Skip to main content

CD28 and Cd27 Costimulation of Cd8+ T Cells: A Story of Survival

  • Conference paper
Crossroads between Innate and Adaptive Immunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 590))

Abstract

The role of costimulation in antiviral CD8+ T cells responses is becoming increasingly important as we try to develop adjuvant technologies for therapeutic or vaccine applications. Understanding how costimulation signals work and being able to harness their function to promote robust and protective immune responses is of particular interest. Much of current immunological research is addressing the many costimulatory molecules that are being discovered and characterized in order to elucidate the different mechanisms by which they work. It is becoming clear that multiple costimulation molecules are involved during the different phases of the CD8+ T cell response providing important proliferative and survival signals for these cells. The concept of T cell costimulation has evolved from the initial concept of the single CD28 second signal to an increasingly complex array of costimulation signals that involve multiple members of the B7:CD28 and TNFα/TNFR families. This review will focus on CD28 and CD27 costimulation and examine their involvement in the costimulation of CD8+ T cell responses and the role of such costimulation in the survival of activated, resting, and memory CD8+ T cells. We will also examine the importance of costimulatory-induced survival in antiviral CD8+ T cell responses.

This work was supported by NIH grant R01 AI66215 awarded to PDK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. P. Bretscher and M. Cohn. A theory of self-nonself discrimination. Science 169(950):1042–1049 (1970).

    Article  PubMed  CAS  Google Scholar 

  2. D.L. Mueller, M.K. Jenkins and R.H. Schwartz. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 7:445–480 (1989).

    PubMed  CAS  Google Scholar 

  3. F.A. Harding, J.G. McArthur, J.A. Gross, D.H. Raulet and J.P. Allison. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356(6370):607–609 (1992).

    Article  PubMed  CAS  Google Scholar 

  4. R.J. Greenwald, G.J. Freeman and A.H. Sharpe. The B7 family revisited. Annu Rev Immunol 23:515–548 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. J.L. Riley and C.H. June. The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood 105(1):13–21 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. M. Croft. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol 3(8):609–620 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. C.A. Janeway Jr. A tale of two T cells. Immunity 8(4):391–394 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. K. Laky and B.J. Fowlkes. Receptor signals and nuclear events in CD4 and CD8 T cell lineage commitment. Curr Opin Immunol 17(2):116–121 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. R.N. Germain. T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol 2(5):309–322 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. H.Y. Irie, M.S. Mong, A. Itano, M.E. Crooks, D.R. Littman, S.J. Burakoff and E. Robey. The cytoplasmic domain of CD8 beta regulates Lck kinase activation and CD8 T cell development. J Immunol 161(1):183–191 (1998).

    PubMed  CAS  Google Scholar 

  11. G. Hernandez-Hoyos, S.J. Sohn, E.V. Rothenberg and J. Alberola-Ila. Lck Activity Controls CD4/CD8 T Cell Lineage Commitment. Immunity 12(3):313 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. I. Maillard, T. Fang and W.S. Pear. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu Rev Immunol 23:945–974 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. H. von Boehmer. Notch in lymphopoiesis and T cell polarization. Nat Immunol 6(7):641–642 (2005).

    Article  CAS  Google Scholar 

  14. A. Sambandam, I. Maillard, V.P. Zediak, L. Xu, R.M. Gerstein, J.C. Aster, W.S. Pear and A. Bhandoola. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol 6(7):663–670 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. E.A. Robey and J.A. Bluestone. Notch signaling in lymphocyte development and function. Curr Opin Immunol 16(3):360–366 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. B. Varnum-Finney, L. Xu, C. Brashem-Stein, C. Nourigat, D. Flowers, S. Bakkour, W.S. Pear and I.D. Bernstein. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 6(11):1278–1281 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. D.J. Izon, J.A. Punt, L. Xu, F.G. Karnell, D. Allman, P.S. Myung, N.J. Boerth, J.C. Pui, G.A. Koretzky and W.S. Pear. Notch1 regulates maturation of CD4+ and CD8+ thymocytes by modulating TCR signal strength. Immunity 14(3):253–264 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. A. de La Coste, E. Six, N. Fazilleau, L. Mascarell, N. Legrand, M.P. Mailhe, A. Cumano, Y. Laabi and A.A. Freitas. In vivo and in absence of a thymus, the enforced expression of the Notch ligands delta-1 or delta-4 promotes T cell development with specific unique effects. J Immunol 174(5):2730–2737 (2005).

    Google Scholar 

  19. L.A. Turka, J.A. Ledbetter, K. Lee, C.H. June and C.B. Thompson. CD28 is an inducible T cell surface antigen that transduces a proliferative signal in CD3+ mature thymocytes. J Immunol 144(5):1646–1653 (1990).

    PubMed  CAS  Google Scholar 

  20. L.A. Turka, P.S. Linsley, R. d. Paine, G.L. Schieven, G.B. Thompson and J.A. Ledbetter. Signal transduction via CD4, CD8, and CD28 in mature and immature thymocytes: implications for thymic selection. J Immunol 146(5):1428–1436 (1991).

    PubMed  CAS  Google Scholar 

  21. J.A. Gross, E. Callas and J.P. Allison. Identification and distribution of the costimulatory receptor CD28 in the mouse. J Immunol 149(2):380–388 (1992).

    PubMed  CAS  Google Scholar 

  22. X. Zheng, J.-X. Gao, X. Chang, Y. Wang, Y. Liu, J. Wen, H. Zhang, J. Zhang, Y. Liu and P. Zheng. B7-CD28 interaction promotes proliferation and survival but suppresses differentiation of CD4-CD8-T cells in the thymus. J Immunol 173(4):2253–2261 (2004).

    PubMed  CAS  Google Scholar 

  23. J.A. Williams, K.S. Hathcock, D. Klug, Y. Harada, B. Choudhury, J.P. Allison, R. Abe and R.J. Hodes. Regulated costimulation in the thymus is critical for T cell development: dysregulated CD28 costimulation can bypass the pre-TCR checkpoint. J Immunol 175(7):4199–4207 (2005).

    PubMed  CAS  Google Scholar 

  24. M.S. Vacchio, J.A. Williams and R.J. Hodes. A novel role for CD28 in thymic selection: elimination of CD28/B7 interactions increases positive selection. Eur J Immunol 35(2):418–427 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. L. Gravestein, W. van Ewijk, F. Ossendorp and J. Borst. CD27 cooperates with the pre-T cell receptor in the regulation of murine T cell development. J Exp Med 184(2):675–685 (1996).

    Article  PubMed  CAS  Google Scholar 

  26. K. Tesselaar, Y. Xiao, R. Arens, G.M.W. van Schijndel, D.H. Schuurhuis, R.E. Mebius, J. Borst and R.A.W. van Lier. Expression of the murine CD27 ligand CD70 in vitro and in vivo. J Immunol 170(1):33–40 (2003).

    PubMed  CAS  Google Scholar 

  27. J. Hendriks, L.A. Gravestein, K. Tesselaar, R.A. van Lier, T.N. Schumacher and J. Borst. CD27 is required for generation and long-term maintenance of T cell immunity. Nat Immunol 1(5):433–440 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. S. Stoll, J. Delon, T.M. Brotz and R.N. Germain. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296(5574):1873–1876 (2002).

    Article  PubMed  Google Scholar 

  29. T.R. Mempel, S.E. Henrickson and U.H. Von Andrian. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427(6970):154–159 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. R.L. Lindquist, G. Shakhar, D. Dudziak, H. Wardemann, T. Eisenreich, M.L. Dustin and M.C. Nussenzweig. Visualizing dendritic cell networks in vivo. Nat Immunol 5(12):1243–1250 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. S. Hugues, L. Fetler, L. Bonifaz, J. Helft, F. Amblard and S. Amigorena. Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nat Immunol 5(12):1235–1242 (2004).

    Article  PubMed  CAS  Google Scholar 

  32. A. Lanzavecchia and F. Sallusto. Lead and follow: the dance of the dendritic cell and T cell. Nat Immunol 5(12):1201–1202 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. C.H. June, J.A. Ledbetter, M.M. Gillespie, T. Lindsten and C.B. Thompson. T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol Cell Biol 7(12):4472–4481 (1987).

    PubMed  CAS  Google Scholar 

  34. A.I. Sperling, J.A. Auger, B.D. Ehst, I.C. Rulifson, C.B. Thompson and J.A. Bluestone. CD28/B7 interactions deliver a unique signal to naive T cells that regulates cell survival but not early proliferation. J Immunol 157(9):3909–3917 (1996).

    PubMed  CAS  Google Scholar 

  35. S. Kirchhoff, W.W. Muller, M. Li-Weber and P.H. Krammer. Up-regulation of c-FLIPshort and reduction of activation-induced cell death in CD28-costimulated human T cells. Eur J Immunol 30(10):2765–2774 (2000).

    Article  PubMed  CAS  Google Scholar 

  36. K.A. Frauwirth, J.L. Riley, M.H. Harris, R.V. Parry, J.C. Rathmell, D.R. Plas, R.L. Elstrom, C.H. June and C.B. Thompson. The CD28 signaling pathway regulates glucose metabolism. Immunity 16(6):769–777 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. C.B. Thompson, T. Lindsten, J.A. Ledbetter, S.L. Kunkel, H.A. Young, S.G. Emerson, J.M. Leiden and C.H. June. CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. PNAS 86(4):1333–1337 (1989).

    Article  PubMed  CAS  Google Scholar 

  38. O. Acuto and F. Michel. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol 3(12):939–951 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. A.V. Gett, F. Sallusto, A. Lanzavecchia and J. Geginat. T cell fitness determined by signal strength. Nat Immunol 4(4):355–360 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. A.D. Wells, H. Gudmundsdottir and L.A. Turka. Following the fate of individual T cells throughout activation and clonal expansion: signals from T cell receptor and CD28 differentially regulate the induction and duration of a proliferative response. J Clin Invest 100(12):3173–3183 (1997).

    Article  PubMed  CAS  Google Scholar 

  41. H. Gudmundsdottir, A.D. Wells and L.A. Turka. Dynamics and requirements of T Cell clonal expansion in vivo at the single-cell level: effector function is linked to proliferative capacity. J Immunol 162(9):5212–5223 (1999).

    PubMed  CAS  Google Scholar 

  42. A. Shahinian, K. Pfeffer, K.P. Lee, T.M. Kundig, K. Kishihara, A. Wakeham, K. Kawai, P.S. Ohashi, C.B. Thompson and T.W. Mak. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261(5121):609–612 (1993).

    Article  PubMed  CAS  Google Scholar 

  43. T.M. Kundig, A. Shahinian, K. Kawai, H.W. Mittrucker, E. Sebzda, M.F. Bachmann, T.W. Mak and P.S. Ohashi. Duration of TCR stimulation determines costimulatory requirement of T cells. Immunity 5(1):41–52 (1996).

    Article  PubMed  CAS  Google Scholar 

  44. E.S. Halstead, Y.M. Mueller, J.D. Altman and P.D. Katsikis. In vivo stimulation of CD137 broadens primary antiviral CD8(+) T cell responses. Nat Immunol 3(6):536–541 (2002).

    Article  PubMed  CAS  Google Scholar 

  45. S.O. Andreasen, J.E. Christensen, O. Marker and A.R. Thomsen. Role of CD40 ligand and CD28 in induction and maintenance of antiviral CD8+ effector T cell responses. J Immunol 164(7):3689–3697 (2000).

    PubMed  CAS  Google Scholar 

  46. V.P. Badovinac, B.B. Porter and J.T. Harty. CD8+ T cell contraction is controlled by early inflammation. Nat Immunol 5(8):809 (2004).

    Article  PubMed  CAS  Google Scholar 

  47. G.A. Corbin and J.T. Harty. Duration of infection and antigen display have minimal influence on the kinetics of the CD4+ T cell response to Listeria monocytogenes infection. J Immunol 173(9):5679–5687 (2004).

    PubMed  CAS  Google Scholar 

  48. C. Zimmermann, P. Seiler, P. Lane and R.M. Zinkernagel. Antiviral immune responses in CTLA4 transgenic mice. J Virol 71(3):1802–1807 (1997).

    PubMed  CAS  Google Scholar 

  49. M. Kopf, A.J. Coyle, N. Schmitz, M. Barner, A. Oxenius, A. Gallimore, J.C. Gutierrez-Ramos and M.F. Bachmann. Inducible costimulator protein (ICOS) controls T helper cell subset polarization after virus and parasite infection. J Exp Med 192(1):53–61 (2000).

    Article  PubMed  CAS  Google Scholar 

  50. Y. Liu, R.H. Wenger, M. Zhao and P.J. Nielsen. Distinct costimulatory molecules are required for the induction of effector and memory cytotoxic T lymphocytes. J Exp Med 185(2):251–262 (1997).

    Article  PubMed  CAS  Google Scholar 

  51. J.K. Whitmire and R. Ahmed. Costimulation in antiviral immunity: differential requirements for CD4(+) and CD8(+) T cell responses. Curr Opin Immunol 12(4):448–455 (2000).

    Article  PubMed  CAS  Google Scholar 

  52. J. Hendriks, Y. Xiao and J. Borst. CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J Exp Med 198(9):1369–1380 (2003).

    Article  PubMed  CAS  Google Scholar 

  53. A. Yamada, A.D. Salama, M. Sho, N. Najafian, T. Ito, J.P. Forman, R. Kewalramani, S. Sandner, H. Harada, M.R. Clarkson, D.A. Mandelbrot, A.H. Sharpe, H. Oshima, H. Yagita, G. Chalasani, F.G. Lakkis, H. Auchincloss Jr. and M.H. Sayegh. CD70 signaling is critical for CD28-independent CD8+ T cell-mediated alloimmune responses in vivo. J Immunol 174(3):1357–1364 (2005).

    PubMed  CAS  Google Scholar 

  54. R. van Lier, J. Borst, T. Vroom, H. Klein, P. Van Mourik, W. Zeijlemaker and C. Melief. Tissue distribution and biochemical and functional properties of Tp55 (CD27), a novel T cell differentiation antigen. J Immunol 139(5):1589–1596 (1987).

    PubMed  Google Scholar 

  55. K. Tesselaar, R. Arens, G.M. van Schijndel, P.A. Baars, M.A. van der Valk, J. Borst, M.H. van Oers and R.A. van Lier. Lethal T cell immunodeficiency induced by chronic costimulation via CD27-CD70 interactions. Nat Immunol 4(1):49–54 (2003).

    Article  PubMed  CAS  Google Scholar 

  56. R. Arens, K. Tesselaar, P.A. Baars, G.M. van Schijndel, J. Hendriks, S.T. Pals, P. Krimpenfort, J. Borst, M.H. van Oers and R.A. van Lier. Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFNgammamediated B cell depletion. Immunity 15(5):801–812 (2001).

    Article  PubMed  CAS  Google Scholar 

  57. T.F. Rowley and A. Al-Shamkhani. Stimulation by soluble CD70 promotes strong primary and secondary CD8+ cytotoxic T cell responses in vivo. J Immunol 172(10):6039–6046 (2004).

    PubMed  CAS  Google Scholar 

  58. A. Laouar, V. Haridas, D. Vargas, X. Zhinan, D. Chaplin, R.A. van Lier and N. Manjunath. CD70+ antigen-presenting cells control the proliferation and differentiation of T cells in the intestinal mucosa. Nat Immunol 6(7):698–706 (2005).

    Article  PubMed  CAS  Google Scholar 

  59. E.M. Bertram, W. Dawicki, B. Sedgmen, J.L. Bramson, D.H. Lynch and T.H. Watts. A switch in costimulation from CD28 to 4-1BB during primary versus secondary CD8 T cell response to influenza in vivo. J Immunol 172(2):981–988 (2004).

    PubMed  CAS  Google Scholar 

  60. C.C. Ku, M. Murakami, A. Sakamoto, J. Kappler and P. Marrack. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288(5466):675–678 (2000).

    Article  PubMed  CAS  Google Scholar 

  61. X.C. Li, G. Demirci, S. Ferrari-Lacraz, C. Groves, A. Coyle, T.R. Malek and T.B. Strom. IL-15 and IL-2: a matter of life and death for T cells in vivo. Nat Med 7(1):114–118 (2001).

    Article  PubMed  CAS  Google Scholar 

  62. J.T. Tan, B. Ernst, W.C. Kieper, E. LeRoy, J. Sprent and C.D. Surh. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8(+) cells but are not required for memory phenotype CD4(+) cells. J Exp Med 195(12):1523–1532 (2002).

    Article  PubMed  CAS  Google Scholar 

  63. W.C. Kieper, J.T. Tan, B. Bondi-Boyd, L. Gapin, J. Sprent, R. Ceredig and C.D. Surh. Overexpression of interleukin (IL)-7 Leads to IL-15-independent generation of memory phenotype CD8(+) T cells. J Exp Med 195(12):1533–1539 (2002).

    Article  PubMed  CAS  Google Scholar 

  64. T.C. Becker, E.J. Wherry, D. Boone, K. Murali-Krishna, R. Antia, A. Ma and R. Ahmed. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J Exp Med 195(12):1541–1548 (2002).

    Article  PubMed  CAS  Google Scholar 

  65. A.D. Judge, X. Zhang, H. Fujii, C.D. Surh and J. Sprent. Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8(+) T cells. J Exp Med 196(7):935–946 (2002).

    Article  PubMed  CAS  Google Scholar 

  66. K.S. Schluns and L. Lefrancois. Cytokine control of memory T-cell development and survival. Nat Rev Immunol 3(4):269–279 (2003).

    Article  PubMed  CAS  Google Scholar 

  67. Y.M. Mueller, V. Makar, P.M. Bojczuk, J. Witek and P.D. Katsikis. IL-15 enhances the function and inhibits CD95/Fas-induced apoptosis of human CD4+ and CD8+ effector-memory T cells. Int Immunol 15(1):49–58 (2003).

    Article  PubMed  CAS  Google Scholar 

  68. K.S. Schluns, W.C. Kieper, S.C. Jameson and L. Lefrancois. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 1(5):426–432 (2000).

    Article  PubMed  CAS  Google Scholar 

  69. S. Jaleco, L. Swainson, V. Dardalhon, M. Burjanadze, S. Kinet and N. Taylor. Homeostasis of naive and memory CD4+ T cells: IL-2 and IL-7 differentially regulate the balance between proliferation and Fas-mediated apoptosis. J Immunol 171(1):61–68 (2003).

    PubMed  CAS  Google Scholar 

  70. E. Maraskovsky, M. Teepe, P. Morrissey, S. Braddy, R. Miller, D. Lynch and J. Peschon. Impaired survival and proliferation in IL-7 receptor-deficient peripheral T cells. J Immunol 157(12):5315–5323 (1996).

    PubMed  CAS  Google Scholar 

  71. H. Dooms, E. Kahn, B. Knoechel and A.K. Abbas. IL-2 induces a competitive survival advantage in T lymphocytes. J Immunol 172(10):5973–5979 (2004).

    PubMed  CAS  Google Scholar 

  72. S.M. Kaech and R. Ahmed. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat Immunol 2(5):415–422 (2001).

    PubMed  CAS  Google Scholar 

  73. M.J. Bevan and P.J. Fink. The CD8 response on autopilot. Nat Immunol 2(5):381–382 (2001).

    PubMed  CAS  Google Scholar 

  74. K. Murali-Krishna, J.D. Altman, M. Suresh, D.J. Sourdive, A.J. Zajac, J.D. Miller, J. Slansky and R. Ahmed. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8(2):177–187 (1998).

    Article  PubMed  CAS  Google Scholar 

  75. S. Hou, L. Hyland, K.W. Ryan, A. Portner and P.C. Doherty. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369(6482):652–654 (1994).

    Article  PubMed  CAS  Google Scholar 

  76. N. Manjunath, P. Shankar, J. Wan, W. Weninger, M.A. Crowley, K. Hieshima, T.A. Springer, X. Fan, H. Shen, J. Lieberman and U.H. von Andrian. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J Clin Invest 108(6):871–878 (2001).

    Article  PubMed  CAS  Google Scholar 

  77. D.L. Woodland and M.A. Blackman. Vaccine development: baring the ‘dirty little secret’. Nat Med 11(7):715 (2005).

    Article  PubMed  CAS  Google Scholar 

  78. A. Wiesmann, R.L. Phillips, M. Mojica, L.J. Pierce, A.E. Searles, G.J. Spangrude and I. Lemischka. Expression of CD27 on murine hematopoietic stem and progenitor cells. Immunity 12(2):193–199 (2000).

    Article  PubMed  CAS  Google Scholar 

  79. K. Tesselaar, L. Gravestein, G. van Schijndel, J. Borst and R. van Lier. Characterization of murine CD70, the ligand of the TNF receptor family member CD27. J Immunol 159(10):4959–4965 (1997).

    PubMed  CAS  Google Scholar 

  80. R. de Jong, W. Loenen, M. Brouwer, L. van Emmerik, E. de Vries, J. Borst and R. van Lier. Regulation of expression of CD27, a T cell-specific member of a novel family of membrane receptors. J Immunol 146(8):2488–2494 (1991).

    PubMed  Google Scholar 

  81. M. Bowman, M. Crimmins, J. Yetz-Aldape, R. Kriz, K. Kelleher and S. Herrmann. The cloning of CD70 and its identification as the ligand for CD27. J Immunol 152(4):1756–1761 (1994).

    PubMed  CAS  Google Scholar 

  82. L.E. Gamadia, E.M. M. van Leeuwen, E.B.M. Remmerswaal, S.-L. Yong, S. Surachno, P.M.E. Wertheim-van Dillen, I.J.M. ten Berge and R.A.W. van Lier. The size and phenotype of virus-specific T cell populations is determined by repetitive antigenic stimulation and environmental cytokines. J Immunol 172(10):6107–6114 (2004).

    PubMed  CAS  Google Scholar 

  83. B. Jamieson and R. Ahmed. T cell memory. Long-term persistence of virus-specific cytotoxic T cells. J Exp Med 169(6):1993–2005 (1989).

    Article  PubMed  CAS  Google Scholar 

  84. V. Appay, P.R. Dunbar, M. Callan, P. Klenerman, G.M. Gillespie, L. Papagno, G.S. Ogg, A. King, F. Lechner, C.A. Spina, S. Little, D.V. Havlir, D.D. Richman, N. Gruener, G. Pape, A. Waters, P. Easterbrook, M. Salio, V. Cerundolo, A.J. McMichael and S.L. Rowland-Jones. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 8(4):379–385 (2002).

    Article  PubMed  CAS  Google Scholar 

  85. F. Sallusto and A. Lanzavecchia. Exploring pathways for memory T cell generation. J Clin Invest 108(6):805–806 (2001).

    Article  PubMed  CAS  Google Scholar 

  86. M.J. van Stipdonk, E.E. Lemmens and S.P. Schoenberger. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol 2(5):423–429 (2001).

    PubMed  Google Scholar 

  87. A.L. Marzo, K.D. Klonowski, A. Le Bon, P. Borrow, D.F. Tough and L. Lefrancois. Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat Immunol 6(8):793–799 (2005).

    Article  PubMed  CAS  Google Scholar 

  88. M.A. Williams and M.J. Bevan. T cell memory: fixed or flexible? Nat Immunol 6(8):752 (2005).

    Article  PubMed  CAS  Google Scholar 

  89. V.P. Badovinac and J.T. Harty. Memory lanes. Nat Immunol 4(3):212–213 (2003).

    Article  PubMed  CAS  Google Scholar 

  90. E.J. Wherry, V. Teichgraber, T.C. Becker, D. Masopust, S.M. Kaech, R. Antia, U.H. von Andrian and R. Ahmed. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4(3):225–234 (2003).

    Article  PubMed  CAS  Google Scholar 

  91. S.M. Kaech, J.T. Tan, E.J. Wherry, B.T. Konieczny, C.D. Surh and R. Ahmed. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4(12):1191–1198 (2003).

    Article  PubMed  CAS  Google Scholar 

  92. C.M. Smith, N.S. Wilson, J. Waithman, J.A. Villadangos, F.R. Carbone, W.R. Heath and G.T. Belz. Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol 5(11):1143–1148 (2004).

    Article  PubMed  CAS  Google Scholar 

  93. G.T. Belz, H. Liu, S. Andreansky, P.C. Doherty and P.G. Stevenson. Absence of a functional defect in CD8+ T cells during primary murine gammaherpesvirus-68 infection of I-Ab-/- mice. J Gen Virol 84(2):337–341 (2003).

    Article  PubMed  CAS  Google Scholar 

  94. M.J. Bevan. Helping the CD8(+) T-cell response. Nat Rev Immunol 4(8):595–602 (2004).

    Article  PubMed  CAS  Google Scholar 

  95. A.L. Marzo, V. Vezys, K.D. Klonowski, S.-J. Lee, G. Muralimohan, M. Moore, D.F. Tough and L. Lefrancois. Fully functional memory CD8 T cells in the absence of CD4 T cells. J Immunol 173(2):969–975 (2004).

    PubMed  CAS  Google Scholar 

  96. D.J. Shedlock and H. Shen. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300(5617):337–339 (2003).

    Article  PubMed  CAS  Google Scholar 

  97. J.C. Sun and M.J. Bevan. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300(5617):339–342 (2003).

    Article  PubMed  CAS  Google Scholar 

  98. J.C. Sun, M.A. Williams and M.J. Bevan. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 5(9):927–933 (2004).

    Article  PubMed  CAS  Google Scholar 

  99. S. Jung, D. Unutmaz, P. Wong, G. Sano, K. De los Santos, T. Sparwasser, S. Wu, S. Vuthoori, K. Ko, F. Zavala, E.G. Pamer, D.R. Littman and R.A. Lang. In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity 17(2):211–220 (2002).

    Article  PubMed  CAS  Google Scholar 

  100. D.J. Zammit, L.S. Cauley, Q.M. Pham and L. Lefrancois. Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 22(5):561–570 (2005).

    Article  PubMed  CAS  Google Scholar 

  101. M. Suresh, J.K. Whitmire, L.E. Harrington, C.P. Larsen, T.C. Pearson, J.D. Altman and R. Ahmed. Role of CD28-B7 interactions in generation and maintenance of CD8 T cell memory. J Immunol 167(10):5565–5573 (2001).

    PubMed  CAS  Google Scholar 

  102. H.-W. Mittrucker, M. Kursar, A. Kohler, R. Hurwitz and S.H.E. Kaufmann. Role of CD28 for the generation and expansion of antigen-specific CD8+ T lymphocytes during infection with Listeria monocytogenes. J Immunol 167(10):5620–5627 (2001).

    PubMed  CAS  Google Scholar 

  103. J. Hendriks, Y. Xiao, J.W.A. Rossen, K.F. van der Sluijs, K. Sugamura, N. Ishii and J. Borst. During viral infection of the respiratory tract, CD27, 4-1BB, and OX40 collectively determine formation of CD8+ memory T cells and their capacity for secondary expansion. J Immunol 175(3):1665–1676 (2005).

    PubMed  CAS  Google Scholar 

  104. J.E. Moyron-Quiroz, J. Rangel-Moreno, K. Kusser, L. Hartson, F. Sprague, S. Goodrich, D.L. Woodland, F.E. Lund and T.D. Randall. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med 10(9):927–934 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Dolfi, D.V., Katsikis, P.D. (2007). CD28 and Cd27 Costimulation of Cd8+ T Cells: A Story of Survival. In: Katsikis, P.D., Schoenberger, S.P., Pulendran, B. (eds) Crossroads between Innate and Adaptive Immunity. Advances in Experimental Medicine and Biology, vol 590. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34814-8_11

Download citation

Publish with us

Policies and ethics