Skip to main content

Abstract

A 53-year-old man presented to the emergency room with an acute inferolateral myocardial infarction (MI) of 2 hours duration. Urgent coronary angiography showed minor obstructive disease in the left coronary system and a 100% thrombotic occlusion in the mid segment of a large right coronary artery (Figure 8-1A). After one inflation with a 3.0 × 15-mm balloon a severe stenosis was apparent (Figure 8-1B), and the patient became profoundly bradycardic and hypotensive. There was thrombolysis in myocardial infarction (TIMI) grade 1 flow into the distal vessel. Temporary pacing and intravenous fluid administration were initiated with an improvement in hemodynamics. Further balloon inflations were performed across the lesion with minimal improvement in coronary flow. An intravenous abciximab infusion was begun. A 3.5 × 18-mm Medtronic AVE S670 stent was deployed across the occluded segment resulting in TIMI grade 1 epicardial flow. There was a hazy filling defect at the proximal stent edge. An overlapping 4.0 × 9-mm Medtronic AVE S7 stent was deployed to cover this area.

Right coronary angioplasty and stenting complicated by no-reflow in the setting of an acute inferolateral myocardial infarction. Angiographic images are of the right coronary artery in the left anterior oblique projection (A–E), and right anterior oblique projection (F). Refer to the case report in the text for details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Majno G, Ames A III, Chiang J, Wright RL. No reflow after cerebral ischemia. Lancet. 1967;2:569–570.

    Article  Google Scholar 

  2. Krug A, Du Mesnil de Rochemont W, Korb G. Blood supply of the myocardium after temporary coronary occlusion. Circ Res. 1966;19:57–62.

    CAS  PubMed  Google Scholar 

  3. Kloner RA, Ganote CE, Jennings RB. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974;54:1496–1508.

    Article  CAS  PubMed  Google Scholar 

  4. Schofer J, Montz R, Mathey DG. Scintigraphic evidence of the “no reflow” phenomenon in human beings after coronary thrombolysis. J Am Coll Cardiol. 1985;5:593–598.

    Article  CAS  PubMed  Google Scholar 

  5. Bates ER, Krell MJ, Dean EN, et al. Demonstration of the “no-reflow” phenomenon by digital coronary arteriography. Am J Cardiol. 1986;57:177–178.

    Article  CAS  PubMed  Google Scholar 

  6. Kitazume H, Iwama T, Kubo I, et al. No-reflow phenomenon during percutaneous transluminal coronary angioplasty. Am Heart J. 1988;116:211–215.

    Article  CAS  PubMed  Google Scholar 

  7. Wilson RF, Laxson DD, Lesser JR, White CW. Intense microvascular constriction after angioplasty of acute thrombotic coronary arterial lesions. Lancet. 1989;1:807–811.

    Article  CAS  PubMed  Google Scholar 

  8. Pomerantz RM, Kuntz RE, Diver DJ, et al. Intracoronary verapamil for the treatment of distal microvascular coronary artery spasm following PTCA. Catheter Cardiovasc Diagn. 1991;24:283–285.

    Article  CAS  Google Scholar 

  9. Feld H, Lichstein E, Schachter J, Shani J. Early and late angiographic findings of the “no-reflow” phenomenon following direct angioplasty as primary treatment for acute myocardial infarction. Am Heart J. 1992;123:782–784.

    Article  CAS  PubMed  Google Scholar 

  10. Piana RN, Paik GY, Moscucci M, et al. Incidence and treatment of ‘no-reflow’ after percutaneous coronary intervention. Circulation. 1994;89:2514–2518.

    CAS  PubMed  Google Scholar 

  11. Abbo KM, Dooris M, Glazier S, et al. Features and outcome of no-reflow after percutaneous coronary intervention. Am J Cardiol. 1995;75:778–782.

    Article  CAS  PubMed  Google Scholar 

  12. Eeckhout E, Kern MJ. The coronary no-reflow phenomenon: a review of mechanisms and therapies. Eur Heart J. 2001;22:729–739.

    Article  CAS  PubMed  Google Scholar 

  13. The Thrombolysis in Myocardial Infarction (TIMI) trial. Phase I findings. TIMI Study Group. N Engl J Med. 1985;312:932–936.

    Google Scholar 

  14. Gibson CM, Cannon CP, Daley WL, et al. TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation. 1996;93:879–888.

    CAS  PubMed  Google Scholar 

  15. van’t Hof AW, Liem A, Suryapranata H, et al. Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. Zwolle Myocardial Infarction Study Group. Circulation. 1998;97:2302–2306.

    Google Scholar 

  16. Gibson CM, Cannon CP, Murphy SA, et al. Relationship of TIMI myocardial perfusion grade to mortality after administration of thrombolytic drugs. Circulation. 2000;101:125–130.

    CAS  PubMed  Google Scholar 

  17. Gibson CM, Cannon CP, Murphy SA, et al. Relationship of the TIMI myocardial perfusion grades, flow grades, frame count, and percutaneous coronary intervention to long-term outcomes after thrombolytic administration in acute myocardial infarction. Circulation. 2002;105:1909–1913.

    Article  PubMed  Google Scholar 

  18. Sherman JR, Anwar A, Bret JR, Schreibfeder MM. Distal vessel pullback angiography and pressure gradient measurement: an innovative diagnostic approach to evaluate the no-reflow phenomenon. Catheter Cardiovasc Diagn. 1996;39:1–6.

    Article  CAS  Google Scholar 

  19. Iwakura K, Ito H, Takiuchi S, et al. Alternation in the coronary blood flow velocity pattern in patients with no reflow and reperfused acute myocardial infarction. Circulation. 1996;94:1269–1275.

    CAS  PubMed  Google Scholar 

  20. Fearon WF, Balsam LB, Farouque HM, et al. Novel index for invasively assessing the coronary microcirculation. Circulation. 2003;107:3129–3132.

    Article  PubMed  Google Scholar 

  21. Kaplan BM, Benzuly KH, Kinn JW, et al. Treatment of no-reflow in degenerated saphenous vein graft interventions: comparison of intracoronary verapamil and nitroglycerin. Catheter Cardiovasc Diagn. 1996;39:113–118.

    Article  CAS  Google Scholar 

  22. Resnic FS, Wainstein M, Lee MK, et al. No-reflow is an independent predictor of death and myocardial infarction after percutaneous coronary intervention. Am Heart J. 2003;145:42–46.

    Article  PubMed  Google Scholar 

  23. Sdringola S, Assali AR, Ghani M, et al. Risk assessment of slow or no-reflow phenomenon in aortocoronary vein graft percutaneous intervention. Catheter Cardiovasc Interv. 2001;54:318–324.

    Article  CAS  PubMed  Google Scholar 

  24. Yip HK, Chen MC, Chang HW, et al. Angiographic morphologic features of infarct-related arteries and timely reperfusion in acute myocardial infarction: predictors of slow-flow and no-reflow phenomenon. Chest. 2002;122:1322–1332.

    Article  PubMed  Google Scholar 

  25. Takahashi T, Anzai T, Yoshikawa T, et al. Absence of pre-infarction angina is associated with a risk of no-reflow phenomenon after primary coronary angioplasty for a first anterior wall acute myocardial infarction. Int J Cardiol. 2000;75:253–260.

    Article  CAS  PubMed  Google Scholar 

  26. Tanaka A, Kawarabayashi T, Nishibori Y, et al. No-reflow phenomenon and lesion morphology in patients with acute myocardial infarction. Circulation. 2002;105:2148–2152.

    Article  PubMed  Google Scholar 

  27. Iwakura K, Ito H, Kawano S, et al. Predictive factors for development of the no-reflow phenomenon in patients with reperfused anterior wall acute myocardial infarction. J Am Coll Cardiol. 2001;38:472–477.

    Article  CAS  PubMed  Google Scholar 

  28. Sharma SK, Dangas G, Mehran R, et al. Risk factors for the development of slow flow during rotational coronary atherectomy. Am J Cardiol. 1997;80:219–222.

    Article  CAS  PubMed  Google Scholar 

  29. Ellis SG, Popma JJ, Buchbinder M, et al. Relation of clinical presentation, stenosis morphology, and operator technique to the procedural results of rotational atherectomy and rotational atherectomy-facilitated angioplasty. Circulation. 1994;89:882–892.

    CAS  PubMed  Google Scholar 

  30. Whitlow PL, Bass TA, Kipperman RM, et al. Results of the study to determine rotablator and transluminal angioplasty strategy (STRATAS). Am J Cardiol. 2001;87:699–705.

    Article  CAS  PubMed  Google Scholar 

  31. Safian RD, Niazi KA, Strzelecki M, et al. Detailed angiographic analysis of high-speed mechanical rotational atherectomy in human coronary arteries. Circulation. 1993;88:961–968.

    CAS  PubMed  Google Scholar 

  32. Warth DC, Leon MB, O’Neill W, et al. Rotational atherectomy multicenter registry: acute results, complications and 6-month angiographic follow-up in 709 patients. J Am Coll Cardiol. 1994;24:641–648.

    Article  CAS  PubMed  Google Scholar 

  33. Koch KC, vom Dahl J, Kleinhans E, et al. Influence of a platelet GPIIb/IIIa receptor antagonist on myocardial hypoperfusion during rotational atherectomy as assessed by myocardial Tc-99m sestamibi scintigraphy. J Am Coll Cardiol. 1999;33:998–1004.

    Article  CAS  PubMed  Google Scholar 

  34. Morishima I, Sone T, Mokuno S, et al. Clinical significance of no-reflow phenomenon observed on angiography after successful treatment of acute myocardial infarction with percutaneous transluminal coronary angioplasty. Am Heart J. 1995;130:239–243.

    Article  CAS  PubMed  Google Scholar 

  35. Morishima I, Sone T, Okumura K, et al. Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction. J Am Coll Cardiol. 2000;36:1202–1209.

    Article  CAS  PubMed  Google Scholar 

  36. Grines CL, Cox DA, Stone GW, et al. Coronary angioplasty with or without stent implantation for acute myocardial infarction. Stent Primary Angioplasty in Myocardial Infarction Study Group. N Engl J Med. 1999;341:1949–1956.

    Article  CAS  PubMed  Google Scholar 

  37. A clinical trial comparing primary coronary angioplasty with tissue plasminogen activator for acute myocardial infarction. The Global Use of Strategies to Open Occluded Coronary Arteries in Acute Coronary Syndromes (GUSTO lib) Angioplasty Substudy Investigators. N Engl J Med. 1997;336:1621–1628.

    Google Scholar 

  38. Stone GW, Grines CL, Cox DA, et al. Comparison of angioplasty with stenting, with or without abciximab, in acute myocardial infarction. N Engl J Med. 2002;346:957–966.

    Article  CAS  PubMed  Google Scholar 

  39. Manciet LH, Poole DC, McDonagh PF, et al. Microvascular compression during myocardial ischemia: mechanistic basis for no-reflow phenomenon. Am J Physiol. 1994;266:H1541–H1550.

    CAS  PubMed  Google Scholar 

  40. Kotani J, Nanto S, Mintz GS, et al. Plaque gruel of atheromatous coronary lesion may contribute to the no-reflow phenomenon in patients with acute coronary syndrome. Circulation. 2002;106:1672–1677.

    Article  PubMed  Google Scholar 

  41. Webb JG, Carere RG, Virmani R, et al. Retrieval and analysis of particulate debris after saphenous vein graft intervention. J Am Coll Cardiol. 1999;34:468–475.

    Article  CAS  PubMed  Google Scholar 

  42. Grube E, Gerckens U, Yeung AC, et al. Prevention of distal embolization during coronary angioplasty in saphenous vein grafts and native vessels using porous filter protection. Circulation. 2001;104:2436–2441.

    Article  CAS  PubMed  Google Scholar 

  43. Taylor AJ, Bobik A, Berndt MC, et al. Experimental rupture of atherosclerotic lesions increases distal vascular resistance: a limiting factor to the success of infarct angioplasty. Arterioscler Thromb Vasc Biol. 2002;22:153–160.

    Article  CAS  PubMed  Google Scholar 

  44. Bonderman D, Teml A, Jakowitsch J, et al. Coronary no-reflow is caused by shedding of active tissue factor from dissected atherosclerotic plaque. Blood. 2002;99:2794–2800.

    Article  CAS  PubMed  Google Scholar 

  45. Gregorini L, Marco J, Farah B, et al. Effects of selective alphal-and alpha2-adrenergic blockade on coronary flow reserve after coronary stenting. Circulation. 2002;106:2901–2907.

    Article  CAS  PubMed  Google Scholar 

  46. Engler RL, Schmid-Schonbein GW, Pavelec RS. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol. 1983;111:98–111.

    CAS  PubMed  Google Scholar 

  47. Przyklenk K, Kloner RA. “Reperfusion injury” by oxygen-derived free radicals? Effect of superoxide dismutase plus catalase, given at the time of reperfusion, on myocardial infarct size, contractile function, coronary microvasculature, and regional myocardial blood flow. Circ Res. 1989;64:86–96.

    CAS  PubMed  Google Scholar 

  48. Roberts MJ, Young IS, Trouton TG, et al. Transient release of lipid peroxides after coronary artery balloon angioplasty. Lancet. 1990;336:143–145.

    Article  CAS  PubMed  Google Scholar 

  49. Werner GS, Lang K, Kuehnert H, Figulla HR. Intracoronary verapamil for reversal of no-reflow during coronary angioplasty for acute myocardial infarction. Catheter Cardiovasc Interv. 2002;57:444–451.

    Article  PubMed  Google Scholar 

  50. Oldenburg O, Eggebrecht H, Herrmann J, et al. Dose-dependent effects of intracoronary verapamil on systemic and coronary hemodynamics. Cardiovasc Drugs Ther. 2000;14:651–655.

    Article  CAS  PubMed  Google Scholar 

  51. Taniyama Y, Ito H, Iwakura K, et al. Beneficial effect of intracoronary verapamil on microvascular and myocardial salvage in patients with acute myocardial infarction. J Am Coll Cardiol. 1997;30:1193–1199.

    Article  CAS  PubMed  Google Scholar 

  52. Weyrens FJ, Mooney J, Lesser J, Mooney MR. Intracoronary diltiazem for microvascular spasm after interventional therapy. Am J Cardiol. 1995;75:849–850.

    Article  CAS  PubMed  Google Scholar 

  53. Fugit MD, Rubal BJ, Donovan DJ. Effects of intracoronary nicardipine, diltiazem and verapamil on coronary blood flow. J Invasive Cardiol. 2000;12:80–85.

    CAS  PubMed  Google Scholar 

  54. Hein TW, Belardinelli L, Kuo L. Adenosine A(2A) receptors mediate coronary microvascular dilation to adenosine: role of nitric oxide and ATP-sensitive potassium channels. J Pharmacol Exp Ther. 1999;291:655–664.

    CAS  PubMed  Google Scholar 

  55. Marzilli M, Orsini E, Marraccini P, Testa R. Beneficial effects of intracoronary adenosine as an adjunct to primary angioplasty in acute myocardial infarction. Circulation. 2000;101:2154–2159.

    CAS  PubMed  Google Scholar 

  56. Wilson RF, Wyche K, Christensen BV, et al. Effects of adenosine on human coronary arterial circulation. Circulation. 1990;82:1595–1606.

    CAS  PubMed  Google Scholar 

  57. Fischell TA, Carter AJ, Foster MT, et al. Reversal of “no reflow” during vein graft stenting using high velocity boluses of intracoronary adenosine. Catheter Cardiovasc Diagn. 1998;45:360–365.

    Article  CAS  Google Scholar 

  58. Sdringola S, Assali A, Ghani M, et al. Adenosine use during aortocoronary vein graft interventions reverses but does not prevent the slow-no reflow phenomenon. Catheter Cardiovasc Interv. 2000;51:394–399.

    Article  CAS  PubMed  Google Scholar 

  59. Fischell TA, Foster MT 3rd. Adenosine for reversal of “no reflow.” Catheter Cardiovasc Interv. 1999;46:508.

    Article  CAS  PubMed  Google Scholar 

  60. Hillegass WB, Dean NA, Liao L, et al. Treatment of no-reflow and impaired flow with the nitric oxide donor nitroprusside following percutaneous coronary interventions: initial human clinical experience. J Am Coll Cardiol. 2001;37:1335–1343.

    Article  CAS  PubMed  Google Scholar 

  61. Wilson RF, White CW Intracoronary papaverine: an ideal coronary vasodilator for studies of the coronary circulation in conscious humans. Circulation. 1986;73:444–451.

    CAS  PubMed  Google Scholar 

  62. Ishihara M, Sato H, Tateishi H, et al. Attenuation of the no-reflow phenomenon after coronary angioplasty for acute myocardial infarction with intracoronary papaverine. Am Heart J. 1996;132:959–963.

    Article  CAS  PubMed  Google Scholar 

  63. Talman CL, Winniford MD, Rossen JD, et al. Polymorphous ventricular tachycardia: a side effect of intracoronary papaverine. J Am Coll Cardiol. 1990;15:275–278.

    Article  CAS  PubMed  Google Scholar 

  64. Skelding KA, Goldstein JA, Mehta L, et al. Resolution of refractory no-reflow with intracoronary epinephrine. Catheter Cardiovasc Interv. 2002;57:305–309.

    Article  PubMed  Google Scholar 

  65. Bairn DS. Epinephrine: a new pharmacologic treatment for no-reflow? Catheter Cardiovasc Interv. 2002;57:310–311.

    Article  Google Scholar 

  66. Farouque HM, Worthley SG, Meredith IT, et al. Effect of ATP-sensitive potassium channel inhibition on resting coronary vascular responses in humans. Circ Res. 2002;90:231–236.

    Article  CAS  PubMed  Google Scholar 

  67. Hongo M, Takenaka H, Uchikawa S, et al. Coronary microvascular response to intracoronary administration of nicorandil. Am J Cardiol. 1995;75:246–250.

    Article  CAS  PubMed  Google Scholar 

  68. Sakata Y, Kodama K, Komamura K, et al. Salutary effect of adjunctive intracoronary nicorandil administration on restoration of myocardial blood flow and functional improvement in patients with acute myocardial infarction. Am Heart J. 1997;133:616–621.

    Article  CAS  PubMed  Google Scholar 

  69. Ito H, Taniyama Y, Iwakura K, et al. Intravenous nicorandil can preserve microvascular integrity and myocardial viability in patients with reperfused anterior wall myocardial infarction. J Am Coll Cardiol. 1999;33:654–660.

    Article  CAS  PubMed  Google Scholar 

  70. Heitzer T, Ollmann I, Koke K, et al. Platelet glycoprotein IIb/IIIa receptor blockade improves vascular nitric oxide bioavailability in patients with coronary artery disease. Circulation. 2003;108:536–541.

    Article  CAS  PubMed  Google Scholar 

  71. Aymong ED, Curtis MJ, Youssef M, et al. Abciximab attenuates coronary microvascular endothelial dysfunction after coronary stenting. Circulation. 2002;105:2981–2985.

    Article  CAS  PubMed  Google Scholar 

  72. Gibson CM, Cohen DJ, Cohen EA, et al. Effect of eptifibatide on coronary flow reserve following coronary stent implantation (an ESPRIT substudy). Enhanced Suppression of the Platelet IIb/IIIa Receptor with Integrilin Therapy. Am J Cardiol. 2001;87:1293–1295.

    Article  CAS  PubMed  Google Scholar 

  73. Nannizzi-Alaimo L, Alves VL, Phillips DR. Inhibitory effects of glycoprotein IIb/IIIa antagonists and aspirin on the release of soluble CD40 ligand during platelet stimulation. Circulation. 2003;107:1123–1128.

    Article  CAS  PubMed  Google Scholar 

  74. Lincoff AM, Califf RM, Topol EJ. Platelet glycoprotein IIb/IIIa receptor blockade in coronary artery disease. J Am Coll Cardiol. 2000;35:1103–1115.

    Article  CAS  PubMed  Google Scholar 

  75. Roffi M, Mukherjee D, Chew DP, et al. Lack of benefit from intravenous platelet glycoprotein IIb/IIIa receptor inhibition as adjunctive treatment for percutaneous interventions of aortocoronary bypass grafts: a pooled analysis of five randomized clinical trials. Circulation. 2002;106:3063–3067.

    Article  PubMed  Google Scholar 

  76. Rawitscher D, Levin TN, Cohen I, Feldman T. Rapid reversal of no-reflow using Abciximab after coronary device intervention. Catheter Cardiovasc Diagn. 1997;2:187–190.

    Article  Google Scholar 

  77. Wohrle J, Grebe OC, Nusser T, et al. Reduction of major adverse cardiac events with intracoronary compared with intravenous bolus application of abciximab in patients with acute myocardial infarction or unstable angina undergoing coronary angioplasty. Circulation. 2003;107:1840–1843.

    Article  PubMed  CAS  Google Scholar 

  78. Lee DP, Herity NA, Hiatt BL, et al. Adjunctive platelet glycoprotein IIb/IIIa receptor inhibition with tirofiban before primary angioplasty improves angiographic outcomes: results of the Tirofiban Given in the Emergency Room before Primary Angioplasty (TIGER-PA) pilot trial. Circulation. 2003;107:1497–1501.

    Article  PubMed  Google Scholar 

  79. Baran KW, Nguyen M, McKendall GR, et al. Double-blind, randomized trial of an anti-CD18 antibody in conjunction with recombinant tissue plasminogen activator for acute myocardial infarction: limitation of myocardial infarction following thrombolysis in acute myocardial infarction (LIMIT AMI) study. Circulation. 2001;104:2778–2783.

    Article  CAS  PubMed  Google Scholar 

  80. Granger CB, Mahaffey KW, Weaver WD, et al. Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: the COMplement inhibition in Myocardial infarction treated with Angioplasty (COMMA) trial. Circulation. 2003;108:1184–1190.

    Article  CAS  PubMed  Google Scholar 

  81. Kern MJ, Aguirre F, Bach R, et al. Augmentation of coronary blood flow by intra-aortic balloon pumping in patients after coronary angioplasty. Circulation. 1993;87:500–511.

    CAS  PubMed  Google Scholar 

  82. O’Murchu B, Foreman RD, Shaw RE, et al. Role of intraaortic balloon pump counterpulsation in high risk coronary rotational atherectomy. J Am Coll Cardiol. 1995;26:1270–1275.

    Article  PubMed  Google Scholar 

  83. Michaels AD, Appleby M, Otten MH, et al. Pretreatment with intragraft verapamil prior to percutaneous coronary intervention of saphenous vein graft lesions: results of the randomized, controlled vasodilator prevention on no-reflow (VAPOR) trial. J Invasive Cardiol. 2002;14:299–302.

    PubMed  Google Scholar 

  84. Assali AR, Sdringola S, Ghani M, et al. Intracoronary adenosine administered during percutaneous intervention in acute myocardial infarction and reduction in the incidence of “no reflow” phenomenon. Catheter Cardiovasc Interv. 2000;51:27–31, discussion 32.

    Article  CAS  PubMed  Google Scholar 

  85. Cohen BM, Weber VJ, Blum RR, et al. Cocktail attenuation of rotational ablation flow effects (CARAFE) study: pilot. Catheter Cardiovasc Diagn. 1996;(suppl 3):69–72.

    CAS  Google Scholar 

  86. Tsubokawa A, Ueda K, Sakamoto H, et al. Effect of intracoronary nicorandil administration on preventing no-reflow/slow flow phenomenon during rotational atherectomy. Circ J. 2002;66:1119–1123.

    Article  CAS  PubMed  Google Scholar 

  87. Hanna GP, Yhip P, Fujise K, et al. Intracoronary adenosine administered during rotational atherectomy of complex lesions in native coronary arteries reduces the incidence of no-reflow phenomenon. Catheter Cardiovasc Interv. 1999;48:275–278.

    Article  CAS  PubMed  Google Scholar 

  88. Kini A, Reich D, Marmur JD, et al. Reduction in periprocedural enzyme elevation by abciximab after rotational atherectomy of type B2 lesions: results of the Rota ReoPro randomized trial. Am Heart J. 2001;142:965–969.

    Article  CAS  PubMed  Google Scholar 

  89. Williams MS, Coller BS, Vaananen HJ, et al. Activation of platelets in platelet-rich plasma by rotablation is speed-dependent and can be inhibited by abciximab (c7E3 Fab; ReoPro). Circulation. 1998;98:742–748.

    CAS  PubMed  Google Scholar 

  90. Reisman M, Shuman BJ, Dillard D, et al. Analysis of low-speed rotational atherectomy for the reduction of platelet aggregation. Catheter Cardiovasc Diagn. 1998;45:208–214.

    Article  CAS  Google Scholar 

  91. Sabatier R, Hamon M, Zhao QM, et al. Could direct stemming reduce no-reflow in acute coronary syndromes? A randomized pilot study. Am Heart J. 2002;143:1027–1032.

    Article  PubMed  Google Scholar 

  92. Kuntz RE, Bairn DS, Cohen DJ, et al. A trial comparing rheolytic thrombectomy with intracoronary urokinase for coronary and vein graft thrombus (the Vein Graft Angio-Jet Study [VeGAS 2]). Am J Cardiol. 2002;89:326–330.

    Article  CAS  PubMed  Google Scholar 

  93. Silva JA, Ramee SR, Cohen DJ, et al. Rheolytic thrombectomy during percutaneous revascularization for acute myocardial infarction: experience with the AngioJet catheter. Am Heart J. 2001;141:353–359.

    Article  CAS  PubMed  Google Scholar 

  94. Beran G, Lang I, Schreiber W, et al. Intracoronary thrombectomy with the X-sizer catheter system improves epicardial flow and accelerates ST-segment resolution in patients with acute coronary syndrome: a prospective, randomized, controlled study. Circulation. 2002;105:2355–2360.

    Article  PubMed  Google Scholar 

  95. Stone GW, Cox DA, Low R, et al. Safety and efficacy of a novel device for treatment of thrombotic and atherosclerotic lesions in native coronary arteries and saphenous vein grafts: results from the multicenter X-Sizer for treatment of thrombus and atherosclerosis in coronary applications trial (X-TRACT) study. Catheter Cardiovasc Interv. 2003;58:419–427.

    Article  PubMed  Google Scholar 

  96. Sangiorgi G, Colombo A. Embolic protection devices. Heart. 2003;89:990–992.

    Article  CAS  PubMed  Google Scholar 

  97. Bairn DS, Wahr D, George B, et al. Randomized trial of a distal embolic protection device during percutaneous intervention of saphenous vein aorto-coronary bypass grafts. Circulation. 2002;105:1285–1290.

    Google Scholar 

  98. Stone GW, Rogers C, Hermiller J, et al. Randomized comparison of distal protection with a filter-based catheter and a balloon occlusion and aspiration system during percutaneous intervention of diseased saphenous vein aortocoronary bypass grafts. Circulation. 2003;108:548–553.

    Article  PubMed  Google Scholar 

  99. Limbruno U, Micheli A, De Carlo M, et al. Mechanical prevention of distal embolization during primary angioplasty: safety, feasibility, and impact on myocardial reperfusion. Circulation. 2003;108:171–176.

    Article  PubMed  Google Scholar 

  100. Stone GW, Rogers C, Ramee S, et al. Distal filter protection during saphenous vein graft stenting: technical and clinical correlates of efficacy. J Am Coll Cardiol. 2002;40:1882–1888.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Omar Farouque, H.M., Lee, D.P. (2005). The No-Reflow Phenomenon. In: Butman, S.M. (eds) Complications of Percutaneous Coronary Interventions. Springer, New York, NY. https://doi.org/10.1007/978-0-387-29301-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-29301-1_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-24468-6

  • Online ISBN: 978-0-387-29301-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics