Skip to main content

Bonelike Graft for Regenerative Bone Applications

  • Chapter
Surface Engineered Surgical Tools and Medical Devices

Bone is a complex mineralized living tissue, exhibiting the property of marked rigidity and strength whilst maintaining some degree of elasticity. In general, there are two types of bones in the skeleton, namely, the flat bones, i.e., skull bones, scapula, mandible, ilium, and the long bones, i.e., tibia, femur and humerus. In principle, bone serves the following three main functions in human bodies: (i) acts as a mechanical support; (ii) is the site of muscle attachment for locomotion, protective, for vital organs and bone marrow; and (iii) to assist metabolism, it acts as a reserve of ions for the entire organism, especially calcium and phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.J. Hughes, W. Turner, G. Belibasakis and G. Martuscelli. Effects of growth factors and cytokines on osteoblastic differentiation. Periodontology 2000, 41 (2006) 48.

    Article  Google Scholar 

  2. D.W. Sommerfeldt and CT. Rubin. Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J. 10 (2001) S86-S95.

    Article  Google Scholar 

  3. S. Weiner and W. Traub. Bone structure: from angstroms to microns. FASEB J, 6 (1992) 879.

    Google Scholar 

  4. A.M. Parfitt. Pharmacological manipulation of bone remodelling and calcium homeostasis. In. Kanis AJ, ed. Calcium metabolism. Basel: Karger, 1990: p.1-27.

    Google Scholar 

  5. J. Hollinger and M.E.K. Wong. The integrated process of hard tissue regene- ration with special emphasis on fracture healing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 82 (1996) 594.

    Article  Google Scholar 

  6. I.H. Kalfas. Principles of bone healing. Neurosurg Focus. 10 (2001) 1.

    Article  Google Scholar 

  7. I.I. Doron and L.L. Amy. Bone graft substitutes. Operative Tech in Plast and Reconstr. Surg. 9(4) (2003) 151.

    Google Scholar 

  8. P.V. Giannoudis, H. Dinopoulos and E. Tsiridis, Bone substitutes: An update, Injury, Int J. Care Injured 365 (2005) 520.

    Google Scholar 

  9. E.A.R. Mary and A.Y. Raymond. Bone replacement grafts-The Bone Substitutes. Dent. Clin. North Am. 42(3) (1998) 491.

    Google Scholar 

  10. Cato T. Laurencin and Yusuf Khan: Bone grafts and Bone graft substitutes: A brief history (ed. by Cato T. Laurencin) ASTM - International, USA, 2003. p.3.

    Google Scholar 

  11. S. Wright. Commentary The Bone-Graft market in Europe, in Emerging Technologies in Orthopedics I: Bone Graft Substitutes. Bone Growth Stimulators and Bone Growth Factors by Datamonitor plc. - Ed. 1999, p. 591.

    Google Scholar 

  12. S.D. Boden. Osteoinduction bone graft substitutes: Burden of proof. Bull Amer. Acad. Orthoped Surg. 51(1)(2003) 42.

    Google Scholar 

  13. Synthetic bone graft to be tested in revision hip surgery, ApaTech Limited, based in London, UK. News Letter 9th April 2003. 14. Mohamed Attawia, Sudha Kadiyala, Kim Fitzgerald, Karl Kraus and S.P Bruder. Cell-based approaches for one graft substitutes (ed. by Cato T Laurencin) ASTM - International, USA, 2003. p.126.

    Google Scholar 

  14. J.D. Santos, G.W. Hastings and J.C. Knowles: Sintered hydroxyapatite com- positions and method for the preparation thereof. European Patent WO 0068164, 1999.

    Google Scholar 

  15. M.A. Lopes, J.D. Santos, F.J. Monteiro and J.C. Knowles. Glass reinforced hydroxyapatite: a comprehensive study of the effect of glass composition on the crystallography of the composite. J. Biomed. Mater. Res. 39 (1998) 244.

    Article  Google Scholar 

  16. M.A. Lopes, F.J. Monteiro and J.D. Santos. Glass-reinforced hydroxyapatite composites: fracture toughness and hardness dependence on microstructural characteristics. Biomaterials 20 (1999) 2085.

    Article  Google Scholar 

  17. M.A. Lopes, R.F. Silva, F.J. Monteiro and J.D. Santos. Microstructural dependence of Young's and shear moduli of P2O5 glass reinforced hydroxyapatite for biomedical applications. Biomaterials 21 (2000) 749.

    Article  Google Scholar 

  18. J.D. Santos, R.L. Reis, F.J. Monteiro, J.C. Knowles and G.W. Hastings. Liquid phase sintering of hydroxyapatite by phosphate and silicate glass additions structure and properties of the composites. J. Mater. Sci. Mat. Med. 6 (1995) 348.

    Article  Google Scholar 

  19. J.D. Santos, P.L Silva, J.C. Knowles, S. Talal and F.J. Monteiro. Reinforcement of hydroxyapatite by adding P2O5- CaO glasses with Na2O,K2O and MgO. J. Mater. Sci. Mat. Med. 7 (1996) 187.

    Article  Google Scholar 

  20. J.E. Davies. The importance and measurement of surface charge species in cell behaviour at the biomaterial interface. In: Ratner BD. Surface characterization of biomaterials. New York: Elsevier; 1988. p. 219-234.

    Google Scholar 

  21. B.D. Ratner. Biomaterial surfaces. J. Biomed. Mater. Res. Appl. Biomat. 21 (1987) 59.

    Article  Google Scholar 

  22. S.R. Manson, L.A. Harker, B.D. Ratner and A.S. Hoffman. In vivo evaluation of artificial surfaces with a non human primate model of arterial thrombosis. J. Lab. Clin. Med. 95 (1980) 289.

    Google Scholar 

  23. F. Grinnell, M. Milamand and P.A. Srere. Studies on cell adhesion. Arch Biochem Biophys 153 (1972) 193.

    Article  Google Scholar 

  24. S.K. Chang, O.S. Hum, M.A. Moscarello, A.W. Neumann, W. Zing, M.J. Leutheusser and B. Ruegsegger. Platelet adhesion to solid surfaces: The effect of plasma proteins and substrate wettability. Med. Progr. Technol. 5 (1997) 57.

    Google Scholar 

  25. M.A. Lopes, J.C. Knowles, J.D. Santos, Structural insights of glass reinforced hydroxyapatite composites by Rietveld refinement. Biomaterials, 21 (2000) 1905.

    Article  Google Scholar 

  26. I. Rehman and W. Bonfield, ‘‘Structural characterisation of natural and synthetic bioceramics by photo acoustic-FTIR spectroscopy,’’ in Bioceramics, Vol. 8, J. Wilson, L.L. Hench, and D. Greenspan (eds.), Butterworth-Heinmann Ltd., Oxford, 1995, p.163-168.

    Google Scholar 

  27. M. Okazaki and M. Sato. Computer graphics of hydroxyapatite and β-tricalcium phosphate. Biomaterials 11 (1990) 573.

    Article  Google Scholar 

  28. A. Bigi, G. Falini, E. Foresti, M. Gazzano, A. Ripamonti and N. Roveri. Rietveld structure refinements of calcium hydroxyapatite containing magnesium. Acta Cryst., 52 (1996) 87.

    Article  Google Scholar 

  29. S. Kotani, Y. Fijita, T. Kitsugi, T. Nakamura, T. Yamamuro, C. Ohtsuki and T. Kokubo. Bone bonding mechanism of β-tricalcium phosphate. J. Biomed. Mat. Res. 25 (1991) 1303.

    Article  Google Scholar 

  30. M.A. Lopes, F.J. Monteiro, J.D. Santos, A.P. Serro and B. Saramago. Hydrophobicity, surface tension, and zeta potential measurements of glass-reinforced hydroxyapatite composites. Biomed Mater Res, 45 (1999) 370.

    Article  Google Scholar 

  31. J.D. Santos, J.C Knowles, R.L. Reis, F.J. Monteiro and G.W Hastings. Microstructural Characterrisation of glass reionforced hydroxyapatite composties, Biomaterials 15(1) (1994) 5.

    Article  Google Scholar 

  32. Y. Yamamuro, L.L. Hench and J. Wilson, CRC Handbook of bioactive ceramics, CRC Press, 1990.

    Google Scholar 

  33. M.A. Lopes, F.J. Monteiro and J.D. Santos, Glass reinforced hydroxyapatite composites: Secondary phase proportions and densification effects assessing biocompability, J. Biomed. Mater. Res. (Appl. Biomaterial) 48 (1999) 734.

    Article  Google Scholar 

  34. R.W. Rice, Microstructure dependence of mechanical behaviour. In: R.K. MacCrone Editor, Treatise on materials science and technology vol. 11 Academic Press, New York (1977), p.200-382.

    Google Scholar 

  35. R.A. Hauber and R.M. Anderson. Engineering properties of glass-matrix composites. In: Ceramics and glasses, Engineered Materials Handbook. USA: ASM Publication, p. 858-69.

    Google Scholar 

  36. C.J. Kirkpatrick. A critical view of current and proposed methodologies for biocompatibility testing: cytotoxic in vitro. Regulatory Affairs 4 (1992) 13.

    Google Scholar 

  37. S. Hanson, P.A. Lalor, S.M. Niemi, Ratner BD et al. Testing biomaterials. In : Ratner BD, Hoffman AS editors. Biomaterials Science. An introduction to materials in medicine. Basel: Karger, 1996: p.215.

    Google Scholar 

  38. M.A. Lopes, J.C. Knowles, L. Kuru, J.D. Santos, F.J. Monteiro and I. Olsen. Flow cytometry for assessing biocompatibily. J. Biomed. Mat. Res. 41 (1998) 649.

    Article  Google Scholar 

  39. M.A. Lopes, J.C. Knowles, J.D. Santos, F.J. Monteiro and I. Olsen. Direct and indirect effects of P2O5-glass reinforced hydroxiapatite on the growth and function of osteoblast-like cells. Biomaterials 21 (2000) 1165.

    Article  Google Scholar 

  40. M.A. Costa, M. Gutierres, R. Almeida, M.A. Lopes, J.D. Santos and M.H. Fernandes. In vitro mineralisation of human bone marrow cells cultured on Bonelike®. Key. Eng. Mater. 254-256 (2004) 821.

    Article  Google Scholar 

  41. O. Frank, M. Heim, M. Jakob, A. Barbero, D. Schafer, I.Bendik et al. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J. Cell. Biochem. 85 (2000) 737.

    Article  Google Scholar 

  42. P.J. Marie, M.A. de Vernejoul and A. Lomri. Stimulation of bone formation in osteoporosis patients treated with fluoride associated with increased DNA synthesis by osteoblastic cells in vitro. J. Bone and Mineral Res. 7 (1992) 103.

    Article  Google Scholar 

  43. Council of Europe, Convention for the protection of vertebrata animals used for experimental and other scientific purposes (ET 123), Strasbourg, Council of Europe, 1986.

    Google Scholar 

  44. European Commission, Directive for the protection of vertebrate animals used for experimental and other scientific purposes (86/609/EEC), Off. J. Eur Comm., L 358, 1, 1986.

    Google Scholar 

  45. JV. Lobato, N. Sooraj Hussain, C.M. Botelho, J.M. Rodrigues, A.L. Luis, A.C. Mauricio, M.A. Lopes, J.D. Santos, Assessment of the potential of Bonelike® graft for bone regeneration by using an animal model. Key Eng. Mater. 284-286 (2005) 877.

    Article  Google Scholar 

  46. JV. Lobato, N. Sooraj Hussain, C.M. Botelho, A.C. Mauricio, A. Afonso, N. Ali and J.D. Santos, Assessment of Bonelike® graft with a resorbable matrix using an animal model. Thin Solid Films 515 (2006) 642.

    Google Scholar 

  47. Herbert M. User and Robert B. Nadler, Applications of FloSeal innephron- sparing surgery, Urology 62(2) (2003) 342.

    Google Scholar 

  48. F.A. Weaver, D.B. Hood, M. Zatina, L. Messina, B. Badduke. Gelatin-thrombin- based hemostatic sealant for intraoperative bleeding in vascular surgery. Ann. Vasc. Surg. 16 (2002) 286.

    Article  Google Scholar 

  49. V. Dodane. and V. Vilivalam. Pharmaceutical applications of chitosan. Pharm. Sci. Technol. Today 1 (1998) 246.

    Google Scholar 

  50. B. Ettinger, H.K. Genant and C.E. Cann. Long-term estrogen replacement therapy prevents bone loss and fractures. Ann. Intern. Med. 102 (1985) 319.

    Google Scholar 

  51. H. Bryant, A.L. Glasebrook, N.N. Yang and M. Sato. An estrogen receptor basis for raloxifene action in bone. J. Steroid Biochem. Mol. Biol. 69 (1999) 37.

    Article  Google Scholar 

  52. P.D. Delmas, N.H. Bjarnason, B.H. Mitlak, A.C. Ravoux, A.S. Shah, W.J. Huster, M. Draper and C. Christiansen. Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N. Engl. J. Med. 337 (1997) 1641.

    Article  Google Scholar 

  53. A.H. Reddi and N.S. Cunningham. Initiation and promotion of bone differentiation by bone morphogenic proteins. J. Bone Miner. Res. 8(2) (1993) S499.

    Article  Google Scholar 

  54. M.A. Lopes, J.D. Santos, F.J. Monteiro, A. Osaka and C. Ohtsuki. Push-out testing and histological evaluation of glass reinforced hydroxyapatite composites implanted in the tibia of rabbits. J. Biomed. Mater. Res. 54 (2001) 463.

    Article  Google Scholar 

  55. F. Duarte, J.D Santos and A. Afonso, Medical applications of Bonelike in Maxillofacial Surgery, Mater. Sci. Forum 455-456 (2004) 370.

    Article  Google Scholar 

  56. M.A. Costa M. Gutierres, L. Almeida, M.A. Lopes, J.D.Santos, M.H. Fernandes, In vitro mineralisation of human bonemarrow cells cultured on bonelike®. Key Eng. Mater. 254-256 (2004) 821.

    Article  Google Scholar 

  57. R.C Sousa, J.V. Lobato, N. Sooraj Hussain, M.A Lopes, A.C Mauricio, J.D . Santos , Bone regeneration in maxillofacial surgery using novel Bonelike® synthetic bone graft: radiological and histological analyses, Br. J. Oral. Maxi. Surg. (2006) submitted.

    Google Scholar 

  58. M. Gutierres, N. Sooraj Hussain, A. Afonso, L. Almeida, A.T. Cabral, M.A. Lopes and J.D. Santos. Biological behaviour of bonelike® graft Implanted in the tibia of humans. Key Eng. Mater. 284-286 (2005) 1041.

    Google Scholar 

  59. M. Gutierres, N. Sooraj Hussain, M.A. Lopes, A. Afonso, A. T. Cabral, L. Almeida and J.D. Santos, Histological and scanning electron microscopy analyses of bone/implant interface using the novel Bonelike® synthetic bone graft, J. Ortho. Res. 24 (2006) 953.

    Article  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Bonelike Graft for Regenerative Bone Applications. In: Jackson, M.J., Ahmed, W. (eds) Surface Engineered Surgical Tools and Medical Devices. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-27028-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-27028-9_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-27026-5

  • Online ISBN: 978-0-387-27028-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics