Skip to main content

Vaccine Therapies for Non-Hodgkin’s Lymphomas

  • Chapter
Hodgkin’s and Non-Hodgkin’s Lymphoma

Part of the book series: Cancer Treatment and Research ((CTAR,volume 131))

Abstract

Chemotherapy and radiation therapy can slow the progression of indolent non-Hodgkin’s lymphoma (NHL), but few if any patients are cured with these modalities. Active immunotherapy, which attempts to harness the host’s own immune system to eradicate the malignant clone, has emerged as an important area of investigation in lymphoma. The attractiveness of this approach lies in the remarkable specificity of the adaptive immune system in recognizing tumor-associated or tumor-specific antigens. Even anti-CD20 monoclonal antibodies cannot match the potential specificity of an active host immune response, as these agents deplete both normal and malignant B cells. Many investigators have thus sought to find ways to exploit the host’s own immune system to achieve the specific destruction of malignant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11. References

  1. Lynch, R. G., Graff, R. J., Sirisinha, S., Simms, E. S., and Eisen, H. N. Myeloma proteins as tumor-specific transplantation antigens. Proc Natl Acad Sci USA, 69: 1540–1544, 1972.

    Article  PubMed  CAS  Google Scholar 

  2. Stevenson, F. K., Elliott, E. V., and Stevenson, G. T. Some effects on leukaemic B lymphocytes of antibodies to defined regions of their surface immunoglobulin. Immunology, 32: 549–557, 1977.

    PubMed  CAS  Google Scholar 

  3. Levy, R. and Dilley, J. Rescue of immunoglobulin secretion from human neoplastic lymphoid cells by somatic cell hybridization. Proc Natl Acad Sci USA, 75: 2411–2415, 1978.

    Article  PubMed  CAS  Google Scholar 

  4. Miller, R. A., Maloney, D. G., Warnke, R., and Levy, R. Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med, 306: 517–522, 1982.

    Article  PubMed  CAS  Google Scholar 

  5. Davis, T. A., Maloney, D. G., Czerwinski, D. K., Liles, T. M., and Levy, R. Anti-idiotype antibodies can induce long-term complete remissions in non-Hodgkin’s lymphoma without eradicating the malignant clone. Blood, 92: 1184–1190, 1998.

    PubMed  CAS  Google Scholar 

  6. Meeker, T., Lowder, J., Cleary, M. L., Stewart, S., Warnke, R., Sklar, J., and Levy, R. Emergence of idiotype variants during treatment of B-cell lymphoma with anti-idiotype antibodies. N Engl J Med, 312: 1658–1665, 1985.

    Article  PubMed  CAS  Google Scholar 

  7. Timmerman, J. M. and Levy, R. L. The history of the development of vaccines for lymphoma. Clinical Lymphoma, 1: 129–139, 2000.

    Article  PubMed  CAS  Google Scholar 

  8. Campbell, M. J., Carroll, W., Kon, S., Thielemans, K., Rothbard, J. B., Levy, S., and Levy, R. Idiotype vaccination against murine B cell lymphoma. Humoral and cellular responses elicited by tumor-derived immunoglobulin M and its molecular subunits. J Immunol, 139: 2825–2833, 1987.

    PubMed  CAS  Google Scholar 

  9. Kwak, L. W., Campbell, M. J., Czerwinski, D. K., Hart, S., Miller, R. A., and Levy, R. Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors. N Engl J Med, 327: 1209–1215, 1992.

    Article  PubMed  CAS  Google Scholar 

  10. Hsu, F. J., Caspar, C. B., Czerwinski, D., Kwak, L. W., Liles, T. M., Syrengelas, A., Taidi-Laskowski, B., and Levy, R. Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma—long-term results of a clinical trial. Blood, 89: 3129–3135, 1997.

    PubMed  CAS  Google Scholar 

  11. Lauritzsen, G. F., Weiss, S., Dembic, Z., and Bogen, B. Naive idiotype-specific CD4+ T cells and immunosurveillance of B-cell tumors. Proc Natl Acad Sci USA, 91: 5700–5704, 1994.

    Article  PubMed  CAS  Google Scholar 

  12. Lundin, K. U., Hofgaard, P. O., Omholt, H., Munthe, L. A., Corthay, A., and Bogen, B. Therapeutic effect of idiotype-specific CD4+ T cells against B-cell lymphoma in the absence of anti-idiotypic antibodies. Blood, 102: 605–612, 2003.

    Article  PubMed  CAS  Google Scholar 

  13. Cao, W., Myers-Powell, B. A., and Braciale, T. J. Recognition of an immunoglobulin VH epitope by influenza virus-specific class I major histocompatibility complex-restricted cytolytic T lymphocytes. J Exp Med, 179: 195–202, 1994.

    Article  PubMed  CAS  Google Scholar 

  14. Chakrabarti, D. and Ghosh, S. K. Induction of syngeneic cytotoxic T lymphocytes against a B cell tumor. II. Characterization of anti-idiotypic CTL lines and clones. Cell Immunol, 144: 443–454, 1992.

    Article  PubMed  CAS  Google Scholar 

  15. Chakrabarti, D. and Ghosh, S. K. Induction of syngeneic cytotoxic T lymphocytes against a B cell tumor. III. MHC class I-restricted CTL recognizes the processed form(s) of idiotype. Cell Immunol, 144: 455–464, 1992.

    Article  PubMed  CAS  Google Scholar 

  16. Abe, A., Emi, N., Taji, H., Kasai, M., Kohno, A., and Saito, H. Induction of humoral and cellular anti-idiotypic immunity by intradermal injection of naked DNA encoding a human variable region gene sequence of an immunoglobulin heavy chain in a B cell malignancy. Gene Ther, 3: 988–993, 1996.

    PubMed  CAS  Google Scholar 

  17. Osterroth, F., Garbe, A., Fisch, P., and Veelken, H. Stimulation of cytotoxic T cells against idiotype immunoglobulin of malignant lymphoma with protein-pulsed or idiotype-transduced dendritic cells. Blood, 95: 1342–1349, 2000.

    PubMed  CAS  Google Scholar 

  18. Trojan, A., Schultze, J. L., Witzens, M., Vonderheide, R. H., Ladetto, M., Donovan, J. W., and Gribben, J. G. Immunoglobulin framework-derived peptides function as cytotoxic T-cell epitopes commonly expressed in B-cell malignancies. Nat Med, 6: 667–672, 2000.

    Article  PubMed  CAS  Google Scholar 

  19. Wen, Y. J., Barlogie, B., and Yi, Q. Idiotype-specific cytotoxic T lymphocytes in multiple myeloma: evidence for their capacity to lyse autologous primary tumor cells. Blood, 97: 1750–1755., 2001.

    Article  PubMed  CAS  Google Scholar 

  20. Baskar, S., Kobrin, C. B., and Kwak, L. W. Autologous lymphoma vaccines induce human T cell responses against multiple, unique epitopes. J Clin Invest, 113: 1498–1510, 2004.

    PubMed  CAS  Google Scholar 

  21. Kaminski, M. S., Kitamura, K., Maloney, D. G., and Levy, R. Idiotype vaccination against murine B cell lymphoma. Inhibition of tumor immunity by free idiotype protein. J Immunol, 138: 1289–1296, 1987.

    PubMed  CAS  Google Scholar 

  22. Campbell, M. J., Esserman, L., Byars, N. E., Allison, A. C, and Levy, R. Idiotype vaccination against murine B cell lymphoma. Humoral and cellular requirements for the full expression of antitumor immunity. J Immunol, 145: 1029–1036, 1990.

    PubMed  CAS  Google Scholar 

  23. George, A. J., Folkard, S. G., Hamblin, T. J., and Stevenson, F. K. Idiotypic vaccination as a treatment for a B cell lymphoma. J Immunol, 141: 2168–2174, 1988.

    PubMed  CAS  Google Scholar 

  24. George, A. J., Tutt, A. L., and Stevenson, F. K. Anti-idiotypic mechanisms involved in suppression of a mouse B cell lymphoma, BCL1. J Immunol, 138: 628–634, 1987.

    PubMed  CAS  Google Scholar 

  25. Syrengelas, A. D. and Levy, R. DNA vaccination against the idiotype of a murine B cell lymphoma: mechanism of tumor protection. J Immunol, 162: 4790–4795, 1999.

    PubMed  CAS  Google Scholar 

  26. Timmerman, J. M. and Levy, R. Linkage of foreign carrier protein to a self-tumor antigen enhances the immunogenicity of a pulsed dendritic cell vaccine. J Immunol, 164: 4797–4803, 2000.

    PubMed  CAS  Google Scholar 

  27. Kwak, L. W., Young, H. A., Pennington, R. W., and Weeks, S. D. Vaccination with syngeneic, lymphoma-derived immunoglobulin idiotype combined with granulocyte/macrophage colony-stimulating factor primes mice for a protective T-cell response. Proc Natl Acad Sci USA, 93: 10972–10977, 1996.

    Article  PubMed  CAS  Google Scholar 

  28. Muraro, S., Bondanza, A., Bellone, M., Greenberg, P. D., and Bonini, C. Molecular modification of idiotypes from B cell lymphomas for expression in mature dendritic cells as a strategy to induce tumor-reactive CD4+ and CD8+ T cell responses. Blood, 2005.

    Google Scholar 

  29. Campbell, M. J., Esserman, L., and Levy, R. Immunotherapy of established murine B cell lymphoma. Combination of idiotype immunization and cyclophosphamide. J Immunol, 141: 3227–3233, 1988.

    PubMed  CAS  Google Scholar 

  30. Caspar, C. B., Levy, S., and Levy, R. Idiotype vaccines for non-Hodgkin’s lymphoma induce polyclonal immune responses that cover mutated tumor idiotypes: comparison of different vaccine formulations. Blood, 90: 3699–3706, 1997.

    PubMed  CAS  Google Scholar 

  31. Bendandi, M., Gocke, C. D., Kobrin, C. B., Benko, F. A., Sternas, L. A., Pennington, R., Watson, T. M., Reynolds, C. W., Gause, B. L., Duffey, P. L., Jaffe, E. S., Creekmore, S. P., Longo, D. L., and Kwak, L. W. Complete molecular remissions induced by patient-specific vaccination plus granulocyte-monocyte colony-stimulating factor against lymphoma [see comments]. Nat Med, 5; 1171–1177, 1999.

    Article  PubMed  CAS  Google Scholar 

  32. Keilholz, U., Weber, J., Finke, J. H., Gabrilovich, D. I., Kast, W. M., Disis, M. L., Kirkwood, J. M., Scheibenbogen, C., Schlom, J., Maino, V. C., Lyerly, H. K., Lee, P. P., Storkus, W., Marincola, F., Worobec, A., and Atkins, M. B. Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored by the Society for Biological Therapy. J Immunother, 25: 97–138, 2002.

    Article  PubMed  Google Scholar 

  33. Timmerman, J. M. and Levy, R. Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med, 50: 507–529, 1999.

    Article  PubMed  CAS  Google Scholar 

  34. Hsu, F. J., Benike, C., Fagnoni, F., Liles, T. M., Czerwinski, D., and et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med, 2: 52–58, 1996.

    Article  PubMed  CAS  Google Scholar 

  35. Timmerman, J. M., Czerwinski, D. K., Davis, T. A., Hsu, F. J., Benike, C, Hao, Z. M., Taidi, B., Rajapaksa, R., Caspar, C. B., Okada, C. Y., van Beckhoven, A., Liles, T. M., Engleman, E. G., and Levy, R. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood, 99: 1517–1526., 2002.

    Article  PubMed  CAS  Google Scholar 

  36. Dranoff, G., Jaffee, E., Lazenby, A., Golumbek, P., Levitsky, H., and et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA, 90: 3539–3543, 1993.

    Article  PubMed  CAS  Google Scholar 

  37. Neelapu, S. S., Gause, B. L., Nikcevich, D., Schuster, S., Winter, J., Gockerman, J., Sotomayor, E., Inghirahimi, G., Muggia, F., Watson, T, M, Snow, S., Kubovic, P., Ferraro, M., Jaffe, E. S., Reynolds, C, and Kwak, L. W. Vaccine therapy of follicular lymphoma in first remission: Long-term follow-up of phase II results and high rate of chemotherapy-induced complete remissions in a controlled, randomized phase III trial. Blood, 102: 307b (abstract #4953), 2003.

    Google Scholar 

  38. Timmerman, J. M., Czerwinski, D., Taid, B., Van Beckhoven, A., Vose, J., Ingolia, D., Kunkel, L., Denney, D., and Levy, R. A phase I/II trial to evaluate the immunogenicity of recombinant Idiotype protein vaccines for the treatment of non-Hodgkin’s lymphoma (NHL). Blood, 96: 578a, 2000.

    Google Scholar 

  39. Jones, I. and Morikawa, Y. Baculovirus vectors for expression in insect cells. Curr Opin Biotechnol, 7: 512–516, 1996.

    Article  PubMed  CAS  Google Scholar 

  40. Redfern, C, Guthrie, T. H., Adler, M., Holman, P., Smith, M. R., Levy, R., Janakiramaan, N., Leonard, J. P., Rosenfelt, F., Wiernik, P. H., Just, R., Densmore, J., Gold, D., Gutheil, J., and Bender, J. F. Single agent activity of FavId [Id-KLH vaccine] for indolent NHL. Blood, 102: 898a (abstract #3341), 2003.

    Google Scholar 

  41. Redfern, C, Guthrie, T. H., Adler, M., Holman, P., Smith, M. R., Levy, R., Janakiramaan, N., Leonard, J. P., Rosenfelt, F., Wiernik, P. H., Just, R., Densmore, J., Gold, D., Gutheil, J., and Bender, J. F. FavId [Id-KLH vaccine] following rituximab for patients with indolent NHL. Blood, 102: 899a (abstract#3347), 2003.

    Google Scholar 

  42. Koc, O., Redfern, C, Wiernik, P. H., Rosenfelt, F., Winter, J., Guthrie, T. H., Kaplan, L., Holman, P., Densmore, J., Hainsworth, J., Lin, T., Castillo, R., Janakiraman, N., and Bender, J. F. Id/KLH vaccine (FavId TM) following treatment with rituximab: An analysis of response rate immprovement (RRI) and time-to-progression (TTP) in follicular lymphoma (FL). Blood, 104: 170a (abstract #587), 2004.

    Article  CAS  Google Scholar 

  43. McLaughlin, P., Grillo-Lopez, A. J., Link, B. K., Levy, R., Czuczman, M. S., Williams, M. E., Heyman, M. R., Bence-Bruckler, I., White, C. A., Cabanillas, F., Jain, V., Ho, A. D., Lister, J., Wey, K., Shen, D., and Dallaire, B. K. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol, 16: 2825–2833, 1998.

    PubMed  CAS  Google Scholar 

  44. van der Kolk, L. E., Baars, J. W., Prins, M. H., and van Oers, M. H. Rituximab treatment results in impaired secondary humoral immune responsiveness. Blood, 100: 2257–2259., 2002.

    PubMed  Google Scholar 

  45. Gonzalez-Stawinski, G. V., Yu, P. B., Love, S. D., Parker, W., and Davis, R. D., Jr. Hapten-induced primary and memory humoral responses are inhibited by the infusion of anti-CD20 monoclonal antibody (IDEC-C2B8, Rituximab). Clin Immunol, 98: 175–179., 2001.

    Article  PubMed  CAS  Google Scholar 

  46. Weng, W. K., Czerwinski, D., Timmerman, J., Hsu, F. J., and Levy, R. Clinical outcome of lymphoma patients after idiotype vaccination is correlated with humoral immune response and immunoglobulin G Fc receptor genotype. J Clin Oncol, 22: 4717–4724, 2004.

    Article  PubMed  CAS  Google Scholar 

  47. Qin, Z., Richter, G., Schuler, T., Ibe, S., Cao, X., and Blankenstein, T. B cells inhibit induction of T cell-dependent tumor immunity. Nat Med, 4: 627–630., 1998.

    Article  PubMed  CAS  Google Scholar 

  48. Witzig, T. E., Gordon, L. I., Cabanillas, F., Czuczman, M. S., Emmanouilides, C., Joyce, R., Pohlman, B. L., Bartlett, N. L., Wiseman, G. A., Padre, N., Grillo-Lopez, A. J., Multani, P., and White, C. A. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol, 20: 2453–2463, 2002.

    Article  PubMed  CAS  Google Scholar 

  49. Osterroth, F., Alkan, O., Mackensen, A., Lindemann, A., Fisch, P., Skerra, A., and Veelken, H. Rapid expression cloning of human immunoglobulin Fab fragments for the analysis of antigen specificity of B cell lymphomas and anti-idiotype lymphoma vaccination. J Immunol Methods, 229: 141–153, 1999.

    Article  PubMed  CAS  Google Scholar 

  50. Veelken, H., Mauerer, K., Mikesch, K., Osterroth, F., Rosenthal, F., Thomas, A.-K., and Bertinetti, C. Immune responses and clinical outcome of patients with advanced non-Hodgkin’s lymphoma after immunization with a novel recombinant idiotype vaccine. Blood, 102: 898a (abstract#3342), 2003.

    Google Scholar 

  51. Bertinetti, C. and Veelken, H. Characterization of cellular immune responses to a recombinant idiotype vaccine by ELISPOT and identification of MHC class I-restricted T cell epitopes by peptide mapping. Blood, 104: 395a (abstract #1409), 2004.

    Google Scholar 

  52. Reddy, S. A., Czerwinski, D. K., Rajapaksa, R., Reinl, S., Garger, S. J., Cameron, T., Barrett, J., Novak, J., Holtz, R. B., and Levy, R. Plant derived single chain Fv Idiotype vaccines are safe and immunogenic in patients with follicular lymphoma: Results of a Phase I study. Blood, 100: 163a (abstract #609), 2002.

    Google Scholar 

  53. Timmerman, J. M., Levy, R., Czerwinski, D. K., Ingolia, D., Denney, D., and Kunkel, L. A phase 2 trial to evaluate the efficacy of recombinant idiotype vaccines in untreated follicular lymphoma in the “watch-and-wait” period. Proc. Amer. Soc. Clin. Oncol., 21: 4a, abstract 13 (Full manuscript in preparation), 2002.

    Google Scholar 

  54. Davis, T. A., Hsu, F. J., Caspar, C. B., van Beckhoven, A., Czerwinsk, D. K., Liles, T. M., Taidi, B., Benike, C. J., Engleman, E. G., and Levy, R. Idiotype vaccination following ABMT can stimulate specific anti-idiotype immune responses in patients with B-cell lymphoma. Biol Blood Marrow Transplant, 7: 517–522, 2001.

    Article  PubMed  CAS  Google Scholar 

  55. Borrello, I., Sotomayor, E. M., Rattis, F. M., Cooke, S. K., Gu, L., and Levitsky, H. I. Sustaining the graft-versus-tumor effect through posttransplant immunization with granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing tumor vaccines [In Process Citation]. Blood, 95: 3011–3019, 2000.

    PubMed  CAS  Google Scholar 

  56. Holman, P., Corringham, S., Bashey, A., Carrier, E., Mu, X., Gold, D., and Ball, E. D. Early and Robust Immune Responses to Idiotype (Id) Vaccination Occur in Mantle Cell Lymphoma (MCL) and Indolent Lymphoma (IL) Patients Following Autologous Stem Cell Transplantation (ASCT). Blood, 102: 899a (abstract 3345), 2003.

    Google Scholar 

  57. Timmerman, J., Vose, J., Kunkel, L., Bierman, P., Czerwinski, D., Hohenstein, M., Ingolia, D., Denney, D., and Levy, R. A phase 2 study demonstrating recombinant Idiotype vaccine elicits specific anti-idiotype immune responses in aggressive non-Hodgkin’s lymphoma. Blood, 98: 341a (abstract#1440), 2001.

    Google Scholar 

  58. Leonard, J. P., Vose, J. M., Timmerman, J. M., Levy, R., Coleman, M., King, S., Ingolia, D., and Denney, D. Recombinant idiotype-KLH vaccination (MyVax™) following CHOP chemotherapy in mantle cell lymphoma. Blood, 102: 105a (abstract #357). 2003.

    Google Scholar 

  59. Wilson, W. H., Neelapu, S., Rosenwald, A., White, T., Dunleavy, K., Pittaluga, S., Hakim, F., Stetler-Stevenson, M., Steinberg, S. M., Jaffe, E. S., Gress, R., Wright, G., Staudt, L. M., Janik, J., and Kwak, L. Idiotype vaccine and dose-adjusted EPOCH-Rituximab treatment in untreated mantle cell lymphoma: Preliminary report on clinical outcome and analysis of immune response. Blood, 102: 105a (abstract #358), 2003.

    Google Scholar 

  60. Restifo, N. P., Ying, H., Hwang, L., and Leitner, W. W. The promise of nucleic acid vaccines. Gene Ther, 7: 89–92., 2000.

    Article  PubMed  CAS  Google Scholar 

  61. Krieg, A. M. Antitumor applications of stimulating toll-like receptor 9 with CpG oligodeoxynucleotides. Curr Oncol Rep, 6: 88–95, 2004.

    Article  PubMed  Google Scholar 

  62. Syrengelas, A. D., Chen, T. T., and Levy, R. DNA immunization induces protective immunity against B-cell lymphoma. Nat Med, 2: 1038–1041, 1996.

    Article  PubMed  CAS  Google Scholar 

  63. King, C. A., Spellerberg, M. B., Zhu, D., Rice, J., Sahota, S. S., Thompsett, A. R., Hamblin, T. J., Radl, J., and Stevenson, F. K. DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat Med, 4: 1281–1286, 1998.

    Article  PubMed  CAS  Google Scholar 

  64. Biragyn, A., Tani, K., Grimm, M. C., Weeks, S., and Kwak, L. W. Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity [see comments]. Nat Biotechnol, 17: 253–258, 1999.

    Article  PubMed  CAS  Google Scholar 

  65. Biragyn, A., Surenhu, M., Yang, D., Ruffini, P. A., Haines, B. A., Klyushnenkova, E., Oppenheim, J. J., and Kwak, L. W. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J Immunol, 767: 6644–6653., 2001.

    Google Scholar 

  66. Timmerman, J. M., Singh, G., Hermanson, G., Hobart, P., Czerwinski, D. K., Taidi, B., Rajapaksa, R., Caspar, C. B., Van Beckhoven, A., and Levy, R. Immunogenicity of a plasmid DNA vaccine encoding chimeric idiotype in patients with B-cell lymphoma. Cancer Res, 62: 5845–5852., 2002.

    PubMed  CAS  Google Scholar 

  67. Zhu, D., Rice, J., Savelyeva, N., and Stevenson, F. K. DNA fusion vaccines against B-cell tumors. Trends Mol Med, 7: 566–572., 2001.

    Article  PubMed  CAS  Google Scholar 

  68. Timmerman, J. M., Caspar, C. B., Lambert, S. L., Syrengelas, A. D., and Levy, R. Idiotype-encoding recombinant adenoviruses provide protective immunity against murine B-cell lymphomas. Blood, 97: 1370–1377., 2001.

    Article  PubMed  CAS  Google Scholar 

  69. Borrello, I., Biedryzcki, B., Sheets, N., Racke, F., Loper, K., Lemas, V., Noonan, K., Nelson, L., Hege, K., and Levitsky, H. I. Autologous tumor combined with a GM-CSF-secreting cell line vaccine (GVAX) following autologous stem cell transplant (ASCT) in multiple myeloma. Blood, 102: 493a (abstract # 1794), 2003.

    Google Scholar 

  70. Borrello, I., Sotomayor, E. M., Cooke, S., and Levitsky, H. I. A universal granulocyte-macrophage colony-stimulating factor-producing bystander cell line for use in the formulation of autologous tumor cell-based vaccines. Hum Gene Ther, 10: 1983–1991, 1999.

    Article  PubMed  CAS  Google Scholar 

  71. Wierda, W. G., Cantwell, M. J., Woods, S. J., Rassenti, L. Z., Prussak, C. E., and Kipps, T. J. CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood, 96: 2917–2924., 2000.

    PubMed  CAS  Google Scholar 

  72. Takahashi, S., Yotnda, P., Rousseau, R. F., Mei, Z., Smith, S., Rill, D., Younes, A., and Brenner, M. K. Transgenic expression of CD40L and interleukin-2 induces an autologous antitumor immune response in patients with non-Hodgkin’s lymphoma. Cancer Gene Ther, 8: 378–387, 2001.

    Article  PubMed  CAS  Google Scholar 

  73. Briones, J., Timmerman, J., and Levy, R. In vivo antitumor effect of CD40L-transduced tumor cells as a vaccine for B-cell lymphoma. Cancer Res, 62: 3195–3199., 2002.

    PubMed  CAS  Google Scholar 

  74. Briones, J., Timmerman, J. M., Panicalli, D. L., and Levy, R. Antitumor immunity after vaccination with B lymphoma cells overexpressing a triad of costimulatory molecules. J Natl Cancer Inst, 95: 548–555, 2003.

    Article  PubMed  CAS  Google Scholar 

  75. Younes, A., Fayad, L. E., Pro, B., McLaughlin, P., Hagemeister, F. B., Mansfield, P., Clayman, G., Medeiros, L. J., Manning, J., Lewis, J., and Srivastava, P. Safety and efficacy of heat shock protein-peptide 96 complex (HSPPC-96) vaccine therapy in patients with relapsed or previously untreated in low-grade non-Hodgkin’s lymphoma. Blood, 102: 898–899a (abstract#3343), 2003.

    Google Scholar 

  76. Selenko, N., Maidic, O., Draxier, S., Berer, A., Jager, U., Knapp, W., and Stockl, J. CD20 antibody (C2B8)-induced apoptosis of lymphoma cells promotes phagocytosis by dendritic cells and cross-priming of CD8+ cytotoxic T cells. Leukemia, 15: 1619–1626., 2001.

    Article  PubMed  CAS  Google Scholar 

  77. Dhodapkar, K. M., Krasovsky, J., Williamson, B., and Dhodapkar, M. V. Antitumor monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J Exp Med, 195: 125–133., 2002.

    Article  PubMed  CAS  Google Scholar 

  78. Franki, S., Levy, R., and Timmerman, J. M. Dendritic cells co-cultured with antibody-coated tumor cells provide protective immunity against B cell lymphoma in vivo. Blood, 102: 107a (abstract#361), 2003.

    Google Scholar 

  79. Marciani, D. J. Vaccine adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discov Today, 8: 934–943, 2003.

    Article  PubMed  CAS  Google Scholar 

  80. Cartron, G., Dacheux, L., Salles, G., Solal-Celigny, P., Bardos, P., Colombat, P., and Watier, H. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood, 99: 754–758., 2002.

    Article  PubMed  CAS  Google Scholar 

  81. Weng, W. K. and Levy, R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol, 21: 3940–3947, 2003.

    Article  PubMed  CAS  Google Scholar 

  82. McLaughlin, P., Robertson, L. E., and Keating, M. J. Fludarabine phosphate in lymphoma: an important new therapeutic agent. Cancer Treat Res, 85: 3–14, 1996.

    PubMed  CAS  Google Scholar 

  83. Ruffini, P. A., Neelapu, S. S., Kwak, L. W., and Biragyn, A. Idiotypic vaccination for B-cell malignancies as a model for therapeutic cancer vaccines: from prototype protein to second generation vaccines. Haematologica, 87: 989–1001., 2002.

    PubMed  Google Scholar 

  84. Okada, C. Y., Wong, C. P., Denney, D. W., and Levy, R. TCR vaccines for active immunotherapy of T cell malignancies. J Immunol, 159: 5516–5527, 1997.

    PubMed  CAS  Google Scholar 

  85. Lambert, S. L., Okada, C. Y., and Levy, R. TCR vaccines against a murine T cell lymphoma: a primary role for antibodies of the IgG2c class in tumor protection. J Immunol, 772: 929–936, 2004.

    Google Scholar 

  86. Schultze, J. L. and Vonderheide, R. H. From cancer genomics to cancer immunotherapy: toward second-generation tumor antigens. Trends Immunol, 22: 516–523, 2001.

    Article  PubMed  CAS  Google Scholar 

  87. Rosenberg, S. A. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity, 10: 281–287, 1999.

    Article  PubMed  CAS  Google Scholar 

  88. Zeis, M., Siegel, S., Wagner, A., Schmitz, M., Marget, M., Kuhl-Burmeister, R., Adamzik, I., Kabelitz, D., Dreger, P., Schmitz, N., and Heiser, A. Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells. J Immunol, 170: 5391–5397, 2003.

    PubMed  CAS  Google Scholar 

  89. Siegel, S., Wagner, A., Schmitz, N., and Zeis, M. Induction of antitumour immunity using survivin peptide-pulsed dendritic cells in a murine lymphoma model. Br J Haematol, 122: 911–914, 2003.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Montross, S., Timmerman, J.M. (2006). Vaccine Therapies for Non-Hodgkin’s Lymphomas. In: Leonard, J.P., Coleman, M. (eds) Hodgkin’s and Non-Hodgkin’s Lymphoma. Cancer Treatment and Research, vol 131. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-29346-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-29346-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-29345-5

  • Online ISBN: 978-0-387-29346-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics