Skip to main content

Analysis of Nonlinear Biophysical Time Series in Aquatic Environments: Scaling Properties and Empirical Mode Decomposition

  • Conference paper
Nonlinear Dynamics in Geosciences

Abstract

Aquatic environmental time series often display large fluctuations at many time scales, possessing stochastic properties, as well as deterministic forcing coming from seasonal or annual meteorological and climatic cycles. In this work we are interested in the characterization of these properties, using different statistical tools, borrowed from the field of turbulence, or of nonlinear time series analysis. We first present the analysis of a long (30 years) time series of daily river flow data, recorded in the Seine River (France). We consider the scale dependence and scale invariance of river flow data, using structure function analysis; we also apply a decomposition method called Empirical Mode Decomposition (EMD). We then consider the statistical properties, and the nonlinear dynamics behaviour of a long-term copepod (small crustaceans) time series sampled every week in the Meditarranean sea from 1967 to 1992. We first consider its high variability and characterize its properties, including extreme evens obeying power law tail pdf. We then consider their scale dependence, using Fourier power spectra together with an EMD approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. and Succi, S. (1993) Extended self-similarity in turbulent flows. Phys. Rev. E 48, 29-32.

    Article  Google Scholar 

  • Caers, J., Beirlant, J. and Vynckier, P. (1998) Bootstrap confidence intervals for tail indices. Comput. Statist. Data Anal. 26, 259-277.

    Article  Google Scholar 

  • Coughlin, K. T. and Tung, K. K. (2004) Eleven year solar cycle in the lower stratosphere extracted by the empirical mode decomposition method. Adv. Space. Res 34, 323-329.

    Article  Google Scholar 

  • Darwin, C. (1859) On the origin of the species by natural selection. Murray, London.

    Google Scholar 

  • Delechelle, E., Lemoine, J. and Niang, O. (2005) Empirical Mode Decomposition: An Analytical Approach for Sifting Process. IEEE Signal Process. Lett. 12, 764-767.

    Article  Google Scholar 

  • Elton, C. S. (1924) Periodic Fluctuations in the Numbers of Animals: Their Causes and Effects. J. Exp. Biol. 2, 119-163.

    Google Scholar 

  • Flandrin, P. and Goncalves, P. (2005) Empirical Mode Decompositions as Data-Driven Wavelet-Like Expansions. Int. J. of Wavelets, Multires. and Info. Proc 2, 477–496.

    Article  Google Scholar 

  • Flandrin, P., Rilling, G. and Goncalves, P. (2004) Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett. 11, 112-114.

    Article  Google Scholar 

  • Frisch, U. (1995) Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge.

    Google Scholar 

  • Frontier, S., Pichod-Viale, D., Leprêtre, A., Davoult, D. and Luczak, C. (2004) Ecosystémes: structure, fonctionnement, èvolution. Dunod, Paris.

    Google Scholar 

  • Hill, B. M. (1975) A Simple General Approach to Inference About the Tail of a Distribution. Ann. Statist. 3, 1163-1174.

    Google Scholar 

  • Huang, N. E., Shen, Z. and Long, S. R. (1999) A new view of nonlinear water waves: The Hilbert Spectrum. Annu. Rev. Fluid Mech. 31, 417-457.

    Article  Google Scholar 

  • Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, E. H., Zheng, Q., Tung, C. C. and Liu, H. H. (1998) The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903-995.

    Google Scholar 

  • Hurst, H.E. (1951) Long-term storage capacity of reservoirs. Trans. Am. Soc. Civil Eng. 116, 770-799.

    Google Scholar 

  • Hwang, P. A., Huang, N. E. and Wang, D. W. (2003) A note on analyzing nonlinear and nonstationary ocean wave data. Appl. Ocean Res. 25, 187-193.

    Article  Google Scholar 

  • Kantelhardt, J. W., Rybski, D., Zschiegner, S.A., Braun, P., Koscielny-Bunde, E., Livina, V., Havlin, S. and Bunde A. (2003) Multifractality of river runoff and precipitation: comparison of fluctuation analysis and wavelet method. Physica A 330, 240-245.

    Article  Google Scholar 

  • Katz, R. W., Brush, G. S. and Parlange, M. B. Statistics of extremes: modeling ecological disturbances. Ecology 86, 1124-1134.

    Google Scholar 

  • Koscielny-Bunde, E., Kantelhardt, J.W., Braun, P., Bunde, A. and S. Havlin (2006). Long-Term Persistence and Multifractality of River Runoff Records: Detrended Fluctuation Studies. J. Hydrology 322, 120-137.

    Article  Google Scholar 

  • Leadbetter, M. R., Lindgren, G. and Rootzen, H. (1983) Extremes and related properties of random sequences and processes. Springer, Berlin.

    Google Scholar 

  • Loutridis, S. J. (2005) Resonance identification in loudspeaker driver units: A comparison of techniques. Appl. Acoust. 66, 1399-1426.

    Article  Google Scholar 

  • Mitzenmacher, M. (2003) A brief history of generative models for power law and lognormal distributions. Internet Mathematics 1, 226-51.

    Google Scholar 

  • Montanari, A., Rosso, R. and Taqqu, M.S. (1997) Fractionally differenced ARIMA models applied to hydrologic time series: identification, estimation and simulation. Water Resour. Res. 33, 1035-1044.

    Article  Google Scholar 

  • Newman, M. E. J. (2005) Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323-351.

    Article  Google Scholar 

  • Ohman, M. D. and Hirche, H. J. (2001) Density-dependent mortality in an oceanic copepod population. Nature 412, 638-41.

    Article  Google Scholar 

  • Pandey, G., Lovejoy, S. and Schertzer, D. (1998) Multifractal analysis of daily diver flows including extremes for basins of five to two million square kilometres, one day to 75 days. J. Hydrology 208, 62-81.

    Article  Google Scholar 

  • Peng, L. (1998) Asymptotically unbiased estimators for the extreme-value index. Statist. Probab. Lett 38, 107-115.

    Article  Google Scholar 

  • Ponomarenko, V. I., Prokhorov, M. D., Bespyatov, A. B., Bodrov, M. B. and Gridnev, V. I. (2005) Deriving main rhythms of the human cardiovascular system from the heartbeat time series and detecting their synchronization. Chaos, Solitons and Fractals 23, 1429-1438.

    Article  Google Scholar 

  • Rilling, G., P. Flandrin and P. Goncalves (2003). On Empirical Mode Decomposition and Its Algorithms. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing.

    Google Scholar 

  • Salisbury, J. I. and Wimbush, M. (2002) Using modern time series analysis techniques to predict ENSO events from the SOI time series. Nonlin. Processes Geophys. 9, 341-345.

    Article  Google Scholar 

  • Schmitt, F., Lovejoy, S., and Schertzer, D. (1995) Multifractal analysis of the Greenland ice-core Project climate data. Geophys. Res. Lett. 22, 1689-1692.

    Article  Google Scholar 

  • Schmitt, F. and C. Nicolis (2002). Scaling of Return Times for a High-Resolution Rainfall Time Series. Fractals 10, 285-290.

    Article  Google Scholar 

  • Schmitt, F. G., Molinero, J.C. and Zongo, B. S. (2007) Nonlinear dynamics and intermittency in a long-term copepod time series. Comm. Nonlinear Sci. Num. Sim. (In Press).

    Google Scholar 

  • Seuront, L. and Spilmont, N. (2002) Self-organized criticality in intertidal microphytobenthos patch patterns. Physica A 313, 513-539.

    Article  Google Scholar 

  • Tessier, Y., Lovejoy, S., Hubert, P., Schertzer, D. and Pecknold S. (1996) Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. J. Geophys. Res. 101, 26427-26440.

    Article  Google Scholar 

  • Veltcheva, A. D. and Soares, C. G. (2004) Identification of the components of wave spectra by the Hilbert Huang transform method. Appl. Ocean Res. 26, 1-12.

    Article  Google Scholar 

  • Wu, Z. and Huang, N. (2004) A Study of the Characteristics of White Noise with the Empirical Mode Decomposition. Proc. R. Soc. Lond. A 460, 1597-1611.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Schmitt, F.G., Huang, Y., Lu, Z., Brizard, S.Z., Molinero, J.C., Liu, Y. (2007). Analysis of Nonlinear Biophysical Time Series in Aquatic Environments: Scaling Properties and Empirical Mode Decomposition. In: Nonlinear Dynamics in Geosciences. Springer, New York, NY. https://doi.org/10.1007/978-0-387-34918-3_15

Download citation

Publish with us

Policies and ethics