Skip to main content

Conductance AFM Measurements of Transport Through Nanotubes and Nanotube Networks

  • Chapter
Scanning Probe Microscopy
  • 6260 Accesses

Abstract

Conducting scanning probe microscopy provides a powerful tool for measuring electric transport through small surface features. In this chapter, carbon nanotubes and carbon nanotube networks are analyzed with a scanning probe microscopy method that employs solid metal tips to provide improved electrical contact to the nanotubes. The study reveals paths of electrical transport through carbon nanotubes and provides a means to differentiate between semiconducting and metallic nanotubes. Finally, high-resolution images provide insight into the conductance decay around nanotube junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. lijima, Nature 354, 56 (1991).

    Article  Google Scholar 

  2. A. Bachtold, M. S. Fuhrer, S. Plyasunov, M. Forero, E. H. Anderson, A. Zettl, and P. L. McEuen, Phys. Rev. Lett. 84, 6082 (2000).

    Article  CAS  Google Scholar 

  3. M. Freitag, M. Radosavljević, W. Clauss, and A. T. Johnson, Phys. Rev. B 62, R2307(2000).

    Article  CAS  Google Scholar 

  4. P. J. de Pablo, C. Gómez-Navarro, J. Colchero, P. A. Serena, J. Gómez-Herrero, and A. M. Baró, Phys. Rev. Lett. 88, 036804 (2002).

    Article  Google Scholar 

  5. M. Stadermann, S. Papadakis, M. Falvo, J. Novak, E. Snow, Q. Fu, J. Liu, Y. Fridman, J. Boland, R. Superfine, and S. Washburn, Phys. Rev. B 69, 201402(R) (2004).

    Article  Google Scholar 

  6. D. J. Thouless, Phys. Rev. Lett. 39, 1167 (1977).

    Article  CAS  Google Scholar 

  7. N. Mott and W. Twose, Adv. Phys. 10, 107 (1961).

    Article  CAS  Google Scholar 

  8. A. B. Fowler, A. Hartstein, and R. A. Webb, Phys. Rev. Lett. 48, 196 (1982).

    Article  CAS  Google Scholar 

  9. A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960).

    Article  CAS  Google Scholar 

  10. J. Voit, Rept. Prog. Phys. 58, 977 (1996).

    Article  Google Scholar 

  11. A. Yacoby, H. L. Stormer, N. S. Wingreen, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 77, 4612 (1996).

    Article  CAS  Google Scholar 

  12. F. P. Milliken, C. P. Umbach, and R. A. Webb, Solid State Comm. 97, R10653 (1996).

    Google Scholar 

  13. M. Bockrath, D. Cobden, A. Rinzler, R. Smalley, L. Balents, and P. McEuen, Nature 397, 598 (1999).

    Article  CAS  Google Scholar 

  14. H.W. C. Postma, M. de Jonge, Z. Yao, and C. Dekker, Phys. Rev. B 62, R10653 (2000).

    Article  CAS  Google Scholar 

  15. C. White and T. Todorov, Nature 393, 240 (1998).

    Article  CAS  Google Scholar 

  16. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Article  CAS  Google Scholar 

  17. F. Houzé, R. Meyer, O. Schneegans, and L. Boyer, Appl. Phys. Lett. 69, 1975 (2000).

    Article  Google Scholar 

  18. M. Lantz, S. O’Shea, and M. Welland, Phys. Rev. B 56, 15 345 (1997).

    Article  CAS  Google Scholar 

  19. H. Dai, E. Wong, and C. Lieber, Science 272, 523 (1996).

    Article  CAS  Google Scholar 

  20. M. Lantz, S. O’Shea, and M. Welland, Rev. Sci. Instr. 69, 1757 (1998).

    Article  CAS  Google Scholar 

  21. S. O’Shea, R. Atta, and M. Welland, Rev. Sci. Instr. 66, 2508 (1995).

    Article  CAS  Google Scholar 

  22. M. Stadermann, H. Grube, J. Boland, S. Papadakis, M. Falvo, R. Superfine, and S. Washburn, Rev. Sci. Instr. 74, 3653 (2003).

    Article  CAS  Google Scholar 

  23. H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, J. Appl. Phys. 82, 980 (1997).

    Article  CAS  Google Scholar 

  24. F. Giessibl, Appl. Phys. Lett. 73, 3956 (1998).

    Article  CAS  Google Scholar 

  25. F. Giessibl, Appl. Phys. Lett. 76, 1470 (2000).

    Article  CAS  Google Scholar 

  26. J. Liu, A. Rinzler, H. Dai, J. Haffner, R. Bradley, P. Boul, A. Lu, T. Iverson, K. Shelimov, C. Huffman, F. Rodriguez-Macias, Y. Shon, T. Lee, D. Colbert, and R. Smalley, Science 280, 1253 (1998).

    Article  CAS  Google Scholar 

  27. Q. Fu, C. Lu, and J. Liu, Nano Letters 2, 329 (2002).

    Article  CAS  Google Scholar 

  28. J. Kong, N. Franklin, C. Zhou, M. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000).

    Article  CAS  Google Scholar 

  29. P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, S. Peng, and K. Cho, Nano Letters 3, 347 (2003).

    Article  CAS  Google Scholar 

  30. T. Someya, J. Small, P. Kim, C. Nuckolls, and J. Yardley, Nano Letters 3, 877 (2003).

    Article  CAS  Google Scholar 

  31. E. Snow, J. Novak, P. Campbell, and D. Park, Appl. Phys. Lett. 82, 2145 (2003).

    Article  CAS  Google Scholar 

  32. J. Novak, E. Snow, E. Houser, D. P. and. J.L. Stepnowski, and R. McGill, Appl. Phys. Lett. 83, 4026 (2003).

    Article  CAS  Google Scholar 

  33. M. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Vol. 80 of Springer Topics in Applied Physics (Springer Verlag, Berlin Heidelberg New York, 2001).

    Google Scholar 

  34. M. Fuhrer, J. Nygård, L. Shih, M. Forero, Y. Yoon, M. Mazzoni, H. Choi, J. Ihm, S. Louie, A. Zettl, and P. McEuen, Science 288, 494 (2000).

    Article  CAS  Google Scholar 

  35. F. Léonard and J. Tersoff, Phys. Rev. Lett. 84, 4693 (2000).

    Article  Google Scholar 

  36. J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S. Wind, and P. Avouris, Phys. Rev. Lett. 89, 126801 (2002).

    Article  CAS  Google Scholar 

  37. P. Collins, M. Arnold, and P. Avouris, Science 292, 706 (2001).

    Article  CAS  Google Scholar 

  38. M. Stadermann, S. Papadakis, M. Falvo, Q. Fu, J. Liu, Y. Fridman,.1. Boland, R. Superfine, and S. Washburn, Phys. Rev. B, 72, 245406 (2005).

    Article  Google Scholar 

  39. M. Fuhrer, B. Kim, Dürkop, and T. Brintlinger, Nano Lett. 2, 755 (2002).

    Article  CAS  Google Scholar 

  40. M. Radosavljević, M. Freitag, K. Thadani, and A. Johnson, Nano Letters 2, 761 (2002).

    Article  Google Scholar 

  41. J. Cumings and A. Zettl, Phys. Rev. Lett. 93, 086801 (2004).

    Article  Google Scholar 

  42. A. Kuznetsova, D. Mawhinney, V. Naumenko, J. Yates, J. Liu, and R. Smalley, Chem. Phys. Lett. 321, 292 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stadermann, M., Washburn, S. (2007). Conductance AFM Measurements of Transport Through Nanotubes and Nanotube Networks. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28668-6_16

Download citation

Publish with us

Policies and ethics