Skip to main content

Part of the book series: New ICMI Study Series ((NISS,volume 11))

Teacher education and the professional development of practicing teachers need to provide a sound basis of knowledge for teaching, theoretically but also with strong ties to issues of practice. Although this seems like a common-sense statement, it is harder to make a reality than expected. At least three factors could account for this difficulty: the sheer complexity of the knowledge required for teaching, the interconnectedness of knowledge, and the fact that teachers’ knowledge comes from different and in certain cases even contradictory sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agudelo-Valderrama, C. (2004a). Explanations of attitudes to change: Colombian mathematics teachers’ conceptions of their own teaching practices of beginning algebra. Ph.D. dissertation, Monash University, Melbourne.

    Google Scholar 

  • Agudelo-Valderrama, C. (2004b). A novice teacher’s conception of the crucial determinants of his teaching of beginning algebra. In I. Putt, R. Faragher, & M. McLean (Eds.), Proceedings of the 27th Annual Conference of the Mathematics Education Research Group of Australasia, Vol. 1 (pp. 31–38). Townsville, Australia: MERGA.

    Google Scholar 

  • Agudelo-Valderrama, C., & Clarke, B. (2005). The challenges of mathematics teacher change in the Colombian context: The power of institutional practices. Paper presented at the conference of the 15th ICMI Study on the Professional Education and Development of Teachers of Mathematics, Águas de Lindóia, Brazil.

    Google Scholar 

  • Agudelo-Valderrama, C., Clarke, B., & Bishop, A. (2007). Explanations of attitudes to change: Colombian mathematics teachers’ conceptions of the crucial determinants of their teaching practices of beginning algebra. Journal of Mathematics Teacher Education, 10, 69–93.

    Article  Google Scholar 

  • Atkinson, T., & Claxton, G. (Eds.). (2000). The intuitive practitioner: On the value of not always knowing what one is doing. Philadelphia: Open University Press.

    Google Scholar 

  • Ball, D., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to teach: Knowing and using mathematics. In J. Boaler (Ed.), Multiple perspectives on the teaching and learning of mathematics (pp. 83–104). Westport, CT: Ablex.

    Google Scholar 

  • Ball, D., & Bass, H. (2003). Toward a practice-based theory of mathematical knowledge for teaching. In B. Davis & E. Simmt (Eds.), Proceedings of the 2001 Annual Meeting of the Canadian Mathematics Education Study Group, (p. 3014). Edmonton, CA: CMESG/GCEDM.

    Google Scholar 

  • Ball, D., Hill, H., & Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics well enough to teach third grade, and how can we decide? American Educator, 14–46.

    Google Scholar 

  • Baumert, J., Blum, W., & Neubrand, M. (2004). Drawing the lessons from PISA-2000: Long term research implications: Gaining a better understanding of the relationship between system inputs and learning outcomes by assessing instructional and learning processes as mediating factors. In D. Lenzen, J. Baumert, R. Watermann, & U. Trautwein (Eds.), PISA und die Konsequenzen für die erziehungswissenschaftliche Forschung Zeitschrift für Erziehungswissenschaft, Special Issue, 3, 143–158.

    Google Scholar 

  • Blum, W., Baumert, J., Neubrand, M., Krauss, S., Brunner, M., Jordan, A., et al. (2005, May). COACTIV—A Project for Measuring and Improving the Professional Expertise ofMathematics Teachers. Paper presented at the conference of the 15th ICMI Study on the Professional Education and Development of Teachers of Mathematics, Águas de Lindóia, Brazil.

    Google Scholar 

  • Brousseau, G. (1986). Fondements et méthodes de la didactique des mathématiques. Recherches en didactique des mathématique, 7(2). 33–115.

    Google Scholar 

  • Brunner, M., Kunter, M., Krauss, St., Klusmann, U., Baumert, J., Blum, W., et al. (2006). Die professionelle kompetenz von Mathematiklehrkräften: Konzeptualisierung, erfassung und bedeutung für den unterricht. Eine zwischenbilanz des COACTIV-Projekts. In M. Prenzel & L. Allolio-Näcke (Eds.), Untersuchungen zur Bildungsqualität von Schule. Abschlussbericht des DFG-Schwerpunktprogramms (pp. 54–83). Münster: Waxmann.

    Google Scholar 

  • Cooney, T., & Shealy, B. (1997). On understanding the structure of teachers’ beliefs and their relationship to change. In E. Fennema & B.S. Nelson (Eds.), Mathematics teachers in transition (pp. 87–109). Mahwah, N.J.: Lawrence Erlbaum Associates.

    Google Scholar 

  • DeBlois, L. (1996). Une analyse conceptuelle de la numération positionnelle. Recherches en didactique des mathématique. Les Éditions La pensée sauvage, 16(1), 71–128.

    Google Scholar 

  • DeBlois, L. (1997a). Trois élèves en difficulté devant des situations de réunion et de complément d’ensembles. Educational Studies in Mathematics, 34(1), 67–96.

    Article  Google Scholar 

  • DeBlois, L. (1997b). Quand additionner ou soustraire implique comparer. Éducation et Francophonie, XXV(1), 102–120. Québec: Association Canadienne d’éducation en Langue Française (http://ACELF.CA/revue).

    Google Scholar 

  • DeBlois, L. (2000). Un modèle d’interprétation des activités cognitives pour des élèves qui éprouvent des difficultés d’apprentissage en mathématiques. Dans Actes du colloque “Constructivismes: Usages et perspectives en éducation”, 2 (CD Rom). Genève: SRED, 565–573.

    Google Scholar 

  • DeBlois, L. (2003a). Préparer à intervenir auprès des élèves en interprétant leurs productions: Une piste. Éducation et Francophonie, XXXI(2).

    Google Scholar 

  • DeBlois, L. (2003b). Les enjeux d’une formation continue chez les orthopédagogue. 20th Congrès de l’Association Internationale pour la Pédagogie Universitaire (AIPU). Sherbrooke, Québec.

    Google Scholar 

  • DeBlois, L. (2006). Influence des interprétations des productions des élèves sur les stratégies d’intervention en classe de mathématiques. Educational Studies in Mathematics, 62(3),307–329.

    Article  Google Scholar 

  • DeBlois, L., & Maheux, J. (2005, May). (Laval University, Canada) When things don’t go exactly as planned: Leveraging from student teachers’ insights to adapted interventions and professional practice. Paper presented at the conference of the 15th ICMI Study on the Professional Education and Development of Teachers of Mathematics, Águas de Lindóia, Brazil.

    Google Scholar 

  • DeBlois L., & Squalli, H. (2002). Une modélisation des savoirs d’expérience des orthopédagogues intervenant en mathématiques. Difficultés d’apprentissage et enseignement: Évaluation et intervention (pp. 155–178). Sherbrooke: Éditions du CRP.

    Google Scholar 

  • Desgagné S, (1997). Le concept de recherche collaborative: L’idée d’un rapprochement entre chercheurs universitaires et praticients enseignants. Revue des sciences de l’éducation, XXIII (2), 371–394.

    Google Scholar 

  • Driscoll, M., Zawojewski, J., Humez, A., Nikula, J., Goldsmith, L., & Hammerman, J. (2001). Fostering algebraic thinking toolkit. Portsmouth, N.H,: Heinemann.

    Google Scholar 

  • Erikson, G. (1989). A constructivist approach to the learning of science: Collaborative research with science teachers. Montreal: Université du Québec à Montréal.

    Google Scholar 

  • Erikson, G. (1991). Collaborative inquiry and the professional development of science teachers, Journal of Educational Thought, 25(3), 228–245.

    Google Scholar 

  • Fauvel, J., & van Maanen, J. (Eds.). (2000). History in mathematics education: The 10th ICMI Study (New ICMI Study Series, Vol. 6). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Ferrini-Mundy, J., Floden, R., McCrory, R., Burrill, G., & Sandow, D. (2004). A conceptual framework for knowledge for teaching school algebra. Unpublished manuscript. East Lansing, MI: Michigan State University.

    Google Scholar 

  • Gates, P. (2001). Mathematics teachers’ beliefs systems: Exploring the social foundations. In M. van den Heuvel-Panuizen (Ed.), Proceedings of the 25th International Conference of Psychology of Mathematics Education, Vol. 3 (pp. 17–24). Utrecht University, The Netherlands: Psychology of Mathematics Education.

    Google Scholar 

  • Goldsmith, L. T., Seago, N., Driscoll, M., Nikula, J., & Blasi, Z. (2006). Turning to the evidence: Examining the impact of two practice-based professional development programs. Paper presented at the annual meeting of the American Educational Research Association, San Francisco.

    Google Scholar 

  • Goldsmith, L. T., & Seago, N. (2008). Using video cases to unpack the mathematics in students’ mathematical thinking. In Smith M.S. (Ed.) Monographs of the Association of Mathematics Teacher Educators.

    Google Scholar 

  • Hanna, G. (1983). Rigorous proof in mathematics education. Toronto: OISE-Press.

    Google Scholar 

  • Hanna, G., & Jahnke, H. (1993). Proof and application. Educational Studies in Mathematics, 24, 421–438.

    Article  Google Scholar 

  • Heck, D. J. (2003). Measuring teacher knowledge in mathematics professional development using embedded assessments. Paper presented at the annual meeting of the American Educational Research Association, Chicago.

    Google Scholar 

  • Hill, H., & Ball, D. (2004). Learning mathematics for teaching: Results from California’s mathematics professional development institutes. Journal for Research in Mathematics Education, 35, 330–351.

    Article  Google Scholar 

  • Hill, H., & Collopy, R. (2002). What might teachers learn: An evaluation of the potential opportunities to learn in Videocase. An evaluation report to VCMPD, University of Michigan, Ann Arbor, MI.

    Google Scholar 

  • Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn mathematics. Washington, D.C.: National Academy Press.

    Google Scholar 

  • Kirsch, A. (2000). Aspects of simplification in mathematics teaching. In I. Westbury, St. Hopmann, & K. Riquarts (Eds.), Teaching as a reflective practice: The German Didaktik tradition (pp. 267–284). Mahwah, N.J.: Lawrence Erlbaum Associates.

    Google Scholar 

  • Krauss, St., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand. M., & Jordan, A. (2004). COACTIV: Professionswissen von Lehrkräften, kognitiv aktivierender Mathematikunterricht und die Entwicklung von mathematischer Kompetenz. In J. Doll & M. Prenzel (Eds.), Bildungsqualität von Schule: Lehrerprofessionalisierung, Unterrichtsentwicklung und Schülerförderung als Strategien der Qualitätsverbesserung (pp. 31–53). Münster: Waxmann.

    Google Scholar 

  • Krauss, St., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, M., & Jordan, A. (2007). Are Pedagogical Content Knowledge and Content Knowledge Two Empirically Separable Categories of Knowledge in Mathematics Teachers? Different Answere for Different Degrees of Teacher Expertise. Working paper. Max-Planck-Institute for Human Development, Berlin: Germany.

    Google Scholar 

  • Krauss, St., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, M., et al. (in press). Pedagogical content knowledge and content knowledge of secondary mathematics teachers. Journal of Educational Psychology.

    Google Scholar 

  • Kunter, M., Klusmann, U., Dubberke, Th., Baumert, J., Blum, W., Neubrand, M., et al. (2007). Linking aspects of teacher competence to their instruction: Results from the COACTIV Project. In M. Prenzel (Ed.), Studies on the educational quality of schools. The final report on the DFG Priority Programme. Münster: Waxmann.

    Google Scholar 

  • Leikin, R. (2005). Teachers’ learning in teaching: Developing teachers’ mathematical knowledge through instructional interactions. Paper presented at the conference of the 15th ICMI Study on the Professional Education and Development of Teachers of Mathematics, Águas de Lindóia, Brazil.

    Google Scholar 

  • Leikin, R. (2005a). Teachers’ learning in teaching: Developing teachers’ mathematical knowledge through instructional interactions. Paper presented at the conference of the 15th ICMI Study on the Professional Education and Development of Teachers of Mathematics, Águas de Lindóia, Brazil. http://stwww.weizmann.ac.il/G-math/ICMI/log_in.html

  • Leikin, R. (2005b). Qualities of professional dialog: Connecting graduate research on teaching and the undergraduate teachers’ program. International Journal of Mathematical Education in Science and Technology, 36(1–2), 237–256.

    Google Scholar 

  • Leikin, R. (2006). Learning by teaching: The case of Sieve of Eratosthenes and one elementary school teacher. In R. Zazkis & S. Campbell (Eds.), Number theory in mathematics education: Perspectives and prospects (pp. 115–140). Mahwah, N.J.: Lawrence Erlbaum Associates.

    Google Scholar 

  • Leikin, R., & Dinur, S. (2003). Patterns of flexibility: Teachers’ behavior in mathematical discussion. In the Electronic Proceedings of the Third Conference of the European Society for Research in Mathematics Education. http://www.dm.unipi.it/∼didattica/CERME3/WG11.

  • Leikin, R., Levav-Waynberg, A., Gurevich, I., & Mednikov, L. (2006). Implementation of multiple solution connecting tasks: Do students’ attitudes support teachers’ reluctance? FOCUS on Learning Problems in Mathematics, 28, 1–22.

    Google Scholar 

  • Leikin, R., & Levav-Waynberg, A. (2007). Exploring mathematics teacher knowledge to explain the gap between theory-based recommendations and school practice in the use of connecting tasks. Educational Studies in Mathematics, 66, 349–371.

    Article  Google Scholar 

  • Leikin, R., & Zazkis, R. (2007). A view on the teachers’ opportunities to learn mathematics through teaching: Proceedings of the 31st International Group for the Psychology of Mathematics Education (p. 122). Seoul, Korea: University of Seoul Press.

    Google Scholar 

  • Ma, L. (1999). Knowing and teaching elementary mathematics. Teachers’ understanding of fundamental mathematics in China and the United States. Mahwah, N.J.: Lawrence ErlbaumAssociates.

    Google Scholar 

  • McEwan, H., & Bull, B. (1991). The pedagogic nature of subject matter knowledge’. American Educational Research Journal, 28, 316–334.

    Google Scholar 

  • Mason, J. (1998). Enabling teachers to be real teachers: Necessary levels of awareness and structure of attention. Journal of Mathematics Teacher Education, 1(3), 243–267.

    Article  Google Scholar 

  • Maturana H., & Varela, F. (1994). L’arbre de la connaissance. Paris: Addison-Wesley France.

    Google Scholar 

  • Neubrand, J. (2006). The TIMSS 1995 and 1999 video studies: In search for appropriate units of analysis. In F.K. Leung, K-D. Graf & F.J. Lopez-Real (Eds.), Mathematics education in different cultural traditions: A comparative study of East Asia and the West. The 13th ICMI Study (New ICMI Study Series, Vol. 9), pp. 291–318. New York: Springer.

    Chapter  Google Scholar 

  • Organization for Economic Cooperation and Development. (2004). Learning for tomorrow’s world: First results from PISA 2003. Paris: Author.

    Google Scholar 

  • Piaget, J. (1977). Recherches sur l’abstraction réfléchissante, 1. L’abstraction de l’ordre des relations logico-mathématiques. Paris: Presses Universitaires de France.

    Google Scholar 

  • René de Cotret, S. (1999). Quelques questions soulevées par l’adoption d’une perspective≪ bio-cognitive ≫ pour l’étude de relations du système didactique, Dans Séminaire DidaTech, Didactique et technologies cognitives en mathématiques, (Vol. 1997, 161–178). Grenoble: Laboratoire Leibniz-IMAG.

    Google Scholar 

  • Seago, N., & Goldsmith, L. (2006). Learning mathematics for teaching. Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education, Vol. 5 (73–80). Charles University, Prague, Czech Republic.

    Google Scholar 

  • Seago, N., Mumme, J., & Branca, N. (2004). Learning and teaching linear functions. Portsmouth, N.H.: Heinemann.

    Google Scholar 

  • Sherin, M. G., & van Es, E. A. (2005). Using video to support teachers’ ability to notice classroom interaction. Journal of Technology and Teacher Education, 13(3), 475–491.

    Google Scholar 

  • Simon, M. (1997) Developing new models of mathematics teaching: An imperative for research on mathematics teacher development. In E. Fennema & B.S. Nelson (Eds.), Mathematics teachers in transition (pp. 55–86). Mahwah, N.J.: Lawrence Erlbaum Associates.

    Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

    Google Scholar 

  • Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–22.

    Google Scholar 

  • Sullivan, P., & Mousley, J. (2001). Thinking teaching: Seeing mathematics teachers as active decision makers. In F.L. Lin & T.J. Cooney (Eds.), Making sense of mathematics teacher education (pp. 147–163). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Thompson, A. G. (1992). Teachers’ beliefs and conceptions: A synthesis of the research. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 127–146). New York: Macmillan.

    Google Scholar 

  • Wilson, M., & Lloyd, G. (2000). The challenge to share authority with students: High school teachers reforming classroom roles and activities through curriculum implementation. Journal of Curriculum and Supervision, 15(2), 146–169.

    Google Scholar 

  • Wood, T. (2005). Developing a more complex form of mathematics practice in the early years of teaching. Paper presented at the International Commission for Mathematical Instruction (ICMI) 15 conference, The professional education and development of teachers of mathematics. Áquas de Lindóia, Brazil.

    Google Scholar 

  • Orginal titles of papers submitted to ICMI15, Strand II, Theme 4. All papers presented at the conference of the 15th ICMI Study on the Professional Education and Development of Teachers of Mathematics, Águas de Lindóia, Brazil (available at http://stwww.weizmann.ac.il/G-math/ICMI/log_in.html).

  • Cecilia Agudelo-Valderrama & Barbara Clarke (2005). The challenges of mathematics teacher change in the Colombian context: The power of institutional practices.

    Google Scholar 

  • Marcelo Bairral (University of FRualRJ, Brasil) & Joaquin Gimenez (University of Barcelona, Spain). Dialogic use of teleinteractions for distance geometry teacher training 12–16 years old) as an equity framework.

    Google Scholar 

  • Marcelo Borba (UNESP–São Paulo State, Brazil). Internet-based continuing education programs.

    Google Scholar 

  • Werner Blum, Jürgen Baumert, Michael Neubrand, Stefan Krauss, Martin Brunner, Alexander Jordan, Mareike Kunter. COACTIV: A project for measuring and improving the professional expertise of mathematics teachers.

    Google Scholar 

  • Tenoch Cedillo & Marcela Santillan (National Pedagogical University, Mexico), Algebra as a language in use: A promising alternative as an agent of change in the conceptions and practices of the mathematics teachers.

    Google Scholar 

  • K. C. Cheung & R. J. Huang (Faculty of Education, University of Macau, China). Contribution of realistic mathematics education and theory of multiple intelligences to mathematics practical and integrated applications: Experiences from Shanghai and Macao in China.

    Google Scholar 

  • Douglas Clarke (Australian Catholic University, Australia) and Barbara Clarke (Monash University, Australia). Effective professional development for teachers of mathematics: Key principles from research and a program embodying these principles.

    Google Scholar 

  • Lucie DeBlois & Jean-Francois Maheux (Laval University, Canada). When things don’t go exactly as planned: Leveraging from student teachers’ insights to adapted interventions and professional practice.

    Google Scholar 

  • Roza Leikin (University of Haifa, Israel). Teachers’ learning in teaching: Developing teachers’ mathematical knowledge through instructional interactions.

    Google Scholar 

  • Teresa Smart & Celia Hoyles (The Institute of Education, United Kingdom). A programme of sustainable professional development for mathematics teachers: Design and practice.

    Google Scholar 

  • Olof Steinthorsdottir & Gundy Gunnarsdottir (Iceland University, Iceland). Analysis of professional development programs in Iceland.

    Google Scholar 

  • Terry Wood (Purdue University, U.S.). Developing a more complex form of mathematics practice in the early years of teaching.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Neubrand, M., Seago, N., Agudelo-Valderrama, C., DeBlois, L., Leikin, R., Wood, T. (2009). The Balance of Teacher Knowledge: Mathematics and Pedagogy. In: Even, R., Ball, D.L. (eds) The Professional Education and Development of Teachers of Mathematics. New ICMI Study Series, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09601-8_21

Download citation

Publish with us

Policies and ethics