Skip to main content

Neurobiology and Complex Biosystem Modeling

  • Chapter
Complex Systems Science in Biomedicine
  • 1929 Accesses

Abstract

This chapter gives a brief summary of techniques for modeling neural tissue as a complex biosystem at the cellular, synaptic, and network levels. A sampling of the most often studied neuronal models with some of their salient characteristics is presented, ranging from the abstract rate-coded cell through the integrate-and-fire point neuron to the multicompartment neuron with a full range of ionic conductances. An indication is given of how the choice of a particular model will be determined by the interplay of prior knowledge about the system in question, the hypotheses being tested, and purely practical computational constraints. While interest centers on the more mature art of modeling functional aspects of neuronal systems as anatomically static, but functionally plastic adult structures, in a concluding section we look to near-future developments that may in principle allow network models to reflect the influence of mechanical, metabolic, and extrasynaptic signaling properties of both neurons and glia as the nervous system develops, matures, and perhaps suffers from disease processes. These comments will serve as an introduction to techniques for modeling tumor growth and other abnormal aspects of nervous system function that are covered in later chapters of this book (Part III, ยง6). Through the use of complex-systems modeling techniques, bringing together information that often in the past has been studied in isolation within particular subdisciplines of neuro- and developmental biology, one can hope to gain new insight into the interplay of genetic programs and the multitude of environmental factors that together control neural systems development and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. Reeke Jr GN, 1992. Neural net and neuronal nets: how much like the nervous system should a model be? In Neuropsychology: the neuronal basis of cognitive function, pp. 15โ€“27. Ed. E Costa, KW Brocklehurst. Thieme Medical, New York.

    Google Scholarย 

  2. Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol Lond 117:500โ€“544.

    PubMedย  CASย  Google Scholarย 

  3. Kandel ER, Schwartz JH, Jessel TM. 1991. Principles of neural science, 3rd ed. Elsevier, New York.

    Google Scholarย 

  4. Knight BW, Toyoda JI, Dodge Jr, FA. 1970. A quantitative description of the dynamics of excitation and inhibition in the eye of Limulus. J Gen Physiol 56:421โ€“437.

    Articleย  PubMedย  CASย  Google Scholarย 

  5. Poznanski, RR, Bell J. 2000. Theoretical analysis of the amplification of synaptic potentials by small clusters of persistent sodium channels in dendrites. Math Biosci 166:123โ€“147.

    Articleย  PubMedย  CASย  Google Scholarย 

  6. Poznanski RR, Bell J. 2000. A dendritic cable model for the amplification of synaptic potentials by an ensemble average of persistent sodium channels. Math Biosci 166:101โ€“121.

    Articleย  PubMedย  CASย  Google Scholarย 

  7. Poznanski RR. 1988. Membrane voltage changes in passive dendritic trees: a tapering equivalent cylinder model. IMA J Math Appl Med Biol 5:113โ€“145.

    Articleย  PubMedย  CASย  Google Scholarย 

  8. Reeke GN, Poznanski RR, Lindsay K, Rosenberg J, Sporns O, eds. 2005. Modeling in the neurosciences, 2nd ed. CRC Press, Boca Raton, FL.

    Google Scholarย 

  9. Rall W, Agmon-Snir H. 1998. Cable theory for dendritic neurons. In Methods in neuronal modeling: from ions to networks, 2nd ed., pp. 27โ€“92. Ed CI Koch, I Segev. MIT Press, Cambridge.

    Google Scholarย 

  10. Segev I, Burke R. 1998. Compartmental models of complex neurons. In Methods in neuronal modeling: from ions to networks, 2nd ed., pp. 93โ€“136. MIT Press, Cambridge.

    Google Scholarย 

  11. De Schutter E, Bower JM. 1994. An active membrane model of the cerebellar Purkinje cell, I: simulation of current clamps in slice. J Neurophysiol 70:375โ€“400.

    Google Scholarย 

  12. De Schutter E, Bower JM. 1994. An active membrane model of the cerebellar Purkinje cell, II: simulation of synaptic responses. J Neurophysiol 70:401โ€“419.

    Google Scholarย 

  13. FitzHugh R. 1961. Impulses and physiological states in models of nerve membrane. Biophys J 1:445โ€“466.

    PubMedย  Google Scholarย 

  14. Nagumo JS, Arimato S, Yoshizawa S. 1962. An active pulse transmission line simulating a nerve axon. Proc IRE 50:2061โ€“2070.

    Articleย  Google Scholarย 

  15. Ermentrout GB, Chow CC. 2002. Modeling neural oscillations. Physiol Behav 77:629โ€“633.

    Articleย  PubMedย  CASย  Google Scholarย 

  16. Reich DS, Victor JD, Knight BW, Ozaki T,, Kaplan E. 1997. Response variability and timing precision of neuronal spike trains in vivo. J Neurophysiol 77:2836โ€“2841.

    PubMedย  CASย  Google Scholarย 

  17. Adrian ED. 1926. The impulses produced by sensory nerve endings. J Physiol (Lond) 61:49โ€“72.

    CASย  Google Scholarย 

  18. McClelland JL, Rumelhart DE, PDP Research Group. 1986. Parallel distributed processing: explorations in the microstructure of cognition, Vol. 2: Psychological and biological models. MIT Press, Cambridge.

    Google Scholarย 

  19. Rumelhart DE, McClelland JL, PDP Research Group. 1986. Parallel distributed processing: explorations in the microstructure of cognition, Vol. 1: Foundations. MIT Press, Cambridge.

    Google Scholarย 

  20. Mainen ZF, Sejnowski TJ. 1995. Reliability of spike timing in neocortical neurons. Science 268:1503โ€“1506.

    Articleย  PubMedย  CASย  Google Scholarย 

  21. Shadlen MN, Newsome WT. 1998. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18:3870โ€“3896.

    PubMedย  CASย  Google Scholarย 

  22. Maass W, Bishop CM, eds. 1999. Pulsed neural networks. MIT Press, Cambridge.

    Google Scholarย 

  23. Shannon CE. 1948. A mathematical theory of communication. Bell Syst Tech J 27:379โ€“423, 623โ€“656.

    Google Scholarย 

  24. Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W. 1997. Spikes: exploring the neural code. MIT Press, Cambridge.

    Google Scholarย 

  25. Reeke GN, Coop AD. 2004. Estimating the temporal interval entropy of neuronal discharge. Neural Comput 16:941โ€“970.

    Articleย  PubMedย  Google Scholarย 

  26. Grammont F, Riehle A. 2003. Spike synchronization and firing rate in a population of motor cortical neurons in relation to movement direction and reaction time. Biol Cybern 88:360โ€“373.

    Articleย  PubMedย  CASย  Google Scholarย 

  27. Svirskis G, Hounsgaard J. 2003. Influence of membrane properties on spike synchronization in neurons: theory and experiments. Netw-Comput Neural Syst 14:747โ€“763.

    Articleย  Google Scholarย 

  28. Baldissera F, Gustafsson B. 1971. Regulation of repetitive firing in motoneurones by the afterhyperpolarization conductance. Brain Res 30:431โ€“434.

    Articleย  PubMedย  CASย  Google Scholarย 

  29. Williams SR, Christensen SR, Stuart GJ, Hรคusser M. 2002. Membrane potential bistability is controlled by the hyperpolarization-activated current I(H) in rat cerebellar Purkinje neurons in vitro. J Physiol 539:469โ€“483.

    Articleย  PubMedย  CASย  Google Scholarย 

  30. Racine RJ, Milgram NW. 1983. Short-term potentiation phenomena in the rat limbic forebrain. Brain Res 260:201โ€“216.

    Articleย  PubMedย  CASย  Google Scholarย 

  31. Sokolov MV, Rossokhin AV, Behnisch T, Reymann KG, Voronin LL. 1998. Interaction between paired-pulse facilitation and long-term potentiation of minimal excitatory postsynaptic potentials in rat hippocampal slices: a patch-clamp study. Neuroscience 85:1โ€“13.

    Articleย  PubMedย  CASย  Google Scholarย 

  32. Bi GQ, Poo MM. 1998. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464โ€“10472.

    PubMedย  CASย  Google Scholarย 

  33. Song S, Miller KD, Abbott LF. 2000. Competitive Hebbian learning through spike-timingdependent synaptic plasticity. Nature Neurosci 3:919โ€“926.

    Articleย  PubMedย  CASย  Google Scholarย 

  34. Coop AD, Reeke Jr GN. 2001. The composite neuron: a realistic one-compartment Purkinje cell model suitable for large-scale neuronal network simulations. J Comput Neurosci 10:173โ€“186.

    Articleย  PubMedย  CASย  Google Scholarย 

  35. Izhikevich EM. 2001. Resonate-and-fire neurons. Neural Netw 14:883โ€“894.

    Articleย  PubMedย  CASย  Google Scholarย 

  36. Anderson JA, Rosenfeld E, eds. 1988. Neurocomputing: foundations of research. MIT Press, Cambridge.

    Google Scholarย 

  37. Rosenblatt F. 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65:386โ€“408.

    Articleย  PubMedย  CASย  Google Scholarย 

  38. Widrow B. 1964. Pattern recognition and adaptive control. Appl Ind, pp. 269โ€“277.

    Google Scholarย 

  39. Minsky ML, Papert SA. 1988. Perceptrons, 2nd ed. MIT Press, Cambridge.

    Google Scholarย 

  40. Churchland PS, Sejnowski TJ. 1992. The computational brain. MIT Press, Cambridge.

    Google Scholarย 

  41. Dayan P, Abbott LF. 2001. Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge.

    Google Scholarย 

  42. Traub RD, Miles R. 1991. Neural networks of the hippocampus. Cambridge UP, Cambridge.

    Google Scholarย 

  43. Tagamets MA, Horwitz B. 1998. Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cerebral Cortex 8:310โ€“320.

    Articleย  PubMedย  CASย  Google Scholarย 

  44. Arbib MA, Billard A, Iacoboni M,, Oztop E. 2000. Synthetic brain imaging: grasping, mirror neurons and imitation. Neural Netw 13:975โ€“997.

    Articleย  PubMedย  CASย  Google Scholarย 

  45. Werbos P. 1974. Beyond regression: new tools for prediction and analysis in the behavioral sciences. Ph.D. dissertation. Harvard University, Cambridge.

    Google Scholarย 

  46. Zipser D. 1986. Biologically plausible models of place recognition and goal location. In Parallel distributed processing, II: psychological and biological models, Vol. 2, pp. 432โ€“470. Ed. JL McClelland, DE Rumelhart, PDP Research Group. MIT Press, Cambridge.

    Google Scholarย 

  47. Zipser D. 1990. Modeling cortical computation with backpropagation. In Neuroscience and connectionist theory, pp. 355โ€“383. Ed. MA Gluck, DE Rumelhart. Lawrence Erlbaum Associates, Hillsdale, NJ.

    Google Scholarย 

  48. Hebb DO. 1949. The organization of behavior: a neuropsychological theory. Wiley, New York.

    Google Scholarย 

  49. Bliss TV, Lomo T. 1973. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331โ€“356.

    PubMedย  CASย  Google Scholarย 

  50. Lynch MA. 2004. Long-term potentiation and memory. Physiol Rev 84:87โ€“136.

    Articleย  PubMedย  CASย  Google Scholarย 

  51. Abraham WC, Williams JM. 2003. Properties and mechanisms of LTP maintenance. Neuroscientist 9:463โ€“474.

    Articleย  PubMedย  CASย  Google Scholarย 

  52. Christie BR, Kerr DS, Abraham WC. 1994. Flip side of synaptic plasticity: long-term depression mechanisms in the hippocampus. Hippocampus 4:127โ€“135.

    Articleย  PubMedย  CASย  Google Scholarย 

  53. Artola A, Brรถcher S,, Singer W. 1990. Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex [comment]. Nature 347:69โ€“72.

    Articleย  PubMedย  CASย  Google Scholarย 

  54. Bienenstock EL, Cooper LN, Munro PW. 1982. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32โ€“48.

    PubMedย  CASย  Google Scholarย 

  55. Edelman GM. 1987. Neural Darwinism: the theory of neuronal group selection. Basic Books, New York.

    Google Scholarย 

  56. Edelman GM. 1989. The remembered present: a biological theory of consciousness. Basic Books, New York.

    Google Scholarย 

  57. Reeke Jr GN, Sporns O, Edelman GM. 1990. Synthetic neural modeling: the โ€œDarwinโ€ series of automata. Proc IEEE 78:1498โ€“1530.

    Articleย  Google Scholarย 

  58. Friston KJ, Tononi G, Reeke Jr GN, Sporns O,, Edelman GM. 1994. Value-dependent selection in the brain: simulation in a synthetic neural model. Neuroscience 59:229โ€“243.

    Articleย  PubMedย  CASย  Google Scholarย 

  59. Edelman GM, Reeke Jr GN, Gall WE, Tononi G, Williams D, Sporns O. 1992. Synthetic neural modeling applied to a real-world artifact. Proc Natl Acad Sci USA 89:7267โ€“7271.

    Articleย  PubMedย  CASย  Google Scholarย 

  60. Krichmar JL, Edelman GM. 2002. Machine psychology: autonomous behavior, perceptual categorization and conditioning in a brain-based device. Cerebral Cortex 12:818โ€“830.

    Articleย  PubMedย  Google Scholarย 

  61. Minsky ML. 1961. Steps toward artificial intelligence. Proc Inst Radio Engineers 49:8โ€“30.

    Google Scholarย 

  62. Sutton RS, Barto AG. 1998. Reinforcement learning. MIT Press, Cambridge.

    Google Scholarย 

  63. Sakai K, Sajda P, Yen SC, Finkel LH. 1997. Coarse-grain parallel computing for very large scale neural simulations in the NEXUS simulation environment. Comput Biol Med 27:257โ€“266.

    Articleย  PubMedย  CASย  Google Scholarย 

  64. Bower JM, Beeman J. 1993. The book of Genesis. Springer Berlin.

    Google Scholarย 

  65. Goddard NH, Hucka M, Howell F, Cornelis H, Shankar K, Beeman D. 2001. Towards NeuroML: model description methods for collaborative modelling in neuroscience. Phil Trans Roy Soc London B Biol Sci 356:1209โ€“1228.

    Articleย  CASย  Google Scholarย 

  66. Hines ML, Carnevale NT. 2001. NEURON: a tool for neuroscientists. Neuroscientist 7:123โ€“135.

    PubMedย  CASย  Google Scholarย 

  67. Reeke Jr GN, Edelman GM. 1987. Selective neural networks and their implications for recognition automata. Int J Supercomput Appl 1:44โ€“69.

    Google Scholarย 

  68. Mascagni MV, Sherman AS. 1998. Numerical methods in neuronal modeling. In Methods in neuronal modeling: from ions to networks, 2nd ed., pp. 569โ€“606. Ed. S Koch, I Segev. MIT Press, Cambridge.

    Google Scholarย 

  69. Borg-Graham LJ. 2000. Additional efficient computation of branched nerve equations: adaptive time step and ideal voltage clamp. J Comput Neurosci 8:209โ€“226.

    Articleย  PubMedย  CASย  Google Scholarย 

  70. Manor Y, Gonczarowski J, Segev I. 1991. Propagation of action potentials along complex axonal trees: model and implementation. Biophys J 60:1411โ€“1423.

    Articleย  PubMedย  CASย  Google Scholarย 

  71. Kansal AR, Torquato S, Harsh GRI, Chiocca EA, Deisboeck TS. 2000. Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J Theor Biol 203:367โ€“382.

    Articleย  PubMedย  CASย  Google Scholarย 

  72. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. 2002. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341โ€“355.

    Articleย  PubMedย  CASย  Google Scholarย 

  73. Eisenberg D, Crothers D. 1979. Physical chemistry with applications to the life sciences. Benjamin/Cummings, Menlo Park, CA.

    Google Scholarย 

  74. Gally JA, Montague PR, Reeke Jr GN, Edelman GM. 1990. The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Natl Acad Sci USA 87:3547โ€“3551.

    Articleย  PubMedย  CASย  Google Scholarย 

  75. Stamatakos GS, Zacharaki EI, Makropoulou MI, Mouravliansky NA, Marsh A, Nikita KS, Uzunoglu NK. 2001. Modeling tumor growth and irradiation response in vitro-a combination of high-performance computing and web-based technologies including VRML visualization. IEEE Trans Inf Technol Biomed 5:279โ€“289.

    Articleย  PubMedย  CASย  Google Scholarย 

  76. Wasserman R, Acharya R, Sibata C, Shin KH. 1996. A patient-specific in vivo tumor model. Math Biosci 136:111โ€“140.

    Articleย  PubMedย  CASย  Google Scholarย 

  77. Koch C, Segev I, eds. 1998. Methods in neuronal modeling: from ions to networks, 2nd ed. MIT Press, Cambridge.

    Google Scholarย 

  78. Llinรกs R, Sugimori M. 1980. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol (London) 305:171โ€“195.

    Google Scholarย 

  79. De Schutter E, Bower JM. 1994. An active membrane model of the cerebellar Purkinje cell, II: simulation of synaptic responses. J Neurophysiol 71:401โ€“419.

    PubMedย  Google Scholarย 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George N. Reeke Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

ยฉ 2006 Springer Inc.

About this chapter

Cite this chapter

Reeke, G.N. (2006). Neurobiology and Complex Biosystem Modeling. In: Deisboeck, T.S., Kresh, J.Y. (eds) Complex Systems Science in Biomedicine. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33532-2_20

Download citation

Publish with us

Policies and ethics