Skip to main content

Messenger RNA 3′-end Formation and the Regulation of Gene Expression

  • Chapter
Regulation of Gene Expression in Plants

Abstract

Posttranscriptional control is important in the overall regulation of gene expression in plants. Such control may be manifested through numerous mechanisms such as RNA turnover, transport and/or sequestration, and differential translation. Many of these processes involve, in some manner, the 3′-untranslated region (or UTR) and polyadenylation signal of the gene. It follows that the nature of the 3′-UTR, and choice of polyadenylation site in genes with multiple sites, may play a role in the expression of a gene, with important physiological consequences. Consequently, the processes involved in alternative and regulated RNA polyadenylation, as well as generating 3′-UTR and 3′-end heterogeneity, are of considerable importance in terms of defining the expression profile of the plant genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addepalli, B., Meeks, L.R., Forbes, K.P. and Hunt, A.G., 2004, Novel alternative splicing of mRNAs encoding poly(A) polymerases in Arabidopsis, Biochim. Biophys. Acta 1679:117–128.

    PubMed  CAS  Google Scholar 

  • Bai, C. and Tolias, P. P., 1998, Drosophila clipper/CPSF 30K is a post-transcriptionally regulated nuclear protein that binds RNA containing GC clusters, Nucl. Acids Res. 26:1597–1604.

    Article  PubMed  CAS  Google Scholar 

  • Baillat, D., Hakimi, M.A., Naar, A.M., Shilatifard, A., Cooch, N. and Shiekhattar, R., 2005, Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II, Cell 123:265–276.

    Article  PubMed  CAS  Google Scholar 

  • Barabino, S.M., Hubner, W., Jenny, A., Minvielle-Sebastia, L. and Keller, W., 1997, The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins, Genes Dev. 11:1703–1716.

    Article  PubMed  CAS  Google Scholar 

  • Barabino, S. M., Ohnacker, M. and Keller, W., 2000, Distinct roles of two Yth1p domains in 3′-end cleavage and polyadenylation of yeast pre-mRNAs, EMBO J. 19:3778–3787.

    Article  PubMed  CAS  Google Scholar 

  • Bassett, C.L., Artlip, T.S., and Callahan, A.M., 2002, Characterization of the peach homologue of the ethylene receptor, PpETR1, reveals some unusual features regarding transcript processing, Planta 251:679–688.

    Article  CAS  Google Scholar 

  • Belostotsky, D.A. and Rose, A.B., 2005, Plant gene expression in the age of systems biology: integrating transcriptional and post-transcriptional events, Trends Plant Sci. 10:347–353.

    Article  PubMed  CAS  Google Scholar 

  • Bentley, D.L., 2005, Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors, Curr. Opin. Cell Biol. 17:251–256.

    Article  PubMed  CAS  Google Scholar 

  • Boisvert, F.M., Cote, J., Boulanger, M.C. and Richard, S., 2003, A proteomic analysis of arginine-methylated protein complexes, Mol. Cell. Proteomics 2:1319–1330.

    Article  PubMed  CAS  Google Scholar 

  • Bond, G.L., Prives, C. and Manley, J.L., 2000, Poly(A) polymerase phosphorylation is dependent on novel interactions with cyclins, Mol. Cell Biol. 20:5310–5320.

    Article  PubMed  CAS  Google Scholar 

  • Boss, P.K., Bastow, R.M., Mylne, J.S. and Dean, C., 2004, Multiple pathways in the decision to flower: enabling, promoting, and resetting, Plant Cell 16Suppl:S18–31.

    Article  PubMed  CAS  Google Scholar 

  • Brodsky, A.S. and Silver, P.A., 2000, Pre-mRNA processing factors are required for nuclear export, RNA 6:1737–1749.

    Article  PubMed  CAS  Google Scholar 

  • Brown, K.M. and Gilmartin, G.M., 2003, A mechanism for the regulation of pre-mRNA 3′ processing by human cleavage factor Im, Mol. Cell 12: 1467–1476.

    Article  PubMed  CAS  Google Scholar 

  • Buratowski, S., 2005, Connections between mRNA 3′ end processing and transcription termination, Curr. Opin. Cell Biol. 17:257–261.

    Article  PubMed  CAS  Google Scholar 

  • Caballero, J.J., Giron, M.D., Vargas, A.M., Sevillano, N., Suarez, M.D. and Salto, R., 2004, AU-rich elements in the mRNA 3′-untranslated region of the rat receptor for advanced glycation end products and their relevance to mRNA stability, Biochem. Biophys. Res. Commun. 319:247–255.

    Article  PubMed  CAS  Google Scholar 

  • Calvo, O. and Manley, J.L., 2003, Strange bedfellows: polyadenylation factors at the promoter, Genes Dev. 17:1321–1327.

    Article  PubMed  CAS  Google Scholar 

  • Colgan, D.F., Murthy, K.G., Prives, C. and Manley, J.L., 1996, Cell-cycle related regulation of poly(A) polymerase by phosphorylation, Nature 384:282–285.

    Article  PubMed  CAS  Google Scholar 

  • Delaney, K.J., Xu, R., Zhang, J., Li, Q.Q., Yun, K.-Y., Falcone, D.F., and Hunt, A.G., 2006, Calmodulin interacts with and regulates the RNA binding activity of an Arabidopsis polyadenylation factor subunit, Plant Physiol. in press.

    Google Scholar 

  • Dichtl, B., Blank, D., Sadowski, M., Hubner, W., Weiser, S. and Keller, W., 2002, Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination, EMBO J. 21:4125–4135.

    Article  PubMed  CAS  Google Scholar 

  • Dichtl, B. and Keller, W., 2001, Recognition of polyadenylation sites in yeast pre-mRNAs by cleavage and polyadenylation factor, EMBO J. 20:3197–3209.

    Article  PubMed  CAS  Google Scholar 

  • Dominski, Z., Yang, X.C. and Marzluff, W.F., 2005, The polyadenylation factor CPSF-73 is involved in histone-pre-mRNA processing, Cell 123:37–48.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, B.J., Dattaroy, T., Meeks-Midkiff, L.R., Forbes, K.P. and Hunt, A.G., 2003, An interaction between an Arabidopsis poly(A) polymerase and a homologue of the 100 kDa subunit of CPSF, Plant Mol. Biol. 51:373–384.

    Article  PubMed  CAS  Google Scholar 

  • Flaherty, S.M., Fortes, P., Izaurralde, E., Mattaj, I.W. and Gilmartin, G.M., 1997, Participation of the nuclear cap binding complex in pre-mRNA 3′ processing, Proc. Natl. Acad. Sci. USA 94:11893–11898.

    Article  PubMed  CAS  Google Scholar 

  • Forbes, K.P., Addepalli, B. and Hunt, A.G., 2006, An Arabidopsis Fip1 homolog interacts with RNA and provides conceptual links with a number of other polyadenylation factor subunits, J. Biol. Chem. 281:176–186.

    Article  PubMed  CAS  Google Scholar 

  • Giranton, J.L., Ariza, M.J., Dumas, C., Cock, J.M. and Gaude, T., 1995, The S locus receptor kinase gene encodes a soluble glycoprotein corresponding to the SKR extracellular domain in Brassica oleracea, Plant J. 8: 827–834.

    PubMed  CAS  Google Scholar 

  • Graber, J.H., Cantor, C.R., Mohr, S.C. and Smith, T.F., 1999, In silico detection of control signals: mRNA 3′-end-processing sequences in diverse species, Proc. Natl. Acad. Sci. USA 96:14055–14060.

    Article  PubMed  CAS  Google Scholar 

  • Gross, S. and Moore, C.L., 2001, Rna15 interaction with the A-rich yeast polyadenylation signal is an essential step in mRNA 3′-end formation, Mol. Cell Biol. 21:8045–8055.

    Article  PubMed  CAS  Google Scholar 

  • Gunderson, S.I., Beyer, K., Martin, G., Keller, W., Boelens, W.C. and Mattaj, L.W., 1994, The human U1A snRNP protein regulates polyadenylation via a direct interaction with poly(A) polymerase, Cell 76:531–541.

    Article  PubMed  CAS  Google Scholar 

  • Gunderson, S.I., Vagner, S., Polycarpou-Schwarz, M. and Mattaj, I.W., 1997, Involvement of the carboxyl terminus of vertebrate poly(A) polymerase in U1A autoregulation and in the coupling of splicing and polyadenylation, Genes Dev. 11: 761–773.

    Article  PubMed  CAS  Google Scholar 

  • Gunther, C.V. and Riddle, D.L., 2004, Alternative polyadenylation results in a truncated daf-4 BMP receptor that antagonizes DAF-7-mediated development in Caenorhabditis elegans, J. Biol. Chem. 279:39555–39564.

    Article  PubMed  CAS  Google Scholar 

  • Haas, B.J., Delcher, A.L., Mount, S.M., Wortman, J.R., Smith, R.K., Jr., Hannick, L.I., Maiti, R., Ronning, C.M., Rusch, D.B., Town, C.D., Salzberg, S.L. and White, O., 2003, Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies, Nucl. Acids Res. 31:5654–5666.

    Article  PubMed  CAS  Google Scholar 

  • Hammell, C.M., Gross, S., Zenklusen, D., Heath, C.V., Stutz, F., Moore, C. and Cole, C.N., 2002, Coupling of termination, 3′ processing, and mRNA export, Mol. Cell Biol. 22:6441–6457.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, W.R., Barsic-Tress, N., Taylor, L. and Curthoys, N.P., 1996, The 3′-nontranslated region of rat renal glutaminase mRNA contains a pH-responsive stability element, Am. J. Physiol. 271:F126–131.

    PubMed  CAS  Google Scholar 

  • Hatton, L.S., Eloranta, J.J., Figueiredo, L.M., Takagaki, Y., Manley, J.L. and O’Hare, K., 2000, The Drosophila homologue of the 64 kDa subunit of cleavage stimulation factor interacts with the 77 kDa subunit encoded by the suppressor of forked gene,” Nucl. Acids Res. 28:520–526.

    Article  PubMed  CAS  Google Scholar 

  • He, X. and Moore, C., 2005, Regulation of yeast mRNA 3′ end processing by phosphorylation, Mol. Cell 19:619–629.

    Article  PubMed  CAS  Google Scholar 

  • Hua, J., Sakai, H., Nourizadeh, S., Chen, Q.G., Bleeker, A.B., Ecker, J.R., and Meyerowitz, E.M., 1998, EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis, Plant Cell 10:1321–1332.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, A.G., 1994, Messenger RNA 3′ End Formation in Plants, Ann. Rev. Plant Physiol. Plant Mol. Biol. 45:47–60.

    CAS  Google Scholar 

  • Iida, K., Seki, M., Sakurai, T., Satou, M., Akiyama, K., Toyoda, T., Konagaya, A. and Shinozaki, K., 2004, Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences, Nucl. Acids Res. 32:5096–5103.

    Article  PubMed  CAS  Google Scholar 

  • Imai, Y., Matsuo, N., Ogawa, S., Tohyama, M. and Takagi, T., 1998, Cloning of a gene, YT521, for a novel RNA splicing-related protein induced by hypoxia/reoxygenation, Brain Res. Mol. Brain Res. 53:33–40.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, T., Yoshimura, K., Tamoi, M., Takeda, T. and Shigeoka, S., 1997, Alternative mRNA splicing of 3′-terminal exons generates ascorbate peroxidase isoenzymes in spinach (Spinacia oleracea) chloroplasts, Biochem. J. 328:795–800.

    PubMed  CAS  Google Scholar 

  • Kaufmann, I., Martin, G., Friedlein, A., Langen, H. and Keller, W., 2004, Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase, EMBO J. 23:616–626.

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi, S., et al.., 2003, Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice, Science 301:376–379.

    Article  PubMed  Google Scholar 

  • Klahre, U., Hemmings-Mieszczak, M. and Filipowicz, W., 1995, Extreme heterogeneity of polyadenylation sites in mRNAs encoding chloroplast RNA-binding proteins in Nicotiana plumbaginifolia, Plant Mol. Biol. 28:569–574.

    Article  PubMed  CAS  Google Scholar 

  • Kleiman, F.E. and Manley, J.L., 2001, The BARD1-CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression, Cell 104:743–753.

    Article  PubMed  CAS  Google Scholar 

  • Kolev, N. G. and Steitz, J.A., 2005, Symplekin and multiple other polyadenylation factors participate in 3′-end maturation of histone mRNAs, Genes Dev. 19:2583–2592.

    Article  PubMed  CAS  Google Scholar 

  • Kyburz, A., Sadowski, M., Dichtl, B. and Keller, W., 2003, The role of the yeast cleavage and polyadenylation factor subunit Ydh1p/Cft2p in pre-mRNA 3′-end formation, Nucl. Acids Res. 31:3936–3945.

    Article  PubMed  CAS  Google Scholar 

  • Li, Q. and Hunt, A.G., 1995, A near-upstream element in a plant polyadenylation signal consists of more than six nucleotides, Plant Mol. Biol. 28:927–934.

    Article  PubMed  CAS  Google Scholar 

  • Licatalosi, D.D., Geiger, G., Minet, M., Schroeder, S., Cilli, K., McNeil, J. B. and Bentley, D.L., 2002, Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II, Mol. Cell 9:1101–1111.

    Article  PubMed  CAS  Google Scholar 

  • Loke, J.C., Stahlberg, E.A., Strenski, DG., Haas, B.J., Wood, P.C. and Li, Q.Q., 2005, Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures, Plant Physiol. 138:1457–1468.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, C.C., Wilusz, J. and Shenk, T., 1994, The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location, Mol. Cell Biol. 14:6647–6654.

    PubMed  CAS  Google Scholar 

  • MacDonald, M.H., Mogen, B.D. and Hunt, A.G., 1991, Characterization of the polyadenylation signal from the T-DNA-encoded octopine synthase gene, Nucl. Acids Res. 19:5575–5581.

    Article  PubMed  CAS  Google Scholar 

  • Meeks, L.R., 2005, Isolation and Characterization of the Four Arabidopsis thaliana Poly(A) Polymerase Genes, Plant Physiology, Lexington, KY, University of Kentucky, Ph.D.

    Google Scholar 

  • Meyers, B.C., Morgante, M. and Michelmore, R.W., 2002, TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes, Plant J. 32:77–92.

    Article  PubMed  CAS  Google Scholar 

  • Meyers, B.C., Vu, T.H., Tej, S.S., Ghazal, H., Matvienko, M., Agrawal, V., Ning, J. and Haudenschild, C. D., 2004, Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing, Nat. Biotechnol. 22:1006–1011.

    Article  PubMed  CAS  Google Scholar 

  • Millevoi, S., Geraghty, F., Idowu, B., Tam, J.L., Antoniou, M. and Vagner, S., 2002, A novel function for the U2AF 65 splicing factor in promoting pre-mRNA 3′-end processing, EMBO Rep. 3:869–874.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto, S., Chiorini, J.A., Urcelay, E. and Safer, B., 1996, Regulation of gene expression for translation initiation factor eIF-2 alpha: importance of the 3′ untranslated region, Biochem. J. 315 (Pt 3):791–798.

    PubMed  CAS  Google Scholar 

  • Mizrahi, N. and Moore, C., 2000, Posttranslational phosphorylation and ubiquitination of the Saccharomyces cerevisiae Poly(A) polymerase at the S/G(2) stage of the cell cycle, Mol. Cell Biol. 20:2794–2802.

    Article  PubMed  CAS  Google Scholar 

  • Mogen, B.D., MacDonald, M.H., Leggewie, G. and Hunt, A.G., 1992, Several distinct types of sequence elements are required for efficient mRNA 3′ end formation in a pea rbcS gene, Mol. Cell Biol. 12:5406–5414.

    PubMed  CAS  Google Scholar 

  • Morlando, M., Greco, P., Dichtl, B., Fatica, A., Keller, W. and Bozzoni, I., 2002, Functional analysis of yeast snoRNA and snRNA 3′-end formation mediated by uncoupling of cleavage and polyadenylation, Mol. Cell Biol. 22:1379–1389.

    Article  PubMed  CAS  Google Scholar 

  • Murthy, K.G. and Manley, J.L., 1995, The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3′-end formation, Genes Dev. 9:2672–2683.

    Article  PubMed  CAS  Google Scholar 

  • Nagasaki, H., Arita, M., Nishizawa, T., Suwa, M. and Gotoh, O., 2005, Species-specific variation of alternative splicing and transcriptional initiation in six eukaryotes, Gene 364:53–62.

    Article  PubMed  CAS  Google Scholar 

  • Nedea, E., He, X., Kim, M., Pootoolal, J., Zhong, G., Canadien, V., Hughes, T., Buratowski, S., Moore, C.L. and Greenblatt, J., 2003, Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3′-ends, J. Biol. Chem. 278:33000–33010.

    Article  PubMed  CAS  Google Scholar 

  • Niwa, M., Rose, S.D. and Berget, S.M., 1990, In vitro polyadenylation is stimulated by the presence of an upstream intron, Genes Dev. 4:1552–1559.

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot, N., 2004, New perspectives on connecting messenger RNA 3′ end formation to transcription, Curr. Opin. Cell Biol. 16:272–278.

    Article  PubMed  CAS  Google Scholar 

  • Qu, X., Qi, Y. and Qi, B., 2002, Generation of multiple mRNA transcripts from the novel human apoptosis-inducing gene hap by alternative polyadenylation utilization and the translational activation function of 3′ untranslated region, Arch. Biochem. Biophys. 400:233–244.

    Article  PubMed  CAS  Google Scholar 

  • Quesada, V., Macknight, R., Dean, C. and Simpson, G.G., 2003, Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time, EMBO J. 22: 3142–3152.

    Article  PubMed  CAS  Google Scholar 

  • Razem, F.A., El-Kereamy, A., Abrams, S.R., and Hill, R.D., 2006, The RNA-binding protein FCA is an abscisic acid receptor, Nature 439:290–294.

    Article  PubMed  CAS  Google Scholar 

  • Rothnie, H.M., 1996, Plant mRNA 3′-end formation, Plant Mol. Biol. 32:43–61.

    Article  PubMed  CAS  Google Scholar 

  • Shell, S. A., Hesse, C., Morris, S.M., Jr. and Milcarek, C., 2005, Elevated levels of the 64-kDa cleavage stimulatory factor (CstF-64) in lipopolysaccharide-stimulated macrophages influence gene expression and induce alternative poly(A) site selection, J. Biol. Chem. 280:39950–39961.

    Article  PubMed  CAS  Google Scholar 

  • Simon, P., Schott, K., Williams, R.W. and Schaeffel, F., 2004, Posttranscriptional regulation of the immediate-early gene EGR1 by light in the mouse retina, Eur. J. Neurosci. 20:3371–3377.

    Article  PubMed  Google Scholar 

  • Simpson, G.G., Dijkwel, P.P., Quesada, V., Henderson, I. and Dean, C., 2003, FY is an RNA 3′ end-processing factor that interacts with FCA to control the Arabidopsis floral transition, Cell 113:777–787.

    Article  PubMed  CAS  Google Scholar 

  • Skadsen, R.W. and Knauer, N.S., 1995, Alternative polyadenylation generates three low-pI alpha-amylase mRNAs with differential expression in barley, FEBS Lett. 361:220–224.

    Article  PubMed  CAS  Google Scholar 

  • Stoilov, P., Rafalska, I. and Stamm, S., 2002, YTH: a new domain in nuclear proteins, Trends Biochem. Sci. 27:495–497.

    Article  PubMed  CAS  Google Scholar 

  • Takagaki, Y. and Manley, J.L., 1998, Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation, Mol. Cell 2:761–771.

    Article  PubMed  CAS  Google Scholar 

  • Takagaki, Y. and Manley, J.L., 2000, Complex protein interactions within the human polyadenylation machinery identify a novel component, Mol. Cell Biol. 20: 1515–1525.

    Article  PubMed  CAS  Google Scholar 

  • Takagaki, Y., Seipelt, R.L., Peterson, M.L. and Manley, J.L., 1996, The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation, Cell 87:941–952.

    Article  PubMed  CAS  Google Scholar 

  • Tang, G., Zhu, X., Gakiere, B., Levanony, H., Kahana, A. and Galili, G., 2002, The bifunctional LKR/SDH locus of plants also encodes a highly active monofunctional lysine-ketoglutarate reductase using a polyadenylation signal located within an intron, 2002, Plant Physiol. 130:147–154.

    Article  PubMed  CAS  Google Scholar 

  • Tantikanjana, T., Nasrallah, M.E., Stein, J.C., Chen, C.H. and Nasrallah, J.B., 1993, An alternative transcript of the S locus glycoprotein gene in a class II pollen-recessive self-incompatibility haplotype of Brassica oleracea encodes a membrane-anchored protein, Plant Cell 5:657–666.

    Article  PubMed  CAS  Google Scholar 

  • Tian, B., Hu, J., Zhang, H. and Lutz, C.S., 2005, A large-scale analysis of mRNA polyadenylation of human and mouse genes, Nucl. Acids Res. 33:201–212.

    Article  PubMed  CAS  Google Scholar 

  • Touriol, C., Morillon, A., Gensac, M.C., Prats, H. and Prats, A.C., 1999, Expression of human fibroblast growth factor 2 mRNA is post-transcriptionally controlled by a unique destabilizing element present in the 3′-untranslated region between alternative polyadenylation sites, J. Biol. Chem. 274:21402–21408.

    Article  PubMed  CAS  Google Scholar 

  • Touriol, C., Roussigne, M., Gensac, M.C., Prats, H. and Prats, A.C., 2000, Alternative translation initiation of human fibroblast growth factor 2 mRNA controlled by its 3′-untranslated region involves a Poly(A) switch and a translational enhancer, J. Biol. Chem. 275:19361–19367.

    Article  PubMed  CAS  Google Scholar 

  • Valentini, S.R., Weiss, V.H. and Silver, P.A., 1999, Arginine methylation and binding of Hrp1p to the efficiency element for mRNA 3′-end formation, RNA 5:272–280.

    Article  PubMed  CAS  Google Scholar 

  • Venkataraman, K., Brown, K.M. and Gilmartin, G.M., 2005, Analysis of a non-canonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition, Genes Dev. 19:1315–1327.

    Article  PubMed  CAS  Google Scholar 

  • Wahle, E., 1991, A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation, Cell 66:759–768.

    Article  PubMed  CAS  Google Scholar 

  • Wahle, E. and Ruegsegger, U., 1999, 3′-End processing of pre-mRNA in eukaryotes, FEMS Microbiol. Rev. 23:277–295.

    PubMed  CAS  Google Scholar 

  • Wallace, A.M., Dass, B., Ravnik, S.E., Tonk, V., Jenkins, N.A., Gilbert, D. J., Copeland, N.G. and MacDonald, C.C., 1999, Two distinct forms of the 64,000 Mr protein of the cleavage stimulation factor are expressed in mouse male germ cells, Proc. Natl. Acad. Sci. USA 96:6763–6768.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, A.M., Denison, T.L., Attaya, E.N. and MacDonald, C.C., 2004, Developmental distribution of the polyadenylation protein CstF-64 and the variant tauCstF-64 in mouse and rat testis, Biol. Reprod. 70:1080–1087.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S.W., Asakawa, K., Win, T.Z., Toda, T. and Norbury, C.J., 2005, Inactivation of the pre-mRNA cleavage and polyadenylation factor Pfs2 in fission yeast causes lethal cell cycle defects, Mol. Cell Biol. 25:2288–2296.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, Y.L., Smith, S.R., Ishmael, N., Redman, J.C., Kumar, N., Monaghan, E.L., Ayele, M., Haas, B.J., Wu, H.C. and Town, C.D., 2005, Analysis of the cDNAs of hypothetical genes on Arabidopsis chromosome 2 reveals numerous transcript variants, Plant Physiol. 139:1323–1337.

    Article  PubMed  CAS  Google Scholar 

  • Xu, R., Ye, X. and Quinn Li, Q., 2004, AtCPSF73-II gene encoding an Arabidopsis homolog of CPSF 73 kDa subunit is critical for early embryo development, Gene 324:35–45.

    Article  PubMed  CAS  Google Scholar 

  • Yan, J. and Marr, T.G., 2005, Computational analysis of 3′-ends of ESTs shows four classes of alternative polyadenylation in human, mouse, and rat, Genome Res. 15:369–375.

    Article  PubMed  CAS  Google Scholar 

  • Yao, Y., Song, L., Katz, Y. and Galili, G., 2002, Cloning and characterization of Arabidopsis homologues of the animal CstF complex that regulates 3′ mRNA cleavage and polyadenylation, J. Exp. Bot. 53:2277–2278.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., Hyman, L. and Moore, C., 1999, Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis, Microbiol. Mol. Biol. Rev. 63:405–44.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Hunt, A.G. (2007). Messenger RNA 3′-end Formation and the Regulation of Gene Expression. In: Bassett, C.L. (eds) Regulation of Gene Expression in Plants. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-35640-2_4

Download citation

Publish with us

Policies and ethics