231.

    Article  Google Scholar 

  • Williams E., V. Mushtak, D. Rosenfeld, S. Goodman and D. Boccippio, (2005) Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res., 76, 288–306.

    Article  Google Scholar 

  • Wiens K.C., S.A. Rutledge, and S.A. Tessendorf (2005) The 29 June 2000 supercell observed during steps. Pt 2: Lightning and charge structure. J. Atmos. Sci. 62, 4151–4177.

    Article  Google Scholar 

  • Willoughby, H.E., Jorgensen D.P., Black R.A., and Rosenthal S.L. (1985) Project STORMFURY, A Scientific Chronicle, 1962-1983, Bull. Amer. Meteor. Soc., 66, 505–514.

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the Israel Science Foundation, grant N 140/07

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cohen, N., Khain, A. (2009). Aerosol Effects on Lightning and Intensity of Landfalling Hurricanes. In: Elsner, J., Jagger, T. (eds) Hurricanes and Climate Change. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09410-6_11

Download citation

Publish with us

Policies and ethics