Skip to main content

Timing and Counting Precision in the Blowfly Visual System

  • Chapter
Models of Neural Networks IV

Part of the book series: Physics of Neural Networks ((NEURAL NETWORKS))

  • 305 Accesses

Abstract

We measure the reliability of signals at three levels within the blowfly visual system, and present a theoretical framework for analyzing the experimental results, starting from the Poisson process. We find that blowfly photoreceptors, up to frequencies of 50–100 Hz and photon capture rates of up to about 3 · 105/s, operate well within an order of magnitude from ideal photon counters. Photoreceptors signals are transmitted to LMCs through an array of chemical synapses. We quantify a lower bound on LMC reliability, which in turn provides a lower bound on synaptic vesicle release rate, assuming Poisson statistics. This bound is much higher than what is found in published direct measurements of vesicle release rates in goldfish bipolar cells, suggesting that release statistics may be significantly sub-Poisson. Finally we study H1, a motion sensitive tangential cell in the fly’s lobula plate, which transmits information about a continuous signal by sequences of action potentials. In an experiment with naturalistic motion stimuli performed on a sunny day outside in the field, H1 transmits information at about 50% coding efficiency down to millisecond spike timing precision. Comparing the measured reliability of H1’s response to motion steps with the bounds on the accuracy of motion computation set by photoreceptor noise, we find that the fly’s brain makes efficient use of the information available in the photoreceptor array.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow HB (1952): The size of ommatidia in apposition eyes. J Exp Biol 29, 667–674.

    Google Scholar 

  2. Baylor DA, Lamb TD, Yau KW (1979): Responses of retinal rods to single photons, J Physiol (Lond) 288, 613–634.

    Google Scholar 

  3. Berenbaum MR (1995): Bugs in the System: Insects and Their Impact on Human Affairs. Addison-Wesley Publishing Co., Reading MA.

    Google Scholar 

  4. Berry M, Warland DK, Meister M (1997): The structure and precision of retinal spike trains. Proc Natl Acad Sci USA 94–10, 5411–5416.

    Article  Google Scholar 

  5. Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D (1991): Reading a neural code. Science 252, 1854–1857.

    Google Scholar 

  6. Bracewell RN (1978): The Fourier Transform and its Applications, 2nd ed. McGraw-Hill, New York NY.

    MATH  Google Scholar 

  7. Braitenberg V (1967) Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp Brain Res 3, 271–298.

    Article  Google Scholar 

  8. Brenner N, Strong SP, Koberle R, Bialek W, de Ruyter van Steveninck RR (2000) Synergy in a neural code. Neural Comp 12, 1531–1552.

    Google Scholar 

  9. Britten KH, Shadlen MH, Newsome WT, Movshon JA (1993) The responses of MT neurons to variable strength stochastic motion stimuli. Visual Neurosci 10, 1157–1169.

    Article  Google Scholar 

  10. Bullock TH (1970): The reliability of neurons. J Gen Physiol 55, 565584.

    Google Scholar 

  11. Dethier VG (1976): The Hungry Fly: A Physiological Study of the Behavior Associated with Feeding. Harvard University Press, Cambridge MA.

    Google Scholar 

  12. Dodge FA, Knight BW, Toyoda J (1968): Voltage noise in Limulus visual cells. Science 160, 88–90.

    Article  Google Scholar 

  13. Dubs A, Laughlin SB, Srinivasan MV (1981): Single photon signals in fly photoreceptors and first order interneurones at behavioural threshold. J Physiol 317, 317–334.

    Google Scholar 

  14. Exner S (1891): Die Physiologie der facettirten Augen von Krebsen und Insekten. Verlag Franz Deuticke, Vienna. Reprinted as: The Physiology of the Compound Eyes of Insects and Crustaceans. Springer Verlag, Heidelberg (1989).

    Google Scholar 

  15. Feller W (1966): An Introduction to Probability Theory and its Applications, vol I. John Wiley, New York NY.

    MATH  Google Scholar 

  16. Fermi G, Reichardt W (1963): Optomotorische Reaktionen de Fliege Musca Domestica. Abhängigkeit der Reaktion von der Wellenlänge, der Geschwindigkeit, dem Kontrast, und der mittleren Leuchtdichte bewegter periodischer Muster. Kybernetik 2, 15–28.

    Article  Google Scholar 

  17. Feynman RP, Leighton R, Sands M (1963): The Feynman Lectures in Physics. Addison-Wesley, Reading MA.

    Google Scholar 

  18. Franceschini N, Kirschfeld K (1976): Le contrôle automatique du flux lumineux dans l’oeil composé des Diptères. Propriétés spectrales, statiques et dynamiques du mécanisme. Biol Cybern 31, 181–203.

    Article  Google Scholar 

  19. French AS, Järvilehto M (1978): The transmission of information by first and second order neurons in the fly visual system. J Comp Physiol 126, 87–96.

    Article  Google Scholar 

  20. Fuortes MGF, Yeandle S (1964): Probability of occurrence of discrete potential waves in the eye of Limulus. J Gen Physiol 47, 443–463.

    Article  Google Scholar 

  21. Green DM, Swets JA (1966): Signal Detection Theory and Psychophysics. John Wiley, New York NY.

    Google Scholar 

  22. Gur M, Beylin A, Snodderly DM (1997): Response variability of neurons in primary visual cortex (V1) of alert monkeys. J Neurosci 17, 2914–2920.

    Google Scholar 

  23. Haag J, Borst A (1997): Encoding of visual motion information and reliability in spiking and graded potential neurons. J Neurosci 17, 4809–4819.

    Google Scholar 

  24. Hagiwara S (1954): Analysis of interval fluctuations of the sensory nerve impulse. Jpn J Physiol 4, 234–240.

    Article  Google Scholar 

  25. Hardie RC (1985): Functional organization of the fly retina. In: Otto-son D (ed) Progress in Sensory Physiology 5. Springer, Berlin, Heidelberg, New York, pp 2–79.

    Chapter  Google Scholar 

  26. Hardie RC (1988): Effects of antagonists on putative histamine receptors in the first visual neuropile of the housefly Musca domestica. J Exp Biol 138, 221–241.

    Google Scholar 

  27. van Hateren JH (1984): Waveguide theory applied to optically measured angular sensitivities of fly photoreceptors. J Comp Physiol A 154, 761–771.

    Google Scholar 

  28. van Hateren JH (1992): Real and optimal neural images in early vision. Nature 360, 68–70.

    Article  Google Scholar 

  29. van Hateren JH (1997): Processing of natural time-series of intensities by the visual system of the blowfly. Vision Res 37, 3407–3416.

    Article  Google Scholar 

  30. Hausen K (1981): Monocular and binocular computation of motion in the lobula plate of the fly, Verh Dtsch Zool Ges 49–70.

    Google Scholar 

  31. Hausen K, Wehrhahn C (1983): Microsurgical lesion of horizontal cells changes optomotor yaw responses in the blowfly Calliphora erythrocephala. Proc R Soc Lond B 219, 211–216.

    Google Scholar 

  32. Hausen K, Egelhaaf M (1989): Neural mechanisms of visual course control in insects. In: Stavenga DG, Hardie RC (eds) Facets of Vision. Springer, New York, pp 391–424.

    Chapter  Google Scholar 

  33. Hecht S, Shlaer S, Pirenne MH (1942): Energy, quanta, and vision. J Gen Physiol 25, 819–840.

    Article  Google Scholar 

  34. Howard J (1983) Variations in the voltage response to single quanta of light in the photoreceptors of Locusta migratoria. Biophys Struct Mech 9, 341–348.

    Article  Google Scholar 

  35. Howard J, Blakeslee B, Laughlin SB (1987): The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina. Proc R Soc Lond B 231, 415–435.

    Google Scholar 

  36. Juusola M, Uusitalo RO, Weckström M (1995): Transfer of graded potentials at the photoreceptor-interneuron synapse. J Gen Physiol 105, 117–148.

    Article  Google Scholar 

  37. Keiper W, Schnakenberg J (1984) Statistical analysis of quantum bump parameters in Limulus ventral photoreceptors. Z Naturforsch 39c, 781–790.

    Google Scholar 

  38. Kirschfeld K (1967): Die Prokjektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp Brain Res 3, 248–270.

    Article  Google Scholar 

  39. Kirschfeld K (1979): The visual system of the fly: physiological optics and functional anatomy as related to behavior. In: Schmitt FO, Worden FG (eds) Neurosciences: Fourth Study Program. MIT Press, Cambridge, MA, pp 297–310.

    Google Scholar 

  40. Kirschfeld K, Franceschini N (1969): Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 6, 13–22.

    Article  Google Scholar 

  41. Krapp HG, Hengstenberg B, Hengstenberg R (1998): Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J Neurophysiol 79, 1902–1917.

    Google Scholar 

  42. Kuno M (1995) The Synapse: Function, Plasticity and Neurotrophism. Oxford University Press, Oxford.

    Google Scholar 

  43. Lagnado L, Gomis A, Job C (1999): Continuous vesicle cycling in the synaptic terminal of retinal bipolar cells. Neuron 17, 957–967.

    Article  Google Scholar 

  44. Land MF, Collett TS (1974): Chasing behavior of houseflies (Fannia canicularis): A description and analysis. J Comp Physiol 89, 331–357.

    Article  Google Scholar 

  45. Laughlin SB (1989): Coding efficiency and design in visual processing. In: Stavenga DG, Hardie RC (eds) Facets of Vision. Springer, New York, pp 213–234.

    Chapter  Google Scholar 

  46. Laughlin SB (1999): Visual motion: Dendritic integration makes sense of the world. Current Biol 9, R15 - R17.

    Article  Google Scholar 

  47. Laughlin SB, Hardie R (1978): Common strategies for light adaptation in the perpheral visual systems of fly and dragonfly. J Comp Physiol 128, 319–340.

    Article  Google Scholar 

  48. Laughlin SB and Lillywhite PG (1982): Intrinsic noise in locust photoreceptors. J Physiol 332, 25–45.

    Google Scholar 

  49. Laughlin SB, Howard J, Blakeslee B (1987): Synaptic limitations to contrast coding in the retina of the blowfly Calliphora. Proc R Soc Lond B 231, 437–467.

    Article  Google Scholar 

  50. Laughlin SB, de Ruyter van Steveninck RR, Anderson J (1998): The metabolic cost of neural information. Nature Neuroscience 1, 36–41.

    Google Scholar 

  51. Lillywhite PG, Laughlin SB (1979) Transducer noise in a photoreceptor. Nature 277, 569–572.

    Article  Google Scholar 

  52. MacKay D, McCulloch WS (1952): The limiting information capacity of a neuronal link. Bull Math Biophys 14, 127–135.

    Article  Google Scholar 

  53. Meinertzhagen IA, Fröhlich A (1983): The regulation of synapse formation in the fly’s visual system. Trends in Neurosci 7, 223–228.

    Article  Google Scholar 

  54. Meister M, Berry MJ (1999) The neural code of the retina. Neuron 22, 435–450.

    Article  Google Scholar 

  55. Nicol D, Meinertzhagen IA (1982): An analysis of the number and composition of the synaptic populations formed by photoreceptors of the fly. J Comp Neurol 207, 29–44.

    Article  Google Scholar 

  56. Passaglia C, Dodge F, Herzog E, Jackson S, Barlow R (1997): Deciphering a neural code for vision. Proc Natl Acad Sci USA 94, 126491 2654.

    Google Scholar 

  57. Potters M, Bialek W (1994). Statistical mechanics and visual signal processing. J Phys I France 4, 1755–1775.

    Article  Google Scholar 

  58. Reichardt W (1961): Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Principles of Sensory Communication. John Wiley, New York, NY, pp. 303–317.

    Google Scholar 

  59. Reichardt W, Poggio T (1976): Visual control of orientation behavior in the fly. Part I: A quantitative analysis. Q Rev Biophys 9, 311–375.

    Article  Google Scholar 

  60. Rice SO (1944–45): Mathematical analysis of random noise. Bell System Technical Journal, 23, 24. Reprinted in Wax (1954), pp. 133–294.

    Google Scholar 

  61. Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997): Spikes: Exploring the Neural Code. MIT Press, Cambridge MA.

    Google Scholar 

  62. Roeder KD (1998): Nerve Cells and Insect Behavior. Harvard University Press, Cambridge MA.

    Google Scholar 

  63. de Ruyter van Steveninck RR (1986): Real-time performance of a movement-sensitive neuron in the blowfly visual system. Thesis, University of Groningen, The Netherlands.

    Google Scholar 

  64. de Ruyter van Steveninck R, Bialek W (1988) Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences. Proc R Soc Lond B 234, 379–414.

    Article  Google Scholar 

  65. de Ruyter van Steveninck R, Bialek W (1995): Reliability and statistical efficiency of a blowfly movement-sensitive neuron. Phil Trans R Soc Lond B 348, 321–340.

    Google Scholar 

  66. de Ruyter van Steveninck RR, Laughlin SB (1996a): The rate of information transfer at graded-potential synapses. Nature 379, 642–645.

    Article  Google Scholar 

  67. de Ruyter van Steveninck RR, Laughlin SB (1996b): Light adaptation and reliability in blowfly photoreceptors. Int J Neural Syst 7, 437–444.

    Article  Google Scholar 

  68. de Ruyter van Steveninck RR, Lewen GD, Strong SP, Koberle R, Bialek W (1997): Reproducibility and variability in neural spike trains. Science 275, 1805–1808.

    Article  Google Scholar 

  69. Saleh BEA, Teich MC (1991): Fundamentals of Photonics. Wiley, New York.

    Book  Google Scholar 

  70. Schrödinger E (1952): Statistical Thermodymamics. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  71. Shaw SR (1981): Anatomy and physiology of identified non-spiking cells in the photoreceptor-lamina complex of the compound eye of insects, especially Diptera. In: Roberts A, Bush BMH (eds) Neurons Without Impulses. Cambridge Univ Press, Cambridge UK.

    Google Scholar 

  72. Single S, Borst A (1998): Dendritic integration and its role in computing image velocity. Science 281, 1848–1850.

    Article  Google Scholar 

  73. Smakman JGJ, van Hateren JH, Stavenga DG (1984): Angular sensitivity of blowfly photoreceptors: Intracellular measurements and wave-optical predictions. J Comp Physiol A155, 239–247.

    Article  Google Scholar 

  74. Snyder AW (1979): The physics of vision in compound eyes. In: Autrum H (ed) Handbook of Sensory Physiology VII/6A: Comparative physiology and evolution of vision in invertebrates. A: Invertebrate photoreceptors. Springer, Heidelberg, pp 225–314.

    Google Scholar 

  75. Snyder DL, Miller MI (1991): Random Point Processes in Time and Space ( second edition ). Springer, Heidelberg.

    Book  MATH  Google Scholar 

  76. Stavenga DG (1974): Visual receptor optics, rhodopsin and pupil in fly retinula cells. Thesis, University of Groningen, Groningen, The Netherlands.

    Google Scholar 

  77. Stavenga DG (1995): Insect retinal pigments. Spectral characteristics and physiological functions. Progr Ret Eye Res 15, 231–259.

    Article  Google Scholar 

  78. Stieve H, Bruns M (1983): Bump latency distribution and bump adaptation of Limulus ventral nerve photoreceptor in varied extracellular calcium concentrations. Biophys Struct Mech 9, 329–339.

    Article  Google Scholar 

  79. Strong SP, Koberle R, de Ruyter van Steveninck RR, Bialek W (1998): Entropy and information in neural spike trains. Phys Rev Lett 80, 197200.

    Google Scholar 

  80. Teich MC, Khanna SM (1985) Pulse number distribution for the spike train in the cat’s auditory nerve. J Acoust Soc Am 77, 1110–1128.

    Article  Google Scholar 

  81. Tinbergen N (1984): Curious Naturalist (revised edition). Univ. of Massachusetts Press, Amherst MA.

    Google Scholar 

  82. Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Res 23, 775–785.

    Article  Google Scholar 

  83. Uusitalo RO, Juusola M, Kouvalainen E, Weckström M (1995): Tonic transmitter release in a graded potential synapse. J Neurophysiol 74, 470–473.

    Google Scholar 

  84. Warzecha A-K, Kretzberg J, Egelhaaf M (1998): Temporal precision of the encoding of motion information by visual interneurons. Curr Biol 8, 359–368.

    Article  Google Scholar 

  85. Wax N (1954): Noise and Stochastic Processes. Dover, New York NY.

    MATH  Google Scholar 

  86. Wong F, Knight BW, Dodge FA (1980): Dispersion of latencies in photoreceptors of Limulus and the adapting bump model. J Gen Physiol 71, 249–268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Ruyter, R., Bialek, W. (2002). Timing and Counting Precision in the Blowfly Visual System. In: van Hemmen, J.L., Cowan, J.D., Domany, E. (eds) Models of Neural Networks IV. Physics of Neural Networks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21703-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21703-1_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2875-7

  • Online ISBN: 978-0-387-21703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics