Skip to main content

Relativistic Laser–Atom Physics

  • Chapter
Strong Field Laser Physics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 134))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a constant amplitude field \(E(t) = E_{0} \sin(\omega t)\), one has \(I_{L} = \frac{1}{2}\sqrt{\frac{\epsilon_{0}}{\mu_{0}}}|E_{0}|^2\).The fictitious intensity associated to the atomic unit of electric field strength \(E_{\rm at} = \frac{e}{(4\pi\epsilon_{0})a_{b}^2}\) experienced by an electron on the first Bohr orbit in hydrogen is \({ I_{\rm at} \approx 3.5\times 10^{+16}\ {\rm W\ cm}^{-2}}\).

  2. 2.

    See note 1.

  3. 3.

    For a laser field from a Nd:Yag laser with photon energy \(\hbar \omega \approx 1.17\ {\rm eV}\) and intensity \(I = 10^{18}\ {\rm W\ cm}^{-2}\), the ponderomotive energy \(U_{\rm p} \approx 105\ {\rm keV}\).

  4. 4.

    For a laser field from a Nd:Yag laser with photon energy \(\hbar \omega \approx 1.17\ {\rm eV}\) and intensity \(I = 10^{18}\ {\rm W\ cm}^{-2}\), the number N of photons contained in a \(V = \lambda^3\) coherence volume (with \(\lambda = 1.06\ \upmu {\rm m}\)) is \(N = \frac{I\:V}{c\:\hbar\omega} \approx 2 \times 10^{14}\).

  5. 5.

    The relevant time scale in the relativistic domain is the natural unit of time: \(t_{0} = \frac {\hbar}{mc^2} \approx 1.29 \times 10^{-21}\ {\rm s}\), associated to the inverse of the electon’s rest mass energy. In order to describe processes induced by an infrared laser, one has to propagate the solutions over several cycles with durations in the femtosecond range, corresponding to propagation times \(\tau \geq 10^7 \times t_{0}\).

  6. 6.

    See note 5.

  7. 7.

    See note 5.

References

  1. M.D. Perry and G. Mourou: Science, 264, 917 (1994)

    ADS  Google Scholar 

  2. G.A. Mourou, C.P.J. Barty and M.D. Perry: Phys. Today, 51, 22 (1998)

    ADS  Google Scholar 

  3. T. Tajima and G.A. Mourou: Phys. Rev. Special Topics-Accelerators and Beams, 5, 031301 (2002)

    ADS  Google Scholar 

  4. D.M. Volkov: Z. Phys. 94, 250 (1935)

    MATH  ADS  Google Scholar 

  5. J. San Roman, L. Plaja end L. Roso: Phys. Rev. A 64, 063402 (2001)

    Google Scholar 

  6. L.S. Brown and T.W.B. Kibble: Phys. Rev. 133, A705 (1964)

    ADS  Google Scholar 

  7. O. von Roos: Phys. Rev. 135, A43 (1964)

    Google Scholar 

  8. Z. Fried and J.H. Eberly: Phys. Rev. 136, B871 (1964)

    MathSciNet  ADS  Google Scholar 

  9. T.W.B. Kibble: Phys. Rev. 150, 1060 (1966)

    ADS  Google Scholar 

  10. E.S. Sarachik and G.T. Schappert: Phys. Rev. D 1, 2738 (1970)

    ADS  Google Scholar 

  11. M. Protopapas, C.H. Keitel and P.L. Knight: Rep. Prog. Phys. 60, 389 (1997)

    ADS  Google Scholar 

  12. C.J. Joachain, M. Dörr and N. Kylstra: Adv. At. Mol. Opt. Phys. 42, 225 (2000)

    Google Scholar 

  13. Y.I. Salamin, S.X. Hu, K.Z. Hatsagortsyan and C. Keitel: Phys. Rep. 427, 41 (2006)

    ADS  Google Scholar 

  14. A. Maquet and R. Grobe: J. Mod. Optics 49 2001 (2002)

    Google Scholar 

  15. C. Bula et al.: Phys. Rev. Lett. 76, 3116 (1996)

    ADS  Google Scholar 

  16. D.L. Burke et al.: Phys. Rev. Lett. 79, 1626 (1997)

    ADS  Google Scholar 

  17. C. Bamber et al.: Phys. Rev. D 60, 092004 (1999)

    ADS  Google Scholar 

  18. C.I. Moore, J.P. Knauer and D. Meyerhofer: Phys. Rev. Lett. 74, 2439 (1995)

    ADS  Google Scholar 

  19. D. Meyerhofer et al.: J. Opt. Soc. Am. B, 13, 113 (1996)

    ADS  Google Scholar 

  20. S.J. McNaught, J.P. Knauer and D. Meyerhofer: Phys. Rev. Lett. 78, 626 (1997)

    ADS  Google Scholar 

  21. S.J. McNaught, J.P. Knauer and D. Meyerhofer: Phys. Rev. A 58, 1399 (1998)

    ADS  Google Scholar 

  22. S-Y Chen, A. Maksimchuk and D. Umstadter: Nature 396, 653 (1998)

    ADS  Google Scholar 

  23. C.I. Moore et al.: Phys. Rev. Lett. 82, 1688 (1999)

    ADS  Google Scholar 

  24. R. Moshammer et al.: Phys. Rev. Lett. 84 447 (2000)

    ADS  Google Scholar 

  25. H. Maeda et al.: Phys. Rev. A 62, 035402 (2000)

    ADS  Google Scholar 

  26. E.A. Chowdury, C.P.J. Barty and B.C. Walker: Phys. Rev. A 63, 04712 (2001)

    Google Scholar 

  27. M. Lewenstein and P. Salières: this volume.

    Google Scholar 

  28. H. Reiss: J. Opt. Soc. Am. B 7, 574 (1990)

    ADS  Google Scholar 

  29. P.B. Corkum, N.H. Burnett and F. Brunel: In Atoms in Intense Laser Fields, ed. by M. Gavrila, (Academic Press, New York, 1992) pp. 109–37.

    Google Scholar 

  30. Y.I. Salamin and F.H.M. Faisal: Phys. Rev. A 55, 3678 (1997)

    ADS  Google Scholar 

  31. Y.I. Salamin and F.H.M. Faisal: Phys. Rev. A 58, 3221 (1998)

    ADS  Google Scholar 

  32. Y.I. Salamin and F.H.M. Faisal: J. Phys. A 31, 1319 (1998)

    MATH  ADS  Google Scholar 

  33. F.H.M. Faisal and Y.I. Salamin: Phys. Rev. A 60, 2505 (1999)

    ADS  Google Scholar 

  34. Y.I. Salamin and F.H.M. Faisal: Phys. Rev. A 61, 043801 (2000)

    ADS  Google Scholar 

  35. S. Banerjee, S. Sepke, R. Shah, A. Valenzuela, A. Maksimchuk and D. Umstadter: Phys. Rev. Lett. 95, 035004 (2005)

    ADS  Google Scholar 

  36. M. Dammasch, M. Dörr, U. Eichmann, E. Lenz and W. Sandner: Phys. Rev. A 64, 061402 (2001)

    ADS  Google Scholar 

  37. E. Chowdury and B.C. Walker: J. Opt. Soc. Am. B 20, 109 (2003)

    ADS  Google Scholar 

  38. K. Yamakawa, Y. Akahane, Y. Fukuda, M. Aoyama, N. Inoue, H. Ueda and T. Utsumi: Phys. Rev. Lett. 92, 123001 (2004)

    ADS  Google Scholar 

  39. A. DiChiara, S. Palaniyappan, A.F. Falkowski, E.L. Huskins and B.C. Walker: J. Phys. B 38, L183 (2005)

    ADS  Google Scholar 

  40. S. Palaniyappan, A. DiChiara, E. Chowdury, A.F. Falkowski, G. Ongadi, E.L. Huskins and B.C. Walker: Phys. Rev. Lett. 94, 243003 (2005)

    ADS  Google Scholar 

  41. V.P. Krainov and A.V. Sofronov: Phys. Rev. A 69, 015401 (2004)

    ADS  Google Scholar 

  42. N. Milosevic, V.P. Krainov and T. Brabec: Phys. Rev. Lett. 89, 193001 (2002) and references therein.

    ADS  Google Scholar 

  43. S. Palaniyappan, A. DiChiara, E. Chowdury, A.F. Falkowski, G. Ongadi, E.L. Huskins and B.C. Walker: Phys. Rev. Lett. 94, 243003 (2005)

    ADS  Google Scholar 

  44. R. Taïeb, V. Véniard and A. Maquet: Phys. Rev. Lett. 87, 053002 (2001)

    ADS  Google Scholar 

  45. A.S. Kornev, E.B. Tulenko and B.A. Zon: Phys. Rev. A 68, 043414 (2003)

    ADS  Google Scholar 

  46. E. Gubbini, U. Eichmann, M. Kalshnikov and W. Sandner: Phys. Rev. Lett. 94, 053602 (2005)

    ADS  Google Scholar 

  47. J.J. Sakurai: Advanced Quantum Mechanics, (Addison-Wesley, Reading, MS, 1967)

    Google Scholar 

  48. C. Szymanowski, V. Véniard, R. Taïeb, A. Maquet and C.H. Keitel: Phys. Rev. A 56, 3846 (1997)

    ADS  Google Scholar 

  49. P. Panek, J.Z. Kamiński and F. Ehlotzky: Can. J. Phys. 77, 591 (1999)

    ADS  Google Scholar 

  50. Y. Attaourti and B. Manaut: Phys. Rev. A 68, 067401 (2003)

    ADS  Google Scholar 

  51. Y. Attaourti, B. Manaut and S. Taj: Phys. Rev. A 70, 023404 (2004)

    ADS  Google Scholar 

  52. C. Szymanowski, R. Taïeb, and A. Maquet: Laser Phys. 8, 1 (1998)

    Google Scholar 

  53. B. Manaut, S. Taj and Y. Attaourti: Phys. Rev. A 71, 043401 (2005)

    ADS  Google Scholar 

  54. M. Gavrila: In shape Atoms in Intense Laser Fields, ed. by M. Gavrila, (Academic, New York, 1992) p. 435

    Google Scholar 

  55. M. Gavrila: J. Phys. B 35, R147 (2002)

    ADS  Google Scholar 

  56. A.M. Popov, O.V. Tikhonova and E.A. Volkova: J. Phys. B 36, R125 (2003)

    ADS  Google Scholar 

  57. J. Feldhaus and B. Sonntag: this volume.

    Google Scholar 

  58. W.B. Colson, E.D. Johnson, M.J. Kelley and H.A. Schwettman, Phys. Today 55, 35 (2002)

    ADS  Google Scholar 

  59. T. Brabec and F. Krausz: Rev. Mod. Phys. 72, 545 (2000)

    ADS  Google Scholar 

  60. P. Nickles and W. Sandner: this volume.

    Google Scholar 

  61. A. Staudt and C.H. Keitel: J. Phys. B 36, L203 (2003)

    ADS  Google Scholar 

  62. M. Protopapas, C.H. Keitel and P.L. Knight: J. Phys. B 29, L591 (1996); see also the ref. [8].

    ADS  Google Scholar 

  63. N.J. Kylstra, A.M. Ermolaev and C.J. Joachain: J. Phys. B 30, L449 (1997)

    ADS  Google Scholar 

  64. A.M. Ermolaev: J. Phys. B 31, L65 (1998)

    ADS  Google Scholar 

  65. R. Taïeb, V. Véniard and A. Maquet: Phys. Rev. Lett. 81, 2882 (1998)

    ADS  Google Scholar 

  66. N.J. Kylstra, R.A. Worthington, A. Patel, P.L. Knight, J.R. Vazquez de Aldana and L. Roso: Phys. Rev. Lett. 85, 1835 (2000)

    ADS  Google Scholar 

  67. J.R. Vazquez de Aldana, N.J. Kylstra, L. Roso, P.L. Knight, A. Patel and R.A. Worthington: Phys. Rev. A 64, 013411 (2001)

    Google Scholar 

  68. L.N. Gaier and C.H. Keitel: Phys. Rev. A 65, 023406 (2002)

    ADS  Google Scholar 

  69. S.X. Hu and T. Starace: Phys. Rev. Lett. 88, 245003 (2002)

    ADS  Google Scholar 

  70. A. Maltsev and T. Ditmire: Phys. Rev. Lett. 90, 053002 (2003)

    ADS  Google Scholar 

  71. I.Y. Dodin and N.J. Fisch: Phys. Rev. E 68, 056402 (2003)

    ADS  Google Scholar 

  72. Y.I. Salamin and C.H. Keitel: Phys. Rev. Lett. 88, 090005 (2002)

    Google Scholar 

  73. P. Agostini and L.F. DiMauro: Rep. Prog. Phys. 67, 813 (2004)

    Google Scholar 

  74. S.X. Hu, T. Starace, W. Becker, W. Sandner and D.B. Milosevic: J. Phys. B 35, 627 (2002)

    ADS  Google Scholar 

  75. C.C Chirila, C.J. Joachain, N.J. Kylstra and R.M. Potvliege: Phys. Rev. Lett. 93, 243603 (2004)

    ADS  Google Scholar 

  76. M. Klaiber, K.Z. Hatsagortsyan and C.H. Keitel: Phys. Rev. A 71, 033408 (2005)

    ADS  Google Scholar 

  77. C. Bottcher and M.R. Strayer: Ann. Phys. 175, 64 (1987)

    ADS  Google Scholar 

  78. J. Ullrich: this volume.

    Google Scholar 

  79. J.W. Braun, Q. Su and R. Grobe: Phys. Rev. A 59, 604 (1999)

    ADS  Google Scholar 

  80. L. Susskind: Phys. Rev. D 16, 3031 (1977)

    ADS  Google Scholar 

  81. R. Stacey, Phys. Rev. D 26, 468 (1982)

    MathSciNet  ADS  Google Scholar 

  82. V. Alonso, S. De Vicenzo and L. Mondino: Eur. J. Phys. 18, 315 (1997)

    Google Scholar 

  83. M. Protopapas, C.H. Keitel and P.L. Knight: J. Phys. B 29, L591 (1996)

    ADS  Google Scholar 

  84. U.W. Rathe, C.H. Keitel, M. Protopapas and P.L. Knight: J. Phys. B 30, L531 (1997)

    ADS  Google Scholar 

  85. N.J. Kylstra, A.M. Ermolaev and C.J. Joachain: J. Phys. B 30, L449 (1997)

    ADS  Google Scholar 

  86. R. Taïeb, V. Véniard and A. Maquet: Phys. Rev. Lett. 81, 2882 (1998)

    ADS  Google Scholar 

  87. A.M. Ermolaev: J. Phys. B 31, L65 (1998)

    ADS  Google Scholar 

  88. A. Melissinos: this volume.

    Google Scholar 

  89. M.W. Walser, C. Szymanowski and C.H. Keitel: Europhys. Lett. 48, 533 (1999)

    ADS  Google Scholar 

  90. M.W. Walser and C.H. Keitel: J. Phys. B 33, L221 (2000)

    ADS  Google Scholar 

  91. J. San Roman, L. Roso and L. Plaja: J. Phys. B 37, 435 (2004)

    Google Scholar 

  92. S.X. Hu and C.H. Keitel: Phys. Rev. Lett. 83, 4709 (1999)

    ADS  Google Scholar 

  93. Q. Su, P.J. Peverly, R.E. Wagner, P. Krekora and R. Grobe: Optics Express 8, 51 (2001)

    ADS  Google Scholar 

  94. P. Krekora, Q. Su and R. Grobe: J. Phys. B 34, 2795 (2001)

    ADS  Google Scholar 

  95. E. Schrödinger: Sitz. Ber. Preuss. Akad. Wiss. Physik-Math. 24, 418 (1930)

    Google Scholar 

  96. J. San Roman, L. Roso and L. Plaja: J. Phys. B 36, 2253 (2003)

    Google Scholar 

  97. P. Krekora, Q. Su and R. Grobe: Phys. Rev. Lett. 92, 040406 (2004)

    ADS  Google Scholar 

  98. P. Krekora, Q. Su and R. Grobe: Phys. Rev. Lett. 93, 043004 (2004)

    ADS  Google Scholar 

  99. P. Krekora, K. Cooley, Q. Su and R. Grobe: Laser Phys. 15, 282 (2005)

    Google Scholar 

  100. C. Szymanowski, A. Maquet and C.H. Keitel: Laser Phys. 9, 133 (1999)

    Google Scholar 

  101. J. Schliemann, D. Loss and R.M. Westerwelt: Phys. Rev. Lett. 94, 206801 (2005)

    ADS  Google Scholar 

  102. J. Schwinger Phys. Rev. 82, 664 (1951)

    Google Scholar 

  103. J. Schwinger Phys. Rev. 93, 615 (1954)

    Google Scholar 

  104. A.M. Perelomov, V.S. Popov and M.V. Terent’ev: Sov. Phys. JETP 23, 924 (1966)

    ADS  Google Scholar 

  105. A.M. Perelomov, V.S. Popov and M.V. Terent’ev: Sov. Phys. JETP 24, 207 (1967)

    ADS  Google Scholar 

  106. E. Brezin and C. Itzykson: Phys. Rev. D 2, 1191 (1970)

    ADS  Google Scholar 

  107. E.P. Liang, S.C. Wilks and M. Tabok: Phys. Rev. Lett. 81, 4887 (1998)

    ADS  Google Scholar 

  108. S.S. Bulanov: Phys. Rev. E 69, 036408 (2004)

    ADS  Google Scholar 

  109. C. Müller, A.B. Voitkiv and N. Grün: Phys. Rev. A 67, 063407 (2003)

    ADS  Google Scholar 

  110. C. Müller, A.B. Voitkiv and N. Grün: Phys. Rev. A 70, 023412 (2004)

    ADS  Google Scholar 

  111. H.K. Avetissian, A.K. Avetissian, G.F. Mkrtchian and Kh. V. Sedrakian: Phys. Rev. E 66, 016502 (2002)

    ADS  Google Scholar 

  112. A. Di Piazza: Phys. Rev. D 70, 053013 (2004)

    ADS  Google Scholar 

  113. N.B. Narozhny, SS. Bulanov, V.D. Mur and V.S. Popov: Phys. Lett. A 330, 1 (2004)

    MATH  ADS  Google Scholar 

  114. B.R. Holstein: Am. J. Phys. 66, 507 (1998)

    MathSciNet  ADS  Google Scholar 

  115. B.R. Holstein: Am. J. Phys. 67, 499 (1999)

    ADS  Google Scholar 

  116. A. Calogeracos and N. Dombey: Contemp. Phys. 40, 313 (1999)

    ADS  Google Scholar 

  117. N. Szpak: Nucl. Instr. Meth. B 205, 30 (2003)

    ADS  Google Scholar 

  118. E.J. Heller: J. Phys. Chem. A 103, 10433 (1999)

    Google Scholar 

  119. P. Salières et al.: Science 292, 902 (2001)

    ADS  Google Scholar 

  120. E.H. Hauge and J.A. Støvneng: Rev. Mod. Phys. 61, 917 (1989)

    ADS  Google Scholar 

  121. R. Landauer and T. Martin: Rev. Mod. Phys. 66, 217 (1994)

    ADS  Google Scholar 

  122. M. Büttiker and R. Landauer: Phys. Rev. Lett. 49, 1739 (1982)

    ADS  Google Scholar 

  123. J.G. Muga and C.R. Leavens: Phys. Rep. 338, 353 (2000)

    MathSciNet  ADS  Google Scholar 

  124. N. Yamada: Phys. Rev. Lett. 93, 170401 (2004)

    ADS  Google Scholar 

  125. P. Krekora, Q. Su and R. Grobe: Phys. Rev. A 63, 032107 (2001)

    ADS  Google Scholar 

  126. P. Krekora, Q. Su and R. Grobe: Phys. Rev. A 64, 022105 (2001)

    ADS  Google Scholar 

  127. R.E. Wagner, Q. Su and R. Grobe: Phys. Rev. Lett. 84, 3282 (2000)

    ADS  Google Scholar 

  128. P. Krekora, R.E. Wagner, Q. Su and R. Grobe: Phys. Rev. A 63, 25404 (2001)

    ADS  Google Scholar 

  129. Q. Su, R.E. Wagner, P.J. Peverly and R. Grobe: In Frontiers of Laser Physics and Quantum Optics, ed. by Z. Xu, S. Xie, S.-Y. Zhu and M.O. Scully, (Springer, Berlin, 2000) pp.117–123

    Google Scholar 

  130. P.J. Peverly, R.E. Wagner, Q. Su and R. Grobe: Laser Phys. 10, 303 (2000)

    Google Scholar 

  131. A. Ron et al.: Phys. Rev. A 50, 1312 (1994)

    ADS  Google Scholar 

  132. A. Maquet, V. Véniard and T.A. Marian: J. Phys. B 31, 3743 (1998)

    ADS  Google Scholar 

  133. C. Szymanowski, V. Véniard, R. Taïeb and A. Maquet: Europhys. Lett. 37, 391 (1997)

    ADS  Google Scholar 

  134. C. Szymanowski, V. Véniard, R. Taïeb and A. Maquet: Phys. Rev. A 56, 700 (1997)

    ADS  Google Scholar 

  135. V. Yakhontov: Phys. Rev. Lett. 91, 093001 (2003)

    ADS  Google Scholar 

  136. R. Szmytkowski and K. Mielewczyk: J. Phys. B 37, 3961 (2004)

    ADS  Google Scholar 

  137. J. Guo: Phys. Rev. Lett. 93, 243001 (2004)

    ADS  Google Scholar 

  138. S. Banerjee, A.R. Valenzuela, R.C. Shah, A. Maksimchuk and D. Umstadter: J. Opt. Soc. Am. B 20, 182 (2003)

    ADS  Google Scholar 

  139. W.J. Brown and F.V. Hartemann: Phys. Rev. Spec. Topics-Accel. Beams 7, 060703 (2004)

    ADS  Google Scholar 

  140. E.A. Chowdury, I. Ghebregziabiher and B.C. Walker: J. Phys. B 38, 517 (2005)

    ADS  Google Scholar 

  141. F.V. Hartemann and A.K. Kerman: Phys. Rev. Lett. 76, 624 (1996)

    ADS  Google Scholar 

  142. G.F. Efremov: Sov. Phys. JETP 87, 899 (1998)

    ADS  Google Scholar 

  143. J. Koga: Phys. Rev. E 70, 046502 (2004)

    MathSciNet  ADS  Google Scholar 

  144. C.H. Keitel, C. Szymanowski, P.L. Knight and A. Maquet: J. Phys. B, 31, L75 (1998)

    ADS  Google Scholar 

  145. F.V. Hartemann et al.: Astrophys. J. Suppl. Ser. 127, 347 (2000)

    ADS  Google Scholar 

  146. F.V. Hartemann, D.J. Gibson and A.K. Kerman: Phys. Rev. E 72, 026502 (2005)

    ADS  Google Scholar 

  147. A. Scrinzi, M. Yu. Ivanov, R. Kienberger and D.M. Villeneuve: J. Phys. B: At. Mol. Opt. Phys. 39, R1 (2006)

    Google Scholar 

Download references

Acknowledgments

Part of our work mentioned here is the result of fruitful collaborations with C.H. Keitel, P.L. Knight and C. Szymanowski. Also, we would like to acknowledge very helpful discussions with R. Grobe and C.J. Joachain.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Maquet, A., Taïeb, R., Véniard, V. (2008). Relativistic Laser–Atom Physics. In: Brabec, T. (eds) Strong Field Laser Physics. Springer Series in Optical Sciences, vol 134. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34755-4_20

Download citation

Publish with us

Policies and ethics