Skip to main content

The Genetic Contribution to Obesity

  • Chapter
Overweight and the Metabolic Syndrome

Part of the book series: Endocrine Updates ((ENDO,volume 26))

  • 836 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. World Health Organization. Obesity: Preventing and Managing the Global Epidemic. Geneva: World Health Organization, 1998.

    Google Scholar 

  2. Froguel P, Boutin P. Genetics of pathways regulating body weight in the development of obesity in humans. Exp Biol Med 2001;226:991–996.

    CAS  Google Scholar 

  3. Wyatt HR. The prevalence of obesity. Prim Care 2003;30:267–279.

    PubMed  Google Scholar 

  4. Friedrich MJ. Epidemic of obesity expands its spread to developing countries. JAMA 2002;287:1382–1386.

    Article  PubMed  CAS  Google Scholar 

  5. Popkin BM, Lu B, Zhai F. Understanding the nutrition transition: Measuring rapid dietary changes in transitional countries. Public Health Nutr 2002;5:947–953.

    Article  PubMed  Google Scholar 

  6. Comuzzie AG, Williams JT, Martin LJ, Blangero J. Searching for genes underlying normal variation in human adiposity. J Mol Med 2001;79:57–70.

    Article  PubMed  CAS  Google Scholar 

  7. Wadden TA, Brownell KD, Foster GD. Obesity: Responding to the global epidemic. J Consult Clin Psychol 2002;70:510–525.

    Article  PubMed  Google Scholar 

  8. Loos RJ, Bouchard C. Obesity—is it a genetic disorder? J Intern Med 2003;254:401–425.

    Article  PubMed  CAS  Google Scholar 

  9. Comuzzie AG, Allison DB. The search for human obesity genes. Science 1998;280:1374–1377.

    Article  PubMed  CAS  Google Scholar 

  10. Chagnon YC, Rankinen T, Snyder EE, et al. The human obesity gene map: The 2002 update. Obes Res 2003;11:313–367.

    PubMed  CAS  Google Scholar 

  11. Eaton SB, Konner M, Shostak M. Stone agers in the fast lane: Chronic degenerative diseases in evolutionary perspective. Am J Med 1988;84:739–749.

    Article  PubMed  CAS  Google Scholar 

  12. Neel JV, Weder A, Julius S. Type II diabetes, essential hypertension and obesity as “syndromes of impaired genetic homeostasis”: The “thrifty genotype” hypothesis enters the 21st century. Perspect Biol Med 1998;42:44–74.

    PubMed  CAS  Google Scholar 

  13. Neel JV. Diabetes mellitus: A “thrifty” genotype rendered detrimental by “progress”? 1962. Bull World Health Organ 1999;77:694–703.

    PubMed  CAS  Google Scholar 

  14. Bjorntorp P. Thrifty genes and human obesity. Are we chasing ghosts? Lancet 2001;358:1006–1008.

    Article  PubMed  CAS  Google Scholar 

  15. Kagawa Y, Yanagisawa Y, Hasegawa K, et al. Single nucleotide polymorphisms of thrifty genes for energy metabolism: Evolutionary origins and prospects for intervention to prevent obesity-related diseases. Biochem Biophys Res Commun 2002;295:207–222.

    Article  PubMed  CAS  Google Scholar 

  16. Flatt JP. The difference in the storage capacities for carbohydrate and for fat, and its implications in the regulation of body weight. Ann NY Acad Sci 1987;499:104–123.

    Article  PubMed  CAS  Google Scholar 

  17. Stubbs RJ, Mazlan N, Whybrow S. Carbohydrates, appetite and feeding behavior in humans. J Nutr 2001;131:2775S–2781S.

    PubMed  CAS  Google Scholar 

  18. Poston WS II, Foreyt JP. Obesity is an environmental issue. Atherosclerosis 1999;146:201–209.

    Article  PubMed  CAS  Google Scholar 

  19. Jequier E. Pathways to obesity. Int J Obes Relat Metab Disord 2002;26(Suppl 2):S12–S17.

    Article  PubMed  CAS  Google Scholar 

  20. Zimmet P, Thomas CR. Genotype, obesity and cardiovascular disease—has technical and social advancement outstripped evolution? J Intern Med 2003;254:114–125.

    Article  PubMed  CAS  Google Scholar 

  21. Arner P. Obesity—a genetic disease of adipose tissue? Br J Nutr 2000;83(1):S9–S16.

    PubMed  CAS  Google Scholar 

  22. Clement K, Boutin P, Froguel P. Genetics of obesity. Am J Pharmacog 2002;2:177–187.

    Article  CAS  Google Scholar 

  23. Shuldiner AR, Munir KM. Genetics of obesity: More complicated than initially thought. Lipids 2003;38:97–101.

    Article  PubMed  CAS  Google Scholar 

  24. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). The Pima Indians: Pathfinders for health. 2002;http://diabetes.niddk.nih.gov/dm/pubs/pima/index.htm

    Google Scholar 

  25. Knowler WC, Pettit DJ, Saad MF, et al. Obesity in the Pima Indians: its magnitude and relationship with diabetes. Am J Clin Nutr 1991;53(Suppl 6):1543S–1551S.

    PubMed  CAS  Google Scholar 

  26. Ravussin E, Valencia ME, Esparza J, et al. Effects of a traditional lifestyle on obesity in Pima Indians. Diabetes Care 1994;17:1067–1074.

    PubMed  CAS  Google Scholar 

  27. Liu YJ, Araujo S, Recker RR, Deng HW. Molecular and genetic mechanisms of obesity: Implications for future management. Curr Mol Med 2003;3:325–340.

    Article  PubMed  CAS  Google Scholar 

  28. Zielenski J, Tsui LC. Cystic fibrosis: Genotypic and phenotypic variations. Annu Rev Genet 1995;29:777–807.

    Article  PubMed  CAS  Google Scholar 

  29. Broeckel U, Schork NJ. Identifying genes and genetic variation underlying human diseases and complex phenotypes via recombination mapping. J Physiol 2004;554(1):40–45.

    Article  PubMed  CAS  Google Scholar 

  30. Rankinen T, Perusse L, Weisnagel SJ, et al. The human obesity gene map: The 2001 update. Obes Res 2002;10:196–243.

    PubMed  CAS  Google Scholar 

  31. Walder K, Segal D, Jowett J, Blangero J, Collier GR. Obesity and diabetes gene discovery approaches. Curr Pharm Des 2003;9:1357–1372.

    Article  PubMed  CAS  Google Scholar 

  32. Rogers J, Mahaney MC, Almasy L, Comuzzie AG, Blangero J. Quantitative trait linkage mapping in anthropology. Am J Phys Anthropol Suppl 1999;29:127–151.

    Article  PubMed  Google Scholar 

  33. Comuzzie AG, Funahashi T, Sonnenberg G, et al. The genetic basis of plasma variation in adiponectin, a global endophenotype for obesity and the metabolic syndrome. J Clin Endocrinol Metab 2001;86:4321–4325.

    Article  PubMed  CAS  Google Scholar 

  34. Lander E, Kruglyak L. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat Genet 1995;11:241–247.

    Article  PubMed  CAS  Google Scholar 

  35. McPherson JD, Marra M, Hillier L, et al. A physical map of the human genome. Nature 2001;409:934–941.

    Article  PubMed  CAS  Google Scholar 

  36. Wille A, Leal SM. Novel selection criteria for genome scans of complex traits. Genet Epidemiol 2001;21(Suppl 1):S800–S804.

    PubMed  Google Scholar 

  37. Blangero J, Williams JT, Almasy L. Variance component methods for detecting complex trait loci. Adv Genet 2001;42:151–181.

    PubMed  CAS  Google Scholar 

  38. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001;291:1304–1351.

    Article  PubMed  CAS  Google Scholar 

  39. Comuzzie AG. The emerging pattern of the genetic contribution to human obesity. Best Pract Res Clin Endocrinol Metab 2002;16:611–621.

    Article  PubMed  Google Scholar 

  40. Echwald SM. Genetics of human obesity: Lessons from mouse models and candidate genes. J Intern Med 1999;245:653–666.

    Article  PubMed  CAS  Google Scholar 

  41. Sorensen TI, Echwald SM. Obesity genes. BMJ 2001;322:630–631.

    Article  PubMed  CAS  Google Scholar 

  42. Brockmann GA, Bevova MR. Using mouse models to dissect the genetics of obesity. Trends. Genet 2002;18:367–376.

    CAS  Google Scholar 

  43. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:425–432.

    Article  PubMed  CAS  Google Scholar 

  44. Tartaglia LA, Dembski M, Weng X, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995;83:1263–1271.

    Article  PubMed  CAS  Google Scholar 

  45. Chen H, Charlat O, Tartaglia LA, et al. Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996;84:491–495.

    Article  PubMed  CAS  Google Scholar 

  46. Miller MW, Duhl DM, Vrieling H, et al. Cloning of the mouse agouti gene predicts a secreted protein ubiquitously expressed in mice carrying the lethal yellow mutation. Genes Dev 1993;7:454–467.

    PubMed  CAS  Google Scholar 

  47. Barsh GS, Farooqi IS, O’Rahilly S. Genetics of body-weight regulation. Nature 2000;404:644–651.

    PubMed  CAS  Google Scholar 

  48. Robinson SW, Dinulescu DM, Cone RD. Genetic models of obesity and energy balance in the mouse. Annu Rev Genet 2000;34:687–745.

    Article  PubMed  CAS  Google Scholar 

  49. Miller KA, Gunn TM, Carrasquillo MM, Lamoreux ML, Galbraith DB, Barsh GS. Genetic studies of the mouse mutations mahogany and mahoganoid. Genetics 1997;146:1407–1415.

    PubMed  CAS  Google Scholar 

  50. Gunn TM, Miller KA, He L, et al. The mouse mahogany locus encodes a transmembrane form of human attractin. Nature 1999;398:152–156.

    Article  PubMed  CAS  Google Scholar 

  51. Nagle DL, McGrail SH, Vitale J, et al. The mahogany protein is a receptor involved in suppression of obesity. Nature 1999;398:148–152.

    Article  PubMed  CAS  Google Scholar 

  52. Jackson RS, Creemers JW, Ohagi S, et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet 1997;16:303–306.

    Article  PubMed  CAS  Google Scholar 

  53. Cawley NX, Rodríguez YM, Maldonado A, Loh YP. Trafficking of mutant carboxypeptidase E to secretory granules in a beta-cell line derived from Cpe(fat)/Cpe(fat) mice. Endocrinology 2003;144:292–298.

    Article  PubMed  CAS  Google Scholar 

  54. Augustine KA, Rossi RM. Rodent mutant models of obesity and their correlations to human obesity. Anat Rec 1999;257:64–72.

    Article  PubMed  CAS  Google Scholar 

  55. Santagata S, Boggon TJ, Baird CL, et al. G-protein signaling through tubby proteins. Science 2001;292:2041–2050.

    Article  PubMed  CAS  Google Scholar 

  56. Fisler JS, Warden CH. Mapping of mouse obesity genes: A generic approach to a complex trait. J Nutr 1997;127:1909S–1916S.

    PubMed  CAS  Google Scholar 

  57. Pomp D. Animal models of obesity. Mol Med Today 1999;5:459–460.

    Article  PubMed  CAS  Google Scholar 

  58. Inui A. Obesity—a chronic health problem in cloned mice? Trends Pharmacol Sci 2003;24:77–80.

    Article  PubMed  CAS  Google Scholar 

  59. Pomp D. Genetic dissection of obesity in polygenic animal models. Behav Genet 1997;27:285–306.

    Article  PubMed  CAS  Google Scholar 

  60. Moody DE, Pomp D, Nielsen NK, Van Vleck LD. Identification of quantitative trait loci influencing traits related to energy balance in selection and inbred lines of mice. Genetics 1999;152:699–711.

    PubMed  CAS  Google Scholar 

  61. Smith BK, Andrews PK, West DB. Macronutrient diet selection in thirteen mouse strains. Am J Physiol Regul Integr Comp Physiol 2000;278:R797–R805.

    PubMed  CAS  Google Scholar 

  62. Paigen B. Genetics of responsiveness to high-fat and high-cholesterol diets in the mouse. Am J Clin Nutr 1995;62:458S–462S.

    PubMed  CAS  Google Scholar 

  63. West DB, Waguespack J, McColister S. Dietary obesity in the mouse: Interaction of strain with diet composition. Am J Physiol 1995;268:R658–R665.

    PubMed  CAS  Google Scholar 

  64. Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 2002;8:731–737.

    Article  PubMed  CAS  Google Scholar 

  65. Smith Richards BK, Belton BN, Poole AC, et al. QTL analysis of self-selected macronutrient diet intake: Fat, carbohydrate, and total kilocalories. Physiol Genomics 2002;11:205–217.

    PubMed  CAS  Google Scholar 

  66. Warden CH, Fisler JS, Shoemaker SM. Identification of four chromosomal loci determining obesity in a multifactorial mouse model. J Clin Invest 1995;95:1545–1552.

    PubMed  CAS  Google Scholar 

  67. York B, Truett AA, Monteiro MP, et al. Gene-environment interaction: A significant diet-dependent obesity locus demonstrated in a congenic segment on mouse chromosome 7. Mamm Genome 1999;10:457–462.

    Article  PubMed  CAS  Google Scholar 

  68. Livingston JN. Genetically engineered mice in drug development. J Intern Med 1999;245:627–635.

    Article  PubMed  CAS  Google Scholar 

  69. Lee K, Villena JA, Moon YS, et al. Inhibition of adipogenesis and development of glucose intolerance by soluble preadipocyte factor-1 (Pref-1). J Clin Invest 2003;111:453–461.

    Article  PubMed  CAS  Google Scholar 

  70. Stubdal H, Lynch CA, Moriarty A, et al. Targeted deletion of the tub mouse obesity gene reveals that tubby is a loss-of-function mutation. Mol Cell Biol 2000;20:878–882.

    Article  PubMed  CAS  Google Scholar 

  71. Majdic G, Young M, Gomez-Sanchez E, et al. Knockout mice lacking steroidogenic factor 1 are a novel genetic model of hypothalamic obesity. Endocrinology 2002;143:607–614.

    Article  PubMed  CAS  Google Scholar 

  72. Gunay-Aygun M, Cassidy SB, Nicholls RD. Prader-Willi and other syndromes associated with obesity and mental retardation. Behav Genet 1997;27:307–324.

    Article  PubMed  CAS  Google Scholar 

  73. Wigren M, Hansen S. Prader-Willi syndrome: Clinical picture, psychosocial support and current management. Child Care Health Dev 2003;29:449–456.

    Article  PubMed  CAS  Google Scholar 

  74. Gallagher RC, Pils B, Albalwi M, Francke U. Evidence for the role of PWCR1/HBII-85 C/D box small nucleolar RNAs in Prader-Willi syndrome. Am J Hum Genet 2002;71:669–678.

    Article  PubMed  CAS  Google Scholar 

  75. Sheffield VC, Nishimura D, Stone EM. The molecular genetics of Bardet-Biedl syndrome. Curr Opin Genet Dev 2001;11:317–321.

    Article  PubMed  CAS  Google Scholar 

  76. Nishimura DY, Searby CC, Carmi R, et al. Positional cloning of a novel gene on chromosome 16q causing Bardet-Biedl syndrome (BBS2). Hum Mol Genet 2001;10:865–874.

    Article  PubMed  CAS  Google Scholar 

  77. Mykytyn K, Braun T, Carmi R, et al. Identification of the gene that, when mutated, causes the human obesity syndrome BBS4. Nat Genet 2001;28:188–191.

    Article  PubMed  CAS  Google Scholar 

  78. Slavotinek AM, Searby C, Al-Gazali L, et al. Mutation analysis of the MKKS gene in McKusick-Kaufman syndrome and selected Bardet-Biedl syndrome patients. Hum Genet 2002;110:561–567.

    Article  PubMed  CAS  Google Scholar 

  79. Badano JL, Ansley SJ, Leitch CC, Lewis RA, Lupski JR, Katsanis N. Identification of a novel Bardet-Biedl syndrome protein, BBS7, that shares structural features with BBS1 and BBS2. Am J Hum Genet 2003;72:650–658.

    Article  PubMed  CAS  Google Scholar 

  80. Mykytyn K, Nishimura DY, Searby CC, et al. Evaluation of complex inheritance involving the most common Bardet-Biedl syndrome locus (BBS1). Am J Hum Genet 2003;72:429–437.

    Article  PubMed  CAS  Google Scholar 

  81. Reed DR, Ding Y, Xu W, Cather C, Price RA. Human obesity does not segregate with the chromosomal regions of Prader-Willi, Bardet-Biedl, Cohen, Borjeson or Wilson-Turner syndromes. Int J Obes Relat Metab Disord 1995;19:599–603.

    PubMed  CAS  Google Scholar 

  82. Coleman DL. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 1973;9:294–298.

    Article  PubMed  CAS  Google Scholar 

  83. Coleman DL. Inherited obesity-diabetes syndromes in the mouse. Prog Clin Biol Res 1981;45:145–158.

    PubMed  CAS  Google Scholar 

  84. Jeanrenaud B, Rohner-Jeanrenaud F. Effects of neuropeptides and leptin on nutrient partitioning: Dysregulations in obesity. Annu Rev Med 2001;52:339–351.

    Article  PubMed  CAS  Google Scholar 

  85. Margetic S, Gazzola C, Pegg GG, Hill RA. Leptin: A review of its peripheral actions and interactions. Int J Obes Relat Metab Disord 2002;26:1407–1433.

    Article  PubMed  CAS  Google Scholar 

  86. Cummings DE, Schwartz MW. Genetics and pathophysiology of human obesity. Annu Rev Med 2003;54:453–471.

    Article  PubMed  CAS  Google Scholar 

  87. Schwartz MW, Woods SC, Seeley RJ, Barsh GS, Baskin DG, Leibel RL. Is the energy homeostasis system inherently biased toward weight gain? Diabetes 2003;52:232–238.

    PubMed  CAS  Google Scholar 

  88. Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997;387:903–908.

    Article  PubMed  CAS  Google Scholar 

  89. Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. 1998. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 1998;18:213–215.

    Article  PubMed  CAS  Google Scholar 

  90. Rau H, Reaves BJ, O’Rahilly S, Whitehead JP. Truncated human leptin (delta133) associated with extreme obesity undergoes proteasomal degradation after defective intracellular transport. Endocrinology 1999;140:1718–1723.

    Article  PubMed  CAS  Google Scholar 

  91. Farooqi IS, Keogh JM, Kamath S, et al. Partial leptin deficiency and human adiposity. Nature 2001;414:34–35.

    Article  PubMed  CAS  Google Scholar 

  92. Farooqi S, Rau H, Whitehead J, O’Rahilly S. ob gene mutations and human obesity. Proc Nutr Soc 1998;57:471–475.

    Article  PubMed  CAS  Google Scholar 

  93. Ozata M, Ozdemir IC, Licinio J. Human leptin deficiency caused by a missense mutation: Multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab 1999;84:3686–3695.

    Article  PubMed  CAS  Google Scholar 

  94. Farooqi IS, Jebb SA, Langmack G, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999;341:879–884.

    Article  PubMed  CAS  Google Scholar 

  95. Farooqi IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 2002;110:1093–1103.

    Article  PubMed  CAS  Google Scholar 

  96. Clement K, Vaisse C, Lahlou N, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998;392:398–401.

    Article  PubMed  CAS  Google Scholar 

  97. Challis BG, Pritchard LE, Creemers JW, et al. A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Hum Mol Genet 2002;11:1997–2004.

    Article  PubMed  CAS  Google Scholar 

  98. MacNeil DJ, Howard AD, Guan X, et al. The role of melanocortins in body weight regulation: Opportunities for the treatment of obesity. Eur J Pharmacol 2002;450:93–109.

    Article  PubMed  CAS  Google Scholar 

  99. Pritchard LE, Turnbull AV, White A. Pro-opiomelanocortin processing in the hypothalamus: Impact on melanocortin signalling and obesity. J Endocrinol 2002;172:411–421.

    Article  PubMed  CAS  Google Scholar 

  100. Voisey J, Carroll L, van Daal A. Melanocortins and their receptors and antagonists. Curr Drug Targets 2003;4:586–597.

    Article  PubMed  CAS  Google Scholar 

  101. Wardlaw SL. Clinical review 127: Obesity as a neuroendocrine disease: Lessons to be learned from proopiomelanocortin and melanocortin receptor mutations in mice and men. J Clin Endocrinol Metab 2001;86:1442–1446.

    Article  PubMed  CAS  Google Scholar 

  102. Krude H, Biebermann H, Gruters A. Mutations in the human proopiomelanocortin gene. Ann NY Acad Sci 2003a;994:233–239.

    Article  PubMed  CAS  Google Scholar 

  103. Krude H, Biebermann H, Schnabel D, et al. Obesity due to proopiomelanocortin deficiency: Three new cases and treatment trials with thyroid hormone and ACTH4-10. J Clin Endocrinol Metab 2003b;88:4633–4640.

    Article  PubMed  CAS  Google Scholar 

  104. Hinney A, Schmidt A, Nottebom K, et al. Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. Clin Endocrinol Metab 1999;84:1483–1486.

    Article  CAS  Google Scholar 

  105. Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Froguel P. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. Clin Invest 2000;106:253–262.

    Article  CAS  Google Scholar 

  106. Farooqi IS, Yeo GS, Keogh JM, et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. Clin Invest 2000;106:271–279.

    CAS  Google Scholar 

  107. Miraglia Del Giudice E, Cirillo G, Nigro V, et al. Low frequency of melanocortin-4 receptor (MC4R) mutations in a Mediterranean population with early-onset obesity. Int J Obes Relat Metab Disord 2002;26:647–651.

    Article  PubMed  CAS  Google Scholar 

  108. Kobayashi H, Ogawa Y, Shintani M, et al. A novel homozygous missense mutation of melanocortin-4 receptor (MC4R) in a Japanese woman with severe obesity. Diabetes 2002;51:243–246.

    PubMed  CAS  Google Scholar 

  109. Marti A, Corbalan MS, Forga L, Martinez JA, Hinney A, Hebebrand J. A novel nonsense mutation in the melanocortin-4 receptor associated with obesity in a Spanish population. Int J Obes Relat Metab Disord 2003;27:385–388.

    Article  PubMed  CAS  Google Scholar 

  110. Jacobson P, Ukkola O, Rankinen T, et al. Melanocortin 4 receptor sequence variations are seldom a cause of human obesity: The Swedish Obese Subjects, the HERITAGE Family Study, and a Memphis cohort. J Clin Endocrinol Metab 2002;87:4442–4446.

    Article  PubMed  CAS  Google Scholar 

  111. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin-4 receptor gene. N Engl J Med 2003;348:1085–1095.

    Article  PubMed  CAS  Google Scholar 

  112. Cone RD. Haploinsufficiency of the melanocortin-4 receptor: Part of a thrifty genotype? J Clin Invest 2000;106:185–187.

    PubMed  CAS  Google Scholar 

  113. Branson R, Potoczna N, Kral JG, Lentes KU, Hoehe MR, Horber FF. Binge eating as a major phenotype of melanocortin 4 receptor gene mutations. N Engl J Med 2003;348:1096–1103.

    Article  PubMed  CAS  Google Scholar 

  114. Lubrano-Berthelier C, Cavazos M, Le Stunff C, et al. The human MC4R promoter: Characterization and role in obesity. Diabetes 2003;52:2996–3000.

    PubMed  CAS  Google Scholar 

  115. Lonnqvist F, Krief S, Strosberg AD, Nyberg S, Emorine LJ, Arner P. Evidence for a functional beta 3-adrenoceptor in man. Br J Pharmacol 1993;110:929–936.

    PubMed  CAS  Google Scholar 

  116. Clement K, Vaisse C, Manning BS, et al. Genetic variation in the beta 3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N Engl J Med 1995;333:352–354.

    Article  PubMed  CAS  Google Scholar 

  117. Stumvoll M, Haring H. The peroxisome proliferator-activated receptor-gamma2 Pro12Ala polymorphism. Diabetes 2002;51:2341–2347.

    PubMed  CAS  Google Scholar 

  118. Dionne IJ, Turner AN, Tchernof A, et al. Identification of an interactive effect of beta3-and alpha2b-adrenoceptor gene polymorphisms on fat mass in Caucasian women. Diabetes 2001;50:91–95.

    PubMed  CAS  Google Scholar 

  119. Hsueh WC, Cole SA, Shuldiner AR, et al. Interactions between variants in the beta3-adrenergic receptor and peroxisome proliferator-activated receptor-gamma2 genes and obesity. Diabetes Care 2001a;24:672–677.

    PubMed  CAS  Google Scholar 

  120. Argyropoulos G, Harper ME. Uncoupling proteins and thermoregulation. J Appl Physiol 2002;92:2187–2198.

    PubMed  CAS  Google Scholar 

  121. Cassard-Doulcier AM, Bouillaud F, Chagnon M, et al. The Bcl I polymorphism of the human uncoupling protein (ucp) gene is due to a point mutation in the 5′-flanking region. Int J Obes Relat Metab Disord 1996;20:278–279.

    PubMed  CAS  Google Scholar 

  122. Clement K, Ruiz J, Cassard-Doulcier AM, et al. Additive effect of A → G (−3826) variant of the uncoupling protein gene and the Trp64Arg mutation of the beta 3-adrenergic receptor gene on weight gain in morbid obesity. Int J Obes Relat Metab Disord 1996;20:1062–1066.

    PubMed  CAS  Google Scholar 

  123. Shihara N, Yasuda K, Moritani T, et al. Synergistic effect of polymorphisms of uncoupling protein 1 and beta3-adrenergic receptor genes on autonomic nervous system activity. Int J Obes Relat Metab Disord 2001;25:761–766.

    Article  PubMed  CAS  Google Scholar 

  124. Matsushita H, Kurabayashi T, Tomita M, Kato N, Tanaka K. Effects of uncoupling protein 1 and beta3-adrenergic receptor gene polymorphisms on body size and serum lipid concentrations in Japanese women. Maturitas 2003;45:39–45.

    Article  PubMed  CAS  Google Scholar 

  125. Walder K, Norman RA, Hanson RL, et al. Association between uncoupling protein polymorphisms (UCP2-UCP3) and energy metabolism/obesity in Pima Indians. Hum Mol Genet 1998;7:1431–1435.

    Article  PubMed  CAS  Google Scholar 

  126. Widen E, Lehto M, Kanninen T, Walston J, Shuldiner AR, Groop LC. Association of a polymorphism in the beta 3-adrenergic-receptor gene with features of the insulin resistance syndrome in Finns. N Engl J Med 1995;333:348–351.

    Article  PubMed  CAS  Google Scholar 

  127. Clement K, Manning BS, Basdevant A, Strosberg AD, Guy-Grand B, Froguel P. Gender effect of the Trp64Arg mutation in the beta 3 adrenergic receptor gene on weight gain in morbid obesity. Diabetes Metab 1997;23:424–427.

    PubMed  CAS  Google Scholar 

  128. Oizumi T, Daimon M, Saitoh T, et al. Funagata Diabetes Study. Genotype Arg/Arg, but not Trp/Arg, of the Trp64Arg polymorphism of the beta(3)-adrenergic receptor is associated with type 2 diabetes and obesity in a large Japanese sample. Diabetes Care 2001;24:1579–1583.

    PubMed  CAS  Google Scholar 

  129. Gagnon J, Mauriege P, Roy S, et al. The Trp64Arg mutation of the beta3 adrenergic receptor gene has no effect on obesity phenotypes in the Quebec Family Study and Swedish Obese Subjects cohorts. J Clin Invest 1996;98:2086–2093.

    PubMed  CAS  Google Scholar 

  130. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic association studies. Genet Med 2002;4:45–61.

    Article  PubMed  CAS  Google Scholar 

  131. Risch NJ. Searching for genetic determinants in the new millennium. Nature 2000;405:847–856.

    Article  PubMed  CAS  Google Scholar 

  132. Cardon LR, Bell JI. Association study designs for complex diseases. Nat Rev Genet 2001;2:91–99.

    Article  PubMed  CAS  Google Scholar 

  133. Deng HW, Lai DB, Conway T, et al. Characterization of genetic and lifestyle factors for determining variation in body mass index, fat mass, percentage of fat mass, and lean mass. J Clin Densitom 2001a;4:353–361.

    Article  PubMed  CAS  Google Scholar 

  134. Deng HW, Li J, Recker RR. LOD score exclusion analyses for candidate genes using random population samples. Ann Hum Genet 2001b;65 (Pt 3):313–329.

    Article  PubMed  CAS  Google Scholar 

  135. Cooper DN, Nussbaum RL, Krawczak M. Proposed guidelines for papers describing DNA polymorphism-disease associations. Hum Genet 2002;110:207–208.

    Article  PubMed  CAS  Google Scholar 

  136. Blangero J, Almasy L. Multipoint oligogenic linkage analysis of quantitative traits. Genet Epidemiol 1997;14:959–964.

    Article  PubMed  CAS  Google Scholar 

  137. Elbein SC. Perspective: The search for genes for type 2 diabetes in the post-genome era. Endocrinology 2002;143:2012–2018.

    Article  PubMed  CAS  Google Scholar 

  138. Dyer TD, Blangero J, Williams JT, Goring HH, Mahaney MC. The effect of pedigree complexity on quantitative trait linkage analysis. Genet Epidemiol 2001;21(Suppl 1):S236–S243.

    PubMed  Google Scholar 

  139. Comuzzie AG, Hixson JE, Almasy L, et al. A major quantitative trait locus determining serum leptin levels and fat mass is located on human chromosome 2. Nat Genet 1997;15:273–276.

    Article  PubMed  CAS  Google Scholar 

  140. Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 1998;62:1198–1211.

    Article  PubMed  CAS  Google Scholar 

  141. Hager J, Dina C, Francke S, et al. A genome-wide scan for human obesity genes reveals a major susceptibility locus on chromosome 10. Nat Genet 1998;20:304–308.

    Article  PubMed  CAS  Google Scholar 

  142. Rotimi CN, Comuzzie AG, Lowe WL, Luke A, Blangero J, Cooper RS. The quantitative trait locus on chromosome 2 for serum leptin levels is confirmed in African-Americans. Diabetes 1999;48:643–644.

    PubMed  CAS  Google Scholar 

  143. Mitchell BD, Cole SA, Comuzzie AG. A major quantitative trait locus on chromosome 17 is linked to body mass index in Mexican Americans. Circulation 1989;98(Suppl):459.

    Google Scholar 

  144. Mitchell BD, Cole SA, Comuzzie AG, et al. A quantitative trait locus influencing BMI maps to the region of the beta-3 adrenergic receptor. Diabetes 1999;48:1863–1867.

    PubMed  CAS  Google Scholar 

  145. Martin LJ, Cole SA, Hixson JE, et al. Genotype by smoking interaction for leptin levels in the San Antonio Family Heart Study. Genet Epidemiol 2002;22:105–115.

    Article  PubMed  Google Scholar 

  146. Ouchi N, Kihara S, Funahashi T, Matsuzawa Y, Walsh K. 2003. Obesity, adiponectin and vascular inflammatory disease. Curr Opin Lipidol 2003;14:561–566.

    Article  PubMed  CAS  Google Scholar 

  147. Stefan N, Stumvoll M, Vozarova B, et al. Plasma adiponectin and endogenous glucose production in humans. Diabetes Care 2003;26:3315–3319.

    PubMed  CAS  Google Scholar 

  148. Vionnet N, Hani El-H, Dupont S, et al. Genomewide search for type 2 diabetes-susceptibility genes in French whites: Evidence for a novel susceptibility locus for earlyonset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am J Hum Genet 2000;67:1470–1480.

    Article  PubMed  CAS  Google Scholar 

  149. Duggirala R, Almasy L, Blangero J, et al. and American Diabetes Association GENNID Study Group. Further evidence for a type 2 diabetes susceptibility locus on chromosome 11q. Genet Epidemiol 2003;24:240–242.

    Article  PubMed  Google Scholar 

  150. Stone S, Abkevich V, Hunt SC, et al. A major predisposition locus for severe obesity at 4p15-p14. Am J Hum Genet 2002;70(6):1459–1468.

    Article  PubMed  CAS  Google Scholar 

  151. Syvanen AC. Accessing genetic variation: Genotyping single nucleotide polymorphisms. Nat Rev Genet 2001;2:930–942.

    Article  PubMed  CAS  Google Scholar 

  152. Deng HW, Chen WM, Recker RR. QTL fine mapping by measuring and testing for Hardy-Weinberg and linkage disequilibrium at a series of linked marker loci in extreme samples of populations. Am J Hum Genet 2000;66:1027–1045.

    Article  PubMed  CAS  Google Scholar 

  153. Bahring S, Aydin A, Luft FC. The study of gene polymorphisms. How complex is complex genetic disease? Methods Mol Med 2003;86:221–235.

    PubMed  Google Scholar 

  154. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 1999;22:139–144.

    Article  PubMed  CAS  Google Scholar 

  155. Jorde LB. Linkage disequilibrium and the search for complex disease genes. Genome Res 2000;10:1435–1444.

    Article  PubMed  CAS  Google Scholar 

  156. Gibbs RA, Belmont JW, Hardenbol P, et al. The International HapMap Project. Nature 2003;426:789–796.

    Article  CAS  Google Scholar 

  157. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype structure in the human genome. Nat Genet 2001;29:229–232.

    Article  PubMed  CAS  Google Scholar 

  158. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science 2002;296:2225–2229.

    Article  PubMed  CAS  Google Scholar 

  159. Cardon LR, Abecasis GR. Using haplotype blocks to map human complex trait loci. Trends Genet 2003;19:135–140.

    Article  PubMed  CAS  Google Scholar 

  160. Horikawa Y, Oda N, Cox NJ, et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2000;26:163–175.

    Article  PubMed  CAS  Google Scholar 

  161. Abecasis GR, Noguchi E, Heinzmann A, et al. Extent and distribution of linkage disequilibrium in three genomic regions. Am J Hum Genet 2001;68:191–197.

    Article  PubMed  CAS  Google Scholar 

  162. Reich DE, Cargill M, Bolk S, et al. Linkage disequilibrium in the human genome. Nature 2001;411:199–204.

    Article  PubMed  CAS  Google Scholar 

  163. Couzin J. Genomics. New mapping project splits the community. Science 2002;296:1391–1393.

    Article  PubMed  CAS  Google Scholar 

  164. Cox LA, Birnbaum S, VandeBerg JL. Identification of candidate genes regulating HDL cholesterol using a chromosomal region expression array. Genome Res 2002;12:1693–1702.

    Article  PubMed  CAS  Google Scholar 

  165. Burgess JK. Gene expression studies using microarrays. Clin Exp Pharmacol Physiol 2001;28:321–328.

    Article  PubMed  CAS  Google Scholar 

  166. Walder KR, Fahey RP, Morton GJ, Zimmet PZ, Collier GR. Characterization of obesity phenotypes in Psammomys obesus (Israeli sand rats). Int J Exp Diabetes Res 2000b;1:177–184.

    PubMed  CAS  Google Scholar 

  167. Walder K, Kantham L, McMillan JS, et al. Tanis: A link between type 2 diabetes and inflammation? Diabetes 2002a;51:1859–1866.

    PubMed  CAS  Google Scholar 

  168. Gao Y, Walder K, Sunderland T, et al. Elevation in Tanis expression alters glucose metabolism and insulin sensitivity in H4IIE cells. Diabetes 2003;52:929–934.

    PubMed  CAS  Google Scholar 

  169. Collier GR, McMillan JS, Windmill K, et al. Beacon: A novel gene involved in the regulation of energy balance. Diabetes 2000;49:1766–1771.

    PubMed  CAS  Google Scholar 

  170. Sainsbury A, Cooney GJ, Herzog H. Hypothalamic regulation of energy homeostasis. Best Pract Res Clin Endocrinol Metab 2002;16:623–637.

    Article  PubMed  CAS  Google Scholar 

  171. Morwessel NJ. The genetic basis of diabetes mellitus. AACN Clin Issues 1998;9:539–554.

    Article  PubMed  CAS  Google Scholar 

  172. Cheverud JM, Vaughn TT, Pletscher LS, et al. Genetic architecture of adiposity in the cross of LG/J and SM/J inbred mice. Mamm Genome 2001;12:3–12.

    Article  PubMed  CAS  Google Scholar 

  173. Walder K, Ziv E, Kalman R, et al. Elevated hypothalamic beacon gene expression in Psammomys obesus prone to develop obesity and type 2 diabetes. Int J Obes Relat Metab Disord 2002b;26:605–609.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bastarrachea, R.A., Kent, J.W., Williams, J.T., Cai, G., Cole, S.A., Comuzzie, A.G. (2006). The Genetic Contribution to Obesity. In: Bray, G.A., Ryan, D.H. (eds) Overweight and the Metabolic Syndrome. Endocrine Updates, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-32164-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-32164-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32163-9

  • Online ISBN: 978-0-387-32164-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics