Skip to main content

Progress in Understanding the Mechanisms of Neuronal Dysfunction and Degeneration in Parkinson’s Disease

  • Chapter
Protein Misfolding, Aggregation, and Conformational Diseases

Part of the book series: Protein Reviews ((PRON,volume 6))

Abstract

During the past 30 years, a number of different hypotheses on cause of neuronal degeneration and dysfunction in Parkinson’s disease have been intensively investigated. Roles have been postulated for oxidative stress, excitotoxcity, nitric oxide, mitochondrial dysfunction, and inflammation. The possibility of an environmental cause was highlighted by the discovery of a simple molecule known as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a compound that is selectively toxic to the same cells in the brain that die in Parkinson’s disease. Yet the most recent hypothesis to come under scrutiny did not emerge from any of this previous work, but rather from a rare form of genetic parkinsonism known as PARK 1. This form of autosomal dominant parkinsonism is caused by mutations in the gene that encodes for the protein α-synuclein. Unexpectedly, this protein has been found to accumulate in nerve cells and their processes in all patients with Parkinson’s disease, raising the possibility that abnormal protein folding and aggregation represent a fundamental feature of the disease. These observations have already ushered in a new era of research on the disease and stimulated novel strategies directed toward disease modification by providing new therapeutic targets for drug development. Only time will tell if this most recent chapter in the search for the molecular basis of neurodegeneration in Parkinson’s disease will be one that holds the key to understanding this complex disorder and the highly characteristic pattern of selective vulnerability exhibited by the neuronal populations it affects. But an exciting body of accumulating scientific evidence is pointing in that direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auluck, P. K., and Bonini, N. M. (2002). Pharmacological prevention of Parkinson disease in Drosophila. Nat Med 8: 1185–1186.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M. F. (1998). Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann Neurol 44: S110–S114.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M. F., Matthews, R. T., Tieleman, A., and Shults, C. W. (1998). Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3,tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res 783: 109–114.

    Article  PubMed  CAS  Google Scholar 

  • Braak, H., Del Tredici, K., Bratzke, H., Hamm-Clement, J., Sandmann-Keil, D., and Rub, U. (2002). Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249Suppl 3: III/1-5.

    PubMed  Google Scholar 

  • Braak, H., Rub, U., Gai, W. P., and Del Tredici, K. (2003). Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110: 517–536.

    Article  PubMed  CAS  Google Scholar 

  • Brissaud, E. (1895) Lecons sur les maladies nerveuses. Salpetriere, 1893–1894, ed. H Miege. Paris: G. Masson.

    Google Scholar 

  • Cao, S., Gelwix, C. C., Caldwell, K. A., and Caldwell, G. A. (2005). Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J Neurosci 25: 3801–3812.

    Article  PubMed  CAS  Google Scholar 

  • Chabrier, P. E., Demerle-Pallardy, C., and Auguet, M. (1999). Nitric oxide synthases: targets for therapeutic strategies in neurological diseases. Cell Mol Life Sci 55: 1029–1035.

    Article  PubMed  CAS  Google Scholar 

  • Charcot, J. M. (1878) Lectures on the diseases of the nervous system. London: The New Sydenham Society.

    Google Scholar 

  • Chartier-Harlin, M. C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., Levecque, C., Larvor, L., Andrieux, J., Hulihan, M., Waucquier, N., Defebvre, L., Amouyel, P., Farrer, M., and Destee, A. (2004). Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364: 1167–1169.

    Article  PubMed  CAS  Google Scholar 

  • Chiba, K., Trevor, A., and Castagnoli, N., Jr. (1984). Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 120: 574–578.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, G., Pasik, P., Cohen, B., Leist, A., Mytilineou, C., and Yahr, M. D. (1984). Pargyline and deprenyl prevent the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in monkeys. Eur J Pharmacol 106: 209–210.

    Article  PubMed  CAS  Google Scholar 

  • Farrer, M., Kachergus, J., Forno, L., Lincoln, S., Wang, D. S., Hulihan, M., Maraganore, D., Gwinn-Hardy, K., Wszolek, Z., Dickson, D., and Langston, J. W. (2004). Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol 55: 174–179.

    Article  PubMed  CAS  Google Scholar 

  • Forno, L. S. (1986). Lewy bodies. N Engl J Med 314: 122.

    PubMed  CAS  Google Scholar 

  • Gilks, W. P., Abou-Sleiman, P. M., Gandhi, S., Jain, S., Singleton, A., Lees, A. J., Shaw, K., Bhatia, K. P., Bonifati, V., Quinn, N. P., Lynch, J., Healy, D. G., Holton, J. L., Revesz, T., and Wood, N. W. (2005) A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet 365: 415–416.

    PubMed  CAS  Google Scholar 

  • Golbe, L. I., Di Iorio, G., Bonavita, V., Miller, D. C., and Duvoisin, R. C. (1990). A large kindred with autosomal dominant Parkinson’s disease. Ann Neurol 27: 276–282.

    Article  PubMed  CAS  Google Scholar 

  • Golbe, L. I., Di Iorio, G., Sanges, G., Lazzarini, A. M., La Sala, S., Bonavita, V., and Duvoisin, R. C. (1996). Clinical genetic analysis of Parkinson’s disease in the Contursi kindred. Ann Neurol 40: 767–775.

    Article  PubMed  CAS  Google Scholar 

  • Gowers, W. R. (1888). Diseases of the nervous system. Philadelphia: P. Blakiston, Son and Company.

    Google Scholar 

  • Graham, D. G. (1978). Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 14: 633–643.

    PubMed  CAS  Google Scholar 

  • Griffioen, G., Duhamel, H., Van Damme, N., Pellens, K., Zabrocki, P., Pannecouque, C., van Leuven, F., Winderickx, J., and Wera, S. (2006). A yeast-based model of alpha-synucleinopathy identifies compounds with therapeutic potential. Biochim Biophys Acta 1762: 312–318.

    PubMed  CAS  Google Scholar 

  • Heikkila, R. E., Manzino, L., Cabbat, F. S., and Duvoisin, R. C. (1984). Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 311: 467–469.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, E., Graybiel, A. M., and Agid, Y. A. (1988). Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334: 345–348.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, E. C., Breidert, T., Rousselet, E., Hunot, S., Hartmann, A., and Michel, P. P. (2003). The role of glial reaction and inflammation in Parkinson’s disease. Ann N Y Acad Sci 991: 214–228.

    Article  PubMed  CAS  Google Scholar 

  • Kay, D. M., Zabetian, C. P., Factor, S. A., Nutt, J. G., Samii, A., Griffith, A., Bird, T.D., Kramer, P., Higgins, D. S., and Payami, H. (2005). Parkinson’s disease and LRRK2: Frequency of a common mutation in U.S. movement disorder clinics. Mov Disord 21: 519–523.

    Article  Google Scholar 

  • Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J. T., Schols, L., and Riess, O. (1998). Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet 18: 106–108.

    Article  PubMed  CAS  Google Scholar 

  • Lakso, M., Vartiainen, S., Moilanen, A. M., Sirvio, J., Thomas, J. H., Nass, R., Blakely, R. D., and Wong, G. (2003). Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem 86: 165–172.

    Article  PubMed  CAS  Google Scholar 

  • Langston, J. W. (2006). The parkinson’s complex: Parkinsonism is just the tip of the iceberg. Ann Neurol 59: 591–596.

    Article  PubMed  Google Scholar 

  • Langston, J. W., Ballard, P., Tetrud, J. W., and Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979–980.

    Article  PubMed  CAS  Google Scholar 

  • Langston, J. W., Irwin, I., Langston, E. B., and Forno, L. S. (1984). Pargyline prevents MPTP-induced parkinsonism in primates. Science 225: 1480–1482.

    Article  PubMed  CAS  Google Scholar 

  • Langston, J. W., Golbe, L. I, and Lee, S. J. (2002). PARK 1 and α-Synuclein: a new era in Parkinson’s research. In Genetics of Movement Disorder, ed. S Pulst, pp. 277–304. San Diego: Academic Press.

    Google Scholar 

  • Lesage, S., Durr, A., Tazir, M., Lohmann, E., Leutenegger, A. L., Janin, S., Pollak, P., and Brice, A.; French Parkinson’s Disease Genetics Study Group (2006).. LRRK2 G2019S as a cause of Parkinson’s disease in North African Arabs. N Engl J Med 354: 422–423.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Zhu, M., Rajamani, S., Uversky, V.N., and Fink, A. L. (2004). Rifampicin inhibits alpha-synuclein fibrillation and disaggregates fibrils. Chem Biol 11: 1513–1521.

    Article  PubMed  CAS  Google Scholar 

  • Lo Bianco, C., Ridet, J. L., Schneider, B. L., Deglon, N., and Aebischer, P. (2002). alpha-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci USA 99: 10813–10818.

    Article  PubMed  CAS  Google Scholar 

  • Maingay, M., Romero-Ramos, M., and Kirik, D. (2005). Viral vector mediated overexpression of human alpha-synuclein in the nigrostriatal dopaminergic neurons: a new model for Parkinson’s disease. CNS Spectr 10: 235–244.

    PubMed  Google Scholar 

  • Mann, D. M., and Yates, P. O. (1983). Possible role of neuromelanin in the pathogenesis of Parkinson’s disease. Mech Ageing Dev 21: 193–203.

    Article  PubMed  CAS  Google Scholar 

  • Marsden, C. D. (1983). Neuromelanin and Parkinson’s disease. J Neural Transm Suppl 19: 121–141.

    PubMed  CAS  Google Scholar 

  • McGeer, P. L., and McGeer, E. G. (2004). Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat Disord 10Suppl 1: S3–S7.

    Article  PubMed  Google Scholar 

  • McKeith, I. G., Dickson, D. W., Lowe, J., Emre, M., O’Brien, J. T., H, Cummings, J., Duda, J. E., Lippa, C., Perry, E. K., Aarsland, D., Arai, H., Ballard, C. G., Boeve, B., Burn, D. J., Costa, D., Del Ser, T., Dubois, B., Galasko, D., Gauthier, S., Goetz, C. G., Gomez-Tortosa, E., Halliday, G., Hansen, L. A., Hardy, J., Iwatsubo, T., Kalaria, R. N., Kaufer, D., Kenny, R. A., Korczyn, A., Kosaka, K., Lee, V. M., Lees, A., Litvan, I., Londos, E., Lopez, O. L., Minoshima, S., Mizuno, Y., Molina, J. A., Mukaetova-Ladinska, E. B., Pasquier, F., Perry, R. H., Schulz, J. B., Trojanowski, J. Q., and Yamada, M.; Consortium on DLB (2005). Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65: 1863–1872.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, Y., Ohta, S., Tanaka, M., Takamiya, S., Suzuki, K., Sato, T., Oya, H., Ozawa, T., and Kagawa, Y. (1989). Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163: 1450–1455.

    Article  PubMed  CAS  Google Scholar 

  • Muenter, M. D., Forno, L. S., Hornykiewicz, O., Kish, S. J., Maraganore, D. M., Caselli, R. J., Okazaki, H., Howard, F. M. Jr., Snow, B. J., and Calne, D. B. (1998) Hereditary form of parkinsonism-dementia. Ann Neurol 43: 768–781.

    Article  PubMed  CAS  Google Scholar 

  • Nishioka, K., Hayashi, S., Farrer, M. J., Singleton, A. B., Yoshino, H., Imai, H., Kitami, T., Sato. K., Kuroda, R., Tomiyama, H., Mizoguchi, K., Murata, M., Toda, T., Imoto, I., Inazawa, J., Mizuno, Y., and Hattori, N. (2006). Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson’s disease. Ann Neurol 59: 298–309.

    Article  PubMed  CAS  Google Scholar 

  • Ozelius, L. J., Senthil, G., Saunders-Pullman, R., Ohmann, E., Deligtisch, A., Tagliati, M., Hunt, A. L., Klein, C., Henick, B., Hailpern, S. M., Lipton, R. B., Soto-Valencia, J., Risch, N., and Bressman, S. B. (2006). LRRK 2 G2019S as a cause of Parkinson’s disease in Ashkenazi Jews. N Engl J Med 354: 424–425.

    Article  PubMed  CAS  Google Scholar 

  • Paisan-Ruiz, C., Jain, S., Evans, E. W., Gilks, W. P., Simon, J., van der Brug, M., Lopez de Munain, A., Aparicio, S., Gil, A. M., Khan, N., Johnson, J., Martinez, J. R., Nicholl, D., Carrera, I. M., Pena, A. S., de Silva, R., Lees, A., Marti-Masso, J. F., Perez-Tur, J., Wood, N. W, and Singleton, A. B. (2004). Cloning of the gene containing mutations that cause PARK 8-linked Parkinson’s disease. Neuron 44: 595–600

    Article  PubMed  CAS  Google Scholar 

  • Parker, W. D., Jr., Boyson, S. J., and Parks, J. K. (1989). Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26: 719–723.

    Article  PubMed  Google Scholar 

  • Parkinson, J. (1817). An Essay on the Shaking Palsy. London: Whittingham and Rowland.

    Google Scholar 

  • Parkinson’s Study Group. (1989). Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 321: 1364–137.

    Article  Google Scholar 

  • Pfeiffer, R. F., and Bodis-Wollner, I. (2005). Parkinson’s Disease and Nonmotor Dysfunction. Totowa, NJ: Humana Press.

    Google Scholar 

  • Polymeropoulos, M. H., Higgins, J. J., Golbe, L. I., Johnson, W. G., Ide, S. E., Di Iorio, G., Sanges, G., Stenroos, E. S., Pho, L. T., Schaffer, A. A., Lazzarini, A. M., Nussbaum, R. L., and Duvoisin, R. C. (1996). Mapping of a gene for Parkinson’s disease to chromosome 4q21–q23. Science 274: 1197–1199.

    Article  PubMed  CAS  Google Scholar 

  • Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharazpa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I., and Nussbaum, R. L. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045–2047.

    Article  PubMed  CAS  Google Scholar 

  • Prota, G., and d’Ischia, M. (1993). Neuromelanin: a key to Parkinson’s disease. Pigment Cell Res 6: 333–335.

    Article  PubMed  CAS  Google Scholar 

  • Ramsay, R. R., Salach, J. I., and Singer, T. P. (1986). Uptake of the neurotoxin 1-methyl-4-phenylpyridine (MPP+) by mitochondria and its relation to the inhibition of the mitochondrial oxidation of NAD+-linked substrates by MPP+. Biochem Biophys Res Commun 134: 743–748.

    Article  PubMed  CAS  Google Scholar 

  • Ross, O. A., Toft, M., Whittle, A. J., Johnson, J. L., Papapetropoulos, S., Mash, D. C., Litvan, I., Gordon, M. F., Wszolek, Z. K., Farrer, M. J., and Dickson, D. W. (2006). LRRK2 and Lewy body disease. Ann Neurol 59: 388–393.

    Article  PubMed  CAS  Google Scholar 

  • Schapira, A. H., Cooper, J. M., Dexter, D., Jenner, P., Clark, J. B., and Marsden, C. D. (1989). Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1: 1269.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, J. B., and Beal, M. F. (1994). Mitochondrial dysfunction in movement disorders. Curr Opin Neurol 7: 333–339.

    PubMed  CAS  Google Scholar 

  • Shults, C. W., Oakes, D., Kieburtz, K., Beal, M. F., Haas, R., Plumb, S., Juncos, J. L., Nutt, J., Shoulson, I., Carter, J., Kompoliti, K., Perlmutter, J. S., Reich, S., Stern, M., Watts, R. L., Kurlan, R., Molho, E., Harrison, M., and Lew, M.; Parkinson Study Group (2002). Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 59: 1541–1550.

    Article  PubMed  Google Scholar 

  • Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., Lincoln, S., Crawley, A., Hanson, M., Maraganore, D., Adler, C., Cookson, M. R., Muenter, M., Baptista, M., Miller, D., Blancato, J., Hardy, J., and Gwinn-Hardy, K. (2003). alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302: 841.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., and Goedert, M. (1998). alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 95: 6469–6473.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., and Goedert, M. (1997). Alpha-synuclein in Lewy bodies. Nature 388: 839–840.

    Article  PubMed  CAS  Google Scholar 

  • Tanner, C. M., and Ben-Shlomo, Y. (1999). Epidemiology of Parkinson’s disease. Adv Neurol 80: 153–159

    PubMed  CAS  Google Scholar 

  • Tanner, C. M., Ottman, R., Goldman, S. M., Ellenberg, J., Chan, P., Mayeux, R., and Langston, J. W. (1999). Parkinson disease in twins: an etiologic study. JAMA 281: 341–346.

    Article  PubMed  CAS  Google Scholar 

  • Testa, C. M., Sherer, T. B., and Greenamyre, J. T. (2005). Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res 134: 109–118.

    Article  PubMed  CAS  Google Scholar 

  • Tetrud, J. W., and Langston, J. W. (1989). The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science 245: 519–522.

    Article  PubMed  CAS  Google Scholar 

  • Wersinger, C., and Sidhu, A. (2006). An inflammatory pathomechanism for Parkinson’s disease? Curr Med Chem 13: 591–602.

    Article  PubMed  CAS  Google Scholar 

  • Wirdefeldt, K., Gatz, M., Schalling, M., and Pedersen, N. L. (2004). No evidence for heritability of Parkinson disease in Swedish twins. Neurology 63: 305–311.

    PubMed  Google Scholar 

  • Yamada, M., Iwatsubo, T., Mizuno, Y., and Mochizuki, H. (2004). Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson’s disease. J Neurochem 91: 451–461.

    Article  PubMed  CAS  Google Scholar 

  • Youdim, M. B., Ben-Shachar, D., and Riederer, P. (1989). Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand Suppl 126: 47–54.

    Article  PubMed  CAS  Google Scholar 

  • Zarranz, J. J., Alegre, J., Gomez-Esteban, J. C., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., Hoenicka, J., Rodriguez, O., Atares, B., Llorens, V., Gomez Tortosa, E., del Ser, T., Munoz, D. G., and de Yebenes, J. G. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55: 164–173.

    Article  PubMed  CAS  Google Scholar 

  • Zecca, L., Zucca, F.A., Wilms, H., and Sulzer, D. (2003). Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci 26: 578–580.

    Article  PubMed  CAS  Google Scholar 

  • Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., Kachergus, J., Hulihan, M., Uitti, R. J., Calne, D. B., Stoessl, A. J., Pfeiffer, R. F., Patenge, N., Carbajal, I. C., Vieregge, P., Asmus, F., Muller-Myhsok, B., Dickson, D. W., Meitinger, T., Strom, T. M., Wszolek, Z. K., and Gasser, T. (2004) Mutations in LRRK 2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44: 601–607.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Langston, J.W. (2007). Progress in Understanding the Mechanisms of Neuronal Dysfunction and Degeneration in Parkinson’s Disease. In: Uversky, V.N., Fink, A.L. (eds) Protein Misfolding, Aggregation, and Conformational Diseases. Protein Reviews, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36534-3_3

Download citation

Publish with us

Policies and ethics