Skip to main content
  • 317 Accesses

Abstract

Cell respiration is the process by which oxygen (O2) is delivered to cells to oxidize nutrients and to obtain the energy necessary for all their functions. Carbon dioxide (CO2) and water are the main byproducts of cell respiration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acker, H., and Xue, D. (1995) Mechanisms of O2 sensing in the carotid body in comparison with other O2-sensing cells. News. Physiol. Sei. 10, 211–215.

    CAS  Google Scholar 

  • Almaraz, L., Perez-Garcia, M.T., Gomez-Niño, A., and Gonzalez, C. (1997) Mechanisms of α2 adrenoceptor-mediated inhibition in rabbit carotid body. Am. J. Physiol. 272, C628–C637.

    PubMed  CAS  Google Scholar 

  • Archer, S.L., Huang, J., Henry, T., Peterson, D., and Weir, E.K. (1993) A redox-based O2 sensor in rat pulmonary vasculature. Circ. Res. 73, 1100–1112.

    PubMed  CAS  Google Scholar 

  • Archer, S.L., Reeve, H.L., Michelakis, E., Puttagunta, L., Waite, R., Nelson, D.P., Dinauer, M.C., and Weir, E.K. (1999) O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc. Nati. Acad. Sci. USA 96, 7944–7949.

    Article  CAS  Google Scholar 

  • Archer, S.L., Will, J. A., and Weir, E.K. (1986) Redox status in the control of pulmonary vascular tone. Herz 11, 127–141.

    PubMed  CAS  Google Scholar 

  • Bairam, A., Frenette, J., Dauphin, C., Carroll, J.L., and Khandjian, E.W (1998) Expression of dopamine D1-receptor mRNA in the carotid body of adult rabbits, cats and rats. Neurosci. Res. 31, 147–54.

    Article  PubMed  CAS  Google Scholar 

  • Berkenbosch, A., Van Dissel, J., Olievier, C.N., De Goede, J., and Heeringa, J. (1979) The contribution of the peripheral chemoreceptors to the ventilatory response to CO2 in anaesthetized cats during hyperoxia. Resp. Physiol. 37, 381–390.

    Article  CAS  Google Scholar 

  • Biscoe, T.J., and Duchen, R.M. (1990) Monitoring PO2 by the carotid chemoreceptor. News Physiol. Sci. 5, 229–233.

    Google Scholar 

  • Biscoe, T.J., Purves, M.J., and Sampson, S.R. (1970) The frequency of nerve impulses in single carotid body chemoreceptor afferent fibers recorded in vivo with intact circulation. J. Physiol. 208, 121–131.

    PubMed  CAS  Google Scholar 

  • Black, A.M.S., McCloskey, D.I., and Torrance, R.W. (1971) The responses of carotid body chemoreceptors in the cat to sudden changes of hypercapnic and hypoxic stimuli. Resp. Physiol. 13, 36–49.

    Article  CAS  Google Scholar 

  • Buckler, K.J. (1997) A novel oxygen-sensitive potassium current in rat carotid body type I cells. J. Physiol. 498, 649–662, 1997.

    PubMed  CAS  Google Scholar 

  • Buckler, K.J., and Vaughan-Jones, R.D. (1998) Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells. J. Physiol. 513, 819–833.

    Article  PubMed  CAS  Google Scholar 

  • Buckler, K.J., Williams, B. A., and Honore, E. (2000) An oxygen-, acid-and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J. Physiol 525, 135–142.

    Article  PubMed  CAS  Google Scholar 

  • De Castro, F. (1928) Sur la structure et l’innervation du sinus carotidien de l’homme et des mammifères: Nouveaux faits sur l’innervation et la fonction du glomus caroticum. Trab. Lab. Invest. Biol. Univ. Madrid. 25, 330–380.

    Google Scholar 

  • Dvorakova, M., Hohler, B., Vollerthun, R., Fischbach, T., and Kummer, W. (2000) Macrophages: a major source of cytochrome b558 in the rat carotid body. Brain Res. 852, 349–354.

    Article  PubMed  CAS  Google Scholar 

  • Eyzaguirre, C., Koyano, H., and Taylor, J.R. (1965) Presence of acetylcholine and transmitter release from carotid body chemoreceptors. J. Physiol. 178, 463–476.

    PubMed  CAS  Google Scholar 

  • Fidone, S., Gonzalez, C., and Yoshizaki, K. (1982) Effects of low oxygen on the release of dopamine from the rabbit carotid body in vitro. J. Physiol. 333, 93–110.

    PubMed  CAS  Google Scholar 

  • Fitzgerald, R.S., Shirahata, M., and Wang, H.Y. (1999) Acetylcholine release from cat carotid bodies. Brain Res. 841, 53–61.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, C., Almaraz, L., Obeso, A., and Rigual, R. (1992) Oxygen and acid chemoreception in the carotid body chemoreceptors. Trends Neurosci. 15, 146–153.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, C., Almaraz, L., Obeso, A., and Rigual, R. (1994) Carotid body chemoreceptors: From natural stimuli to sensory discharges. Physiol. Rev. 74, 829–898.

    PubMed  CAS  Google Scholar 

  • Hanson, M.A. (1998) Role of chemoreceptors in effects of chronic hypoxia. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 119, 695–703.

    Article  PubMed  CAS  Google Scholar 

  • Heeringa, J., Berkenbosch, A., De Goede, J., and Olievier, C.N. (1979) Relative contribution of central and peripheral chamoreceptors to the ventilatory response to CO2 during hyperoxia. Resp. Physiol. 37, 365–379.

    Article  CAS  Google Scholar 

  • Heymans, C., Bouckaert, J.J., and Dautrebande, L. (1930) Sinus carotidien et réflexes respiratoires, II. Influences respiratoires réflexes de l’acidose, de l’alcalose, de l’anhydride carbonique, de l’ion hydrogene et de l’anoxémie: Sinus carotidiens et e’changes respiratoires dans les poumons et au dela des poumons. Arch. Int. Pharmacodyn. Ther. 39, 400–408.

    Google Scholar 

  • Honda, H. (1985) Role of carotid chemoreceptors in control of breathing at rest and in exercise: studies on humans subjects with bilateral carotid body resection. Jap. J. Physiol. 35, 535–544.

    CAS  Google Scholar 

  • Honda, H. (1992) Respiratory and circulatory activities in carotid body-resected humans. J. Appl. Physiol. 73, 1–8.

    PubMed  CAS  Google Scholar 

  • Hornbein, T.F. (1968) The relation between stimulus to chemoreceptors and their response. In: Arterial Chemoreceptors, Torrance, R.W. (ed.) Blackwell Scientific Publications, Oxford, U.K. pp. 65–78.

    Google Scholar 

  • Hohler, B., Lange, B., Holzapfel, B., Goldenberg, A., Hanze, J., Sell, A., Testan, H., Moller, W., and Kummer, W. (1999) Hypoxie upregulation of tyrosine hydroxylase gene expression is paralleled, but not induced, by increased generation of reactive oxygen species in PC12 cells. FEBS Lett 457, 53–56.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D.K., Oh, E.K., Summers, B.A., Prabhakar, N.R., and Kumar, G.K. (2001) Release of substance P by low oxygen in the rabbit carotid body: evidence for the involvement of calcium channels. Brain Res. 892, 359–69.

    Article  PubMed  CAS  Google Scholar 

  • Lahiri, S., and Delaney, R.G. (1975) Stimulus interaction in the responses of carotid body chem-oreceptor single afferent fibers. Respir. Physiol. 24, 249–266.

    Article  PubMed  CAS  Google Scholar 

  • Lahiri, S., Mulligan, E., Nishino, T., Mokashi, A., and Davies, R.O. (1981) Relative responses of aortic body and carotid body chemoreceptors to carboxyhemoglobinemia. J. Appl. Physiol. 50, 580–586.

    PubMed  CAS  Google Scholar 

  • Lahiri, S., Nishino, T., Mokashi, A., and Mulligan, E. (1980) Relative responses of aortic body and carotid body chemoreceptors to hypotension. J. Appl. Physiol. 48, 781–788.

    PubMed  CAS  Google Scholar 

  • Leitner, L.M., and Roumy, M. (1985) Effects of dopamine superfusion on the activity of rabbit carotid chemoreceptors in vitro. Neuroscience 16, 431–438.

    Article  PubMed  CAS  Google Scholar 

  • Leitner, L.M., and Roumy, M. (1986) Chemoreceptor response to hypoxia and hypercapnia in catecholamine depleted rabbit and cat carotid bodies in vitro. Pflügers Arch. Eur. J. Physiol. 406, 419–423.

    Article  CAS  Google Scholar 

  • Lopez-Barneo, J., Lopez-Lopez, J.R., Ureña, J., and Gonzalez, C. (1988) Chemotransduction in the carotid body: K+ current modulated by Po2 in type I chemoreceptor cells. Science 241, 580–582.

    Article  PubMed  CAS  Google Scholar 

  • McQueen, D.S. (1983) Pharmacological aspects of putative transmitters in the carotid body. In: Physiology of the Peripheral Arterial Chemoreceptors, Acker, H., and O’Regan, R.G. (eds.) Elsevier Science Publishers, Amsterdam, pp. 149–195.

    Google Scholar 

  • Monteiro, E.C., and Ribeiro, J.A. (2000) Adenosine-dopamine interactions and ventilation mediated through carotid body chemoreceptors. Adv. Exp. Med. Biol. 475, 671–684.

    PubMed  CAS  Google Scholar 

  • Mulligan, E., Lahiri, S., and Storey, B.T. (1981) Carotid body O2 chemoreception and mitocondrial oxidative phosphorylation. J. Appl. Physiol. 51, 438–446.

    PubMed  CAS  Google Scholar 

  • Nolan, W.F., Donnelly, D.F., Smith, E.J., and Dutton, R.E. (1985) Haloperidol-induced suppression of carotid chemoreception in vitro. J. Appl. Physiol. 59, 814–820.

    PubMed  CAS  Google Scholar 

  • Obeso A., Gomez-Niño, M.A., Almaraz, L., Dinger, B., Fidone, S., and Gonzalez, C. (1997) Evidence for two types of nicotinic receptors in the cat carotid body chemoreceptor cells. Brain Res. 754, 298–302.

    Article  PubMed  CAS  Google Scholar 

  • Obeso, A., Gomez-Niño, A., and Gonzalez, C. (1999) NADPH oxidase inhibition does not interfere with low PO2 transduction in rat and rabbit CB chemoreceptor cells. Am. J. Physiol. 276, C593–C601.

    PubMed  CAS  Google Scholar 

  • Obeso, A., Gonzalez, C., Rigual, R., Dinger, B., and Fidone, S. (1993) Effect of low O2 on glucose uptake in rabbit carotid body. J. Appl. Physiol. 74, 2387–2393.

    PubMed  CAS  Google Scholar 

  • Peers, C. (1990) Hypoxie suppression of K+ currents in type I carotid body cells: selective effect on the Ca2+-activated K+ current. Neurosci. Lett. 119, 253–256.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Garcia, M.T., Lopez-Lopez, J.R., and Gonzalez, C. (1999) Kvβ1.2 subunit coexpression in HEK293 cells confers O2 sensitivity to Kv4.2 but not to Shaker channels. J. Gen. Physiol. 13, 897–907.

    Article  Google Scholar 

  • Perez-Garcia, M.T., Lopez-Lopez, J.R., Riesco, A.M., Hoppe, U., Gonzalez, C, Marban, E., and Johns, D.C. (2000) Supression of transient outward K+ currents in chemoreceptor cells of the rabbit carotid body by viral gene transfer of inducible dominant negative Kv4.3 constructs. J. Neurosci. 20, 5689–5695.

    PubMed  CAS  Google Scholar 

  • Ponte, J., and Purves, M.J. (1974) Frequency response of carotid body chemoreceptors in the cat to changes of PaCO2, PaO2, and pHa. J. Appl. Physiol. 37, 635–647.

    PubMed  CAS  Google Scholar 

  • Rigual, R., Almaraz, L., Gonzalez, C., and Donnelly, D.F. (2000) Developmental changes in chemoreceptor nerve activity and catecholamine secretion in rabbit carotid body: possible role of Na+ and Ca2+ currents. Pflugers Arch. Eur. J. Physiol. 439, 463–70.

    Article  CAS  Google Scholar 

  • Rigual, R., Lopez-Lopez, J.R., and Gonzalez, C. (1991) Release of dopamine and chemoreceptor discharge induced by low pH and high PCO2 stimulation of the cat carotid body. J. Physiol. 433, 519–531.

    PubMed  CAS  Google Scholar 

  • Rigual, R., Cachero, M.T.G., Rocher, A., and Gonzalez, C. (1999) Hypoxia inhibits the synthesis of phosphoinositides in the rabbit carotid body. Pflügers Arch. Eur. J. Physiol. 437, 839–845.

    Article  CAS  Google Scholar 

  • Rocher, A., Obeso, A., Gonzalez, C., and Herreros, B. (1991) Ionic mechanisms for the transduction of acidic stimuli in rabbit carotid body glomus cells. J. Physiol. 433, 533–548.

    PubMed  CAS  Google Scholar 

  • Sanz-Alfayate, G., Obeso, A., Agapito, M.T., and González, C. (2001) Reduced to oxidized glutathione ratios and oxygen sensing in calf and rabbit carotid body chemoreceptor cells. J. Physiol. 537, 209–220.

    Article  PubMed  CAS  Google Scholar 

  • Shirahata, M., Ishizawa, Y., Rudisill, M., Schofield, B., and Fitzgerald, R.S. (1998) Presence of nicotinic acetylcholine receptors in cat carotid body afferent system. Brain Res. 814, 213–217.

    Article  PubMed  CAS  Google Scholar 

  • Verna, A. (1979) Ultrastructure of the carotid body in the mammals. Int. Rev. Cytol. 60, 271–330.

    Article  PubMed  CAS  Google Scholar 

  • Verna, A., Talib, N., Roumy., M., and Pradet, A. (1990) Effects of metabolic inhibitors and hypoxia on the ATP, ADP and AMP content of the rabbit carotid body in vitro: the metabolic hypothesis in question. Neurosci. Lett. 116, 156–161.

    Article  PubMed  CAS  Google Scholar 

  • Vicario, I., Rigual, R., Obeso, A., and Gonzalez, C. (2000) Characterization of the synthesis and release of catecholamine in the rat carotid body in vitro. Am. J. Physiol. 278, C490–C499.

    CAS  Google Scholar 

  • Wang, Z.Z., Stensaas, L.J., Dinger, B., and Fidone, S.J. (1992) The coxideme d biogenic amines and neuropeptides in the type I cells of the cat carotid body. Neuroscience 47, 473–480.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z.Z., Stensaas, L.J., Dinger, B., and Fidone, S.J. (1995) Nitric oxide mediates chemoreceptor inhibition in the carotid body. Neuroscience 65, 217–229.

    Article  PubMed  CAS  Google Scholar 

  • Whalen, W.J., and Nair, P. (1983) Oxidative metabolism and tissue Po2 of the carotid body. In: Physiology of the Peripheral Arterial Chemoreceptors, Acker, H., and O’Regan, R.G. (eds.) Elsevier Science Publishers, Amsterdam, pp. 117–132.

    Google Scholar 

  • Zapata, P. (1975) Effects of dopamine on carotid chemo-and baroreceptors in vitro. J. Physiol. 244, 235–251.

    PubMed  CAS  Google Scholar 

  • Zhang, M., Zhong, H., Vollmer, C., and Nurse, C.A. (2000) Co-release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors. J. Physiol. 525, 143–58.

    Article  PubMed  CAS  Google Scholar 

Recommended Readings

  • De Burgh Daly, M. (1997) Peripheral Arterial Chemoreceptors and Respiratory-Cardiovacular Integration. Oxford University Press, Oxford.

    Google Scholar 

  • Gonzalez, C. (ed.) (1997) The carotid body chemoreceptors. Springer-Verlag, Heidelberg.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

González, C., Almaraz, L., Obeso, A., Rigual, R. (2002). Arterial Chemoreceptors. In: Bittar, E.E. (eds) Pulmonary Biology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22435-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22435-0_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95215-4

  • Online ISBN: 978-0-387-22435-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics