Skip to main content

Abstract

Photosystem II (PSII) is a light driven, water-plastoquinone oxidoreductase which catalyses the most thermodynamically demanding reaction in biology. This highly endergonic reaction splits water into molecular oxygen, protons and electrons, thereby sustaining an aerobic atmosphere on earth and providing the reducing equivalents necessary to fix carbon dioxide to organic molecules, creating biomass, food and fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Debus RJ. The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta 1992; 1102:269–352.

    Article  PubMed  CAS  Google Scholar 

  2. Gant E. Pigment protein complexes and the concept of the photosynthetic unit: Chlorophyll complexes and phycobilisomes. Photosyn Res 1996; 48:47–53.

    Article  Google Scholar 

  3. Vermaas W. Molecular-biological approaches to analyze photosystem II structure and function. Annu Rev Plant Physiol Plant Mol Biol 1993; 44:457–481.

    Article  CAS  Google Scholar 

  4. Ikeuchi M. Subunit proteins of Photosystem II. Bot Mag 1992; 105:327–373.

    Article  CAS  Google Scholar 

  5. Ikeuchi M, Yuasa M, Inoue Y. Simple and discrete isolation of an O2-evolving PSII reaction center complex retaining Mn and the extrinsic 33 kDa protein. FEBS Lett 1985; 185:316–322.

    Article  CAS  Google Scholar 

  6. Ghanotakis DF, Demetriou DM, Yocum CF. Isolation and characterization of an O2-evolving Photosystem II reaction center core preparation and a 28 kDa chl-binding protein Biochim Biophys Acta 1987; 891:15–21.

    Article  CAS  Google Scholar 

  7. Shen J-R, Ikeuchi M, Inoue Y. Stoichiometric association of extrinsic cytochrome c550 and 12 kDa protein with a highly purified oxygen-evolving photosystem II core complex from Synechococcus vulcanus. FEBS Lett 1992; 301:145–149.

    Article  PubMed  CAS  Google Scholar 

  8. Ikeuchi M, Koike H, Inoue Y. N-terminal sequencing of Photosystem II low-molecular-mass proteins 5 and 3.1 kDa components of the O2-evolving core complex from higher plants. FEBS Lett 1989; 242:263–269.

    Article  PubMed  CAS  Google Scholar 

  9. Bricker TM, Ghanotakis DF. Introduction to oxygen evolution and the oxygen-evolving complex. In: Ort DR, Yocum CF, eds. Advances in Photosynthesis: The Light Reactions. Vol. 4. Dordrecht: Kluwer Academic Publishers, 1996:113–136.

    Google Scholar 

  10. Hankamer B, Morris EP, Nield J et al. Subunit positioning and transmembrane helix organisation in the core dimer of photosystem II. FEBS Lett 2001; 504:142–151.

    Article  PubMed  CAS  Google Scholar 

  11. Diner BA, Babcock GT. Structure, dynamics and energy conversion efficiency in photosystem II. In: Ort DR, Yocum CF, eds. Advances in Photosynthesis: The Light Reactions. Vol. 4. Dordrecht: Kluwer Academic Publishers, 1996:213–247.

    Google Scholar 

  12. Klimov VV, Dolan E, Ke B. EPR properties of an intermediary electron acceptor (pheophytin) in Photosystem II reaction centers at cryogenic temperatures. FEBS Lett 1980; 112:97–100.

    Article  CAS  Google Scholar 

  13. Debus RJ, Berry BA, Sithole I et al. Directed mutagenesis indicates that the donor to P680+ in Photosystem II is Tyr-160 of the D1 polypeptide. Biochemistry 1988; 27:9071–9074.

    Article  PubMed  CAS  Google Scholar 

  14. Debus RJ, Berry BA, Babcock GT et al. Site specific mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving complex. Proc Natl Acad Sci USA 1988; 85:427–430.

    Article  PubMed  CAS  Google Scholar 

  15. Kok B, Forbush B, McGloin M. Cooperation of charges in photosynthetic oxygen evolution. A linear four step mechanism. Photochem Photobiol 1970; 11:457–475.

    PubMed  CAS  Google Scholar 

  16. Tommos C, Babcock GT. Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta 2000; 1458:199–219.

    Article  PubMed  CAS  Google Scholar 

  17. Saphon S, Crofts T. Protolytic reactions in Photosystem II: A new model for the release of protons accompanying the photooxidation of water. Z Naturforch 1977; 32c:617–626.

    CAS  Google Scholar 

  18. Ford RC, Rosenberg MF, Shepherd FH et al. Photosystem II 3-D structure and role of the extrinsic subunits in photosynthetic oxygen evolution. Micron 1995; 26:133–140.

    Article  CAS  Google Scholar 

  19. Tsiotis G, Walz T, Spyridaki A et al. Tubular crystals of a Photosystem II core complex. J Mol Biol 1996; 259:241–248.

    Article  PubMed  CAS  Google Scholar 

  20. Boekema EJ, Hankamer B, Bald D et al. Supramolecular structure of the photosystem II complex from green plants and cyanobacteria. Proc Natl Acad Sci USA 1995; 92:175–179.

    Article  PubMed  CAS  Google Scholar 

  21. Rögner M, Boekema EJ, Barber J. How does photosystem 2 split water? The structural basis of efficient energy conversion. Trends Biochem Sci 1996; 21:44–49.

    Article  PubMed  Google Scholar 

  22. Rhee K-H, Morris EP, Zheleva D et al. Two dimensional structure of plant photosystem II at 8 Å resolution. Nature 1997; 389:522–526

    Article  CAS  Google Scholar 

  23. Rhee K-H, Morris EP, Barber J et al. Three dimensional structure of the photosystem II reaction centre at 8 Å. Nature 1998; 396:283–286.

    Article  PubMed  CAS  Google Scholar 

  24. Hankamer B, Morris EP, Barber J. Cryoelectron microscopy of photosystem two shows that CP43 and CP47 are located on opposite sides of the D1/D2 reaction centre proteins. Nat Struct Biol 1999; 6:560–564.

    Article  PubMed  CAS  Google Scholar 

  25. Hankamer B, Morris EP, Nield J et al. Three-dimensional structure of photosystem II core dimer of higher plants determined by electron microscopy. J Struct Biol 2001; 13:262–269.

    Article  CAS  Google Scholar 

  26. Zouni A, Witt H-T, Kern J et al. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 2001; 409:739–742.

    Article  PubMed  CAS  Google Scholar 

  27. Kamiya N, Shen JR. Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci 2003; 100:98–103.

    Article  PubMed  CAS  Google Scholar 

  28. Nanba O, Satoh K. Isolation of a Photosystem II reaction center consisting of D1 and D2 polypeptides and cytochrome b559. Proc Natl Acad Sci USA 1987; 84:109–112.

    Article  PubMed  CAS  Google Scholar 

  29. Barber J, Chapman DJ, Tefler A. Characterization of a photosystem II reaction center isolated from chloroplasts of Pisum sativum. FEBS Lett 1987; 220:67–73.

    Article  CAS  Google Scholar 

  30. Ghanotakis DF, de Paula JC, Demetriou DM et al. Isolation and characterization of the CP47 kDa protein and the D1-D2-cytochrome b559 complex. Biochim Biophys Acta 1989; 974:44–53.

    PubMed  CAS  Google Scholar 

  31. Michel HP, Hunt DF, Shabanowitz J et al. Tandem mass spectrometry reveals that three photosystem II proteins of spinach chloroplasts contain N-acetyl-O-phosphothreonine at their NH2 termini. J Biol Chem 1988; 263:1123–1130.

    PubMed  CAS  Google Scholar 

  32. Michel H, Deisenhofer J. Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II. Biochemistry 1988; 27:1–7.

    Article  CAS  Google Scholar 

  33. Trebst A, Depka B. The architecture of photosystem II in plant photosynthesis. Which polypeptide carries the reaction center of photosystem II? In: Michel-Beyerle ME, ed. Antennas and Dynamics. Berlin: Springer-Verlag, 1985:216–223.

    Google Scholar 

  34. Fotinou C, Ghanotakis DF. A preparative method for the isolation of the 43 kDa, 47 kDa and the D1-D2-Cytb-559 species directly from the thylakoid membranes. Photosyn Res 1990; 37:41–48.

    Article  Google Scholar 

  35. Tang X-S, Fushimi K, Satoh K. D1-D2 complex of the Photosystem II reaction center from spinach. Isolation and partial characterization. FEBS Lett 1990; 273:257–260.

    Article  PubMed  CAS  Google Scholar 

  36. Krauss N, Schubert W-D, Klukas O et al. Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat Struct Biol 1996; 3:965–973.

    Article  PubMed  CAS  Google Scholar 

  37. Jordan P, Fromme P, Witt H-T et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 2001; 411:909–916.

    Article  PubMed  CAS  Google Scholar 

  38. Saenger W, Jordan P, Krauss N. The assembly of protein subunits and cofactors in photosystem I. Curr Opin Struct Biol 2002; 12:244–254.

    Article  PubMed  CAS  Google Scholar 

  39. Schubert W-D, Klukas O, Saenger W et al. A common ancestor for oxygenic and anoxygenic photosynthetic systems — a comparison based on the structural model of photosystem I. J Mol Biol 1998; 280:297–314.

    Article  PubMed  CAS  Google Scholar 

  40. Kobayashi M, Maeda H, Watanabe T et al. Chlorophyll α and β-carotene content in the D1/D2/cytochrome b559 reaction center complex from spinach FEBS Lett 1990; 260:138–140.

    Article  CAS  Google Scholar 

  41. Barber J, Archer MD. P680, the primary electron donor of photosystem II. J Photochem Photobiol 2001; 142:97–106.

    Article  CAS  Google Scholar 

  42. Diner BA, Rappaport F. Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol 2002; 53:551–580.

    Article  PubMed  CAS  Google Scholar 

  43. Trebst A. The three-dimensional structure of the herbicide binding niche on the reaction center polypeptides of Photosystem II. Z Naturforsch 1986; 42c:742–750.

    Google Scholar 

  44. Schelvis JPM, van Noort PI, Aartsma TJ et al. Energy transfer, charge separation and pigment arrangement in the reaction center of Photosystem II. Biochim Biophys Acta 1994; 1184:242–250.

    Article  CAS  Google Scholar 

  45. Ruffle S, Hutchison R, Sayre RT. In: Garab G, ed. Photosynthesis: Mechanisms and Effects Dordecht: Kluwer Academic, 1998:1013–1016.

    Google Scholar 

  46. Tracewell CA, Vrettos JS, Bautista JA et al. Carotenoid photooxidation in photosystem II. Arch. Biochem Biophys 2001; 385:61–69.

    Article  CAS  Google Scholar 

  47. Newell WR, van Amerongen H, Barber J et al. Spectroscopic characterization of the reaction center of photosystem-li using polarized-ligh—Evidence for beta-carotene excitons in psi-Ii reaction Centers. Biochim Biophys Acta 1991; 1057:232–238.

    Article  CAS  Google Scholar 

  48. Vasil’ev S, Brudwig GW, Bruce D. The X-ray structure of photosystem II reveals a novel electron transport pathway between P680, cytochrome b559 and the energy-quenching cation, Chlz+. FEBS Lett 2003; 543:159–163.

    Article  PubMed  CAS  Google Scholar 

  49. Whitmarsh J, Pakrasi HB. Form and function of cytochrome b559 In: Ort DR, Yocum CF, eds. Advances in Photosynthesis: The Light Reactions. Vol. 4. Dordrecht: Kluwer Academic Publishers, 1996:249–264.

    Google Scholar 

  50. Sharma J, Panico M, Barber J et al. Characterization of the low molecular weight photosystem II reaction center subunits and their light-induced modifications by mass spectrometry J Biol Chem 1997; 272:3935–3943.

    Article  PubMed  CAS  Google Scholar 

  51. Pakrasi HB, Ciechi PD, Whitmarsh J. Site-directed mutagenesis of the heme axial ligands of cytochrome b559 affects the stability of the Photosystem II complex. EMBO J 1991; 10:1619–1627.

    PubMed  CAS  Google Scholar 

  52. Tae GS, Cramer WA. Truncation of the COOH-terminal domain of the psbE gene product in Synecocystis sp. 6803: Requirements for Photosystem II assembly and function. Biochemistry 1992; 31:4066–4073.

    Article  PubMed  CAS  Google Scholar 

  53. Tae GS, Black MT, Cramer WA et al. Thylakoid membrane protein topography: transmembrane orientation of the chloroplast cytochrome b559 psbE gene product. Biochemistry 1988; 27:9075–9080.

    Article  PubMed  CAS  Google Scholar 

  54. Buser CA, Diner BA, Brudwig GW. Reevaluation of the stoichiometry of cytochrome b559 in Photosystem II and thylakoid membranes. Biochemistry 1992; 31:11441–11448.

    Article  PubMed  CAS  Google Scholar 

  55. Alizadeh S, Morais F, Barber J et al. Isotopic labelling of the polypeptide subunits of the isolated photosystem II reaction-center complex of Chlamydomonas reihnhardtii suggests an αβ heterodimeric structure for cytochrome b-550. J Photochem Photobiol 1999; 48:148–153.

    Article  CAS  Google Scholar 

  56. Kunstner P, Guardiola A, Takahashi Y et al. A mutant strain of Chlamydomonas reinhardtii lacking the chloroplast photosystem II psbI gene grows photoautotrophically. J Biol Chem 1995; 270:9651–9654.

    Article  PubMed  CAS  Google Scholar 

  57. Ikeuchi M, Shukla VK, Pakrasi HB et al. Directed inactivation of the psbI gene does not affect photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Mol Gen Genet 1995; 249:622–628.

    Article  PubMed  CAS  Google Scholar 

  58. Webber AN, Packman LC, Chapman DJ et al. A fifth chloroplast-encoded polypeptide is present in the photosystem II reaction centre complex FEBS Lett 1989; 242:259–262.

    Article  CAS  Google Scholar 

  59. Tomo T, Enami I, Satoh K. Orientation and nearest neighbor analysis of psbI gene product in the photosystem II reaction center complex using bifunctional cross-linkers. FEBS Lett 1993; 323:15–18.

    Article  PubMed  CAS  Google Scholar 

  60. Ikeuchi M, Inoue Y. A new Photosystem II reaction center component (38 kDa) encoded by the chloroplast genome. FEBS Lett 1988; 241:99–103.

    Article  PubMed  CAS  Google Scholar 

  61. Ikeuchi M, Inoue Y. A new 38 kDa polypeptide intrinsic to Photosystem II reaction center as revealed by modified SDS-PAGE with improved resolution of the low-molecular-weight proteins. Plant Cell Physiol 1988; 29:1233–1239.

    CAS  Google Scholar 

  62. Bricker TM. The structure and function of CPa-1 and CPa-2 in Photosystem II. Photosyn Res 1990; 24:1–13.

    Article  CAS  Google Scholar 

  63. Barbato R, Race H, Friso G et al. Chlorophyll levels in the pigment-binding proteins of photosystem II A study based on the chlorophyll to cytochrome ratio in different photosystem II preparations FEBS Lett 1991; 286:86–90.

    Article  PubMed  CAS  Google Scholar 

  64. Zheleva D, Sharma J, Panico M et al. Isolation and characterization of monomeric and dimeric CP47-reaction center photosystem II complexes. J Biol Chem 1998; 273:16122–16127.

    Article  PubMed  CAS  Google Scholar 

  65. Zuber H, Brunisholz R, Sidler W. Structure and function of light harvesting pigment protein complexes. In: Amesz J, eds. Photosynthesis. Amsterdam: Elsevier Press, 1987:233–271.

    Google Scholar 

  66. Shen G, Eaton-Rye JJ, Vermaas WFJ. Mutation of histidine residues in CP47 leads to destabilization of the photosystem II complex and to impairment of light energy transfer Biochemistry 1993; 32:5109–5115.

    Article  PubMed  CAS  Google Scholar 

  67. Bricker TM, Frankel LK. Use of a monoclonal antibody in structural investigations of the 49-kDa polypeptide of photosystem II. Arch Biochem Biophys 1987; 256:295–301.

    Article  PubMed  CAS  Google Scholar 

  68. Frankel LK, Bricker TM. Epitope mapping of the monoclonal antibody FAC2 on the apoprotein of Cpa-1 in photosystem II. FEBS Lett 1989; 257:279–282.

    Article  PubMed  CAS  Google Scholar 

  69. Bricker TM, Odom WR, Queirolo CB. Close association of the 33 kDa extrinsic protein with the apoprotein of CPa1 in photosystem II. FEBS Lett 1988; 231:111–117.

    Article  CAS  Google Scholar 

  70. Enami I, Kaneko M, Kitamura N et al. Total immobilization of the extrinsic 33 kDa protein in spinach Photosystem II preparations. Protein stoichiometry and stabilization of oxygen evolution. Biochim Biophys Acta 1991; 1060:224–232.

    Article  CAS  Google Scholar 

  71. Odom WR, Bricker TM. Interaction of CPa-1 with the manganese-stabilizing protein of photosystem II: Identification of domains cross-linked by 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide. Biochemistry 1992; 31:5616–5620.

    Article  PubMed  CAS  Google Scholar 

  72. Frankel LK, Bricker TM. Interaction of CPa-1 with the manganese-stabilizing protein of photosystem II Identification of domains on CPa-1 that are shielded from N-hydroxysuccinimide biotinylation by the manganese-stabilizing protein. Biochemistry 1992; 31:11059–11064.

    Article  PubMed  CAS  Google Scholar 

  73. Hayashi H, Fujimura Y, Mohanty PS et al. The role of CP 47 in the evolution of oxygen and the binding of the extrinsic 33-kDa protein to the core complex of Photosystem II as determined by limited proteolysis. Photosynth Res 1993; 3:35–42.

    Article  Google Scholar 

  74. Putnam-Evans C, Bricker TM. Site-directed mutagenesis of the CPa-1 protein of photosystem II: alteration of the basic residue pair 384,385R to 384,385G leads to a defect associated with the oxygen-evolving complex. Biochemistry 1992; 31:11482–11488.

    Article  PubMed  CAS  Google Scholar 

  75. Putnam-Evans C, Bricker TM. Site-directed mutagenesis of the CP47 protein of photosystem II: Alteration of the basic residue 448R to 448G prevents the assembly of functional photosystem II centers under chloride-limiting conditions. Biochemistry 1994; 33:10770–10776.

    Article  PubMed  CAS  Google Scholar 

  76. Putnam-Evans C, Burnap RL, Wu J et al. Site-directed mutagenesis of the CP 47 protein of photosystem II: alteration of conserved charged residues in the domain 364E-444R. Biochemistry 1996; 35:4046–4053.

    Article  PubMed  CAS  Google Scholar 

  77. Qian M, Al-Khaldi SF, Putnam-Evans C et al. Photoassembly of the photosystem II (Mn)4 cluster in site-directed mutants impaired in the binding of the manganese-stabilizing protein. Biochemistry 1997; 36:15244–15252.

    Article  PubMed  CAS  Google Scholar 

  78. Putnam-Evans C, Bricker TM. Site-directed mutagenesis of the basic residues 321K to 321G in the CP 47 protein of photosystem II alters the chloride requirement for growth and oxygen-evolving activity in Synechocystis 6803. Plant Mol Biol 1997; 34:455–463.

    Article  PubMed  CAS  Google Scholar 

  79. Morgan TR, Shand JA, Clarke SM et al. Specific requirements for cytochrome c-550 and the managanese-stabilizing protein in photoautotrophic strains of Synechocystis sp. PCC 6803 with mutations in the domain Gly-351 to Thr-436 of the chlorophyll-binding protein CP47 Biochemistry 1998; 37:14437–14449.

    Article  PubMed  CAS  Google Scholar 

  80. Clarke SM, Eaton-Rye JJ. Mutation of Phe-363 in the photosystem II protein CP47 impairs photoautotrophic growth, alters the chloride requirement, and prevents photosynthesis in the absence of either PSII-O or PSII-V in Synechocystis sp. PCC 6803 Biochemistry 1999; 38:2707–2715.

    Article  PubMed  CAS  Google Scholar 

  81. Wu JT, Masri N, Lee W et al. Random mutagenesis in the large extrinsic loop E and transmembrane-helix VI of the CP 47 protein of Photosystem II. Plant Mol Biol 1999; 39:381–386.

    Article  PubMed  CAS  Google Scholar 

  82. Akabori K, Tsukamoto H, Tsukihara J et al. Disintegration and reconstitution of Photosystem II reaction center core complex. Preparation and characterization of three different types of subcomplexes. Biochim. Biophys. Acta 1988; 932:345–357.

    Article  CAS  Google Scholar 

  83. Yamaguchi N, Takahashi Y, Satoh K. Isolation and characterization of a Photosystem II core complex depleted in the 43 kDa chlorophyll binding subunit. Plant Cell Physiol 1988; 29:123–129.

    CAS  Google Scholar 

  84. Rögner M, Chisholm DA, Diner B. Site-directed mutagenesis of the psbC gene of Photosystem II: Isolation and functional characterization of CP43-less Photosystem II core complexes. Biochemistry 1991; 30:5387–5395.

    Article  PubMed  Google Scholar 

  85. Bassi R, Hoyer-Hansen G, Barbato R et al. Chlorophyll-proteins of the Photosystem II antenna complex. J Biol Chem 1987; 262:1333–13341.

    Google Scholar 

  86. Barber J, Morris EP, Büchel C. Revealing the structure of the photosystem two chlorophyll binding proteins, CP43 and CP47. Biochim Biophys Acta 2000; 145:239–247.

    Google Scholar 

  87. de Vitry C, Diner BA, Lemoine Y. Chemical composition of Photosystem II reaction centers: Phosphorylation of PSII polypeptides. In: Biggins J, ed. Progress in Photosynthesis Research, Vol II. Dordrecht: Martinus Nijhoff, 1987:105–108.

    Google Scholar 

  88. Gounaris K, Pick U, Barber J. Stoichiometry and turnover of Photosystem II polypeptides. FEBS Lett 1987; 211:94–98.

    Article  CAS  Google Scholar 

  89. Renger G. Mechanistic and structural aspects of photosynthetic water oxidation. Physiol Plant 1997; 100:828–841.

    Article  CAS  Google Scholar 

  90. Hansson Ö, Wydrzynski T. Current perceptions of Photosystem II. Photosynth Res 1990; 23:131–162.

    Article  CAS  Google Scholar 

  91. Nugent JHA. Oxygenic photosynthesis-Electron transfer in photosystem I and photosystem II. Eur J Biochem 1996; 237:519–531.

    Article  PubMed  CAS  Google Scholar 

  92. Yachandra VK, Sauer K, Klein MP. Manganese cluster in photosynthesis: where plants oxidize water to dioxygen. Chem Rev 1996; 96:2927–2950.

    Article  PubMed  CAS  Google Scholar 

  93. McDermott E, Yachandra VK, Guiles RD et al. Characterization of the manganese O 2-evolving complex and the iron-quinone acceptor complex in photosystem II from a thermophilic cyanobacterium by electron paramagnetic resonance and X-ray absorption spectroscopy Biochemistry 1988; 27:4021–4031.

    Article  PubMed  CAS  Google Scholar 

  94. Yocum CF, Yerkes CT, Blankenship RE et al. Stoichiometry, inhibitor sensitivity and organization of manganese associated with photosynthetic oxygen evolution. Proc Natl Acad Sci USA 1981; 78:7507–7511.

    Article  PubMed  CAS  Google Scholar 

  95. Tamura N, Cheniae G. Photoactivation of the water-oxidizing complex in Photosystem II membranes depleted of Mn and extrinsic proteins. I. Biochemical and kinetic characterization. Biochim Biophys Acta 1987; 890:179–193.

    Article  CAS  Google Scholar 

  96. Ghanotakis DF, Topper J, Yocum CF. Structural organization of the oxidizing side of Photosystem II. Exogenous reductants reduce and destroy the Mn-complex in Photosystem II membranes depleted of the 17 and 23 kDa polypeptides. Biochim Biophys Acta 1984; 767:524–531.

    Article  CAS  Google Scholar 

  97. Ono T, Inoue Y. S-state turnover in the O2-evolving system of CaCl2-washed Photosystem II particles depleted of three peripheral proteins as measured by thermoluminescence. Removal of 33 kDa protein inhibits S3 to S4 transition. Biochim Biophys Acta 1985; 806:331–340.

    Article  CAS  Google Scholar 

  98. Peloquin JM, Campbell KA, Randall DW et al. 55Mn ENDOR of the S2-state multiline EPR signal of Photosystem II: Implications on the structure of the tetranuclear Mn cluster. J Am Chem Soc 2000; 122:10926–10942.

    Article  CAS  Google Scholar 

  99. Peloquin JM, Britt RD. EPR/ENDOR characterisation of the physical and electronic structure of the OEC Mn cluster. Biochim Biophys Acta 2001; 1503:96–111.

    Article  PubMed  CAS  Google Scholar 

  100. Robblee JH, Cince RM, Yachandra VK. X-ray spectroscopy-based structure of the Mn cluster and mechanism of photosynthetic oxygen evolution. Biochim Biophys Acta 2001; 1503:7–23.

    Article  PubMed  CAS  Google Scholar 

  101. Carrell TG, Tyryshkin AM, Dismukes GC. An evolution of structural models for the photosynthetic water-oxidising complex derived from spectroscopic X-ray diffraction signatures. J Biol Inorg Chem 2001; 7:2–22.

    Article  PubMed  CAS  Google Scholar 

  102. Debus RJ. Amino acid residues that modulate the properties of tyrosine Y(Z) and the manganese cluster in the water oxidizing complex of photosystem II. Biochim Biophys Acta 2001; 1503:164–86.

    Article  PubMed  CAS  Google Scholar 

  103. Preston C, Seibert M. Protease treatments of Photosystem-II membrane-fragments reveal that there are 4 separate high-affinity mn-binding sites. Biochemistry 1991; 30:9625–9633.

    Article  PubMed  CAS  Google Scholar 

  104. Yocum CF. Calcium activation of photosynthetic water oxidation. Biochim Biophys Acta 1991; 1059:1–15.

    Article  CAS  Google Scholar 

  105. Ghanotakis DF, Babcock GT, Yocum CF. Calcium reconstitutes high rates of oxygen evolution in polypeptide depleted Photosystem II preparations FEBS Lett 1984; 167:127–130.

    Article  CAS  Google Scholar 

  106. Boussac A, Rutherford AW. Nature of the inhibition of the oxygen-evolving enzyme of photosystem II induced by NaCl washing and reversed by the addition of Ca2+ or Sr2+ FEBS Lett 1988; 236:432–436.

    Article  CAS  Google Scholar 

  107. Lockett CJ, Demetriou C, Bowden SJ et al. Studies on calcium depletion of PS II by pH 8.3 treatment. Biochim Biophys Acta 1990; 1016:213–218.

    Article  CAS  Google Scholar 

  108. Ghanotakis DF, Babcock GT, Yocum CF. Structure of the oxygen-evolving complex of Photosystem II: Calcium and lanthanum compete for sites on the oxidizing side of Photosystem II which control the binding of water-soluble polypeptides and regulate the activity of the manganese complex Biochim Biophys Acta 1985; 809:173–180.

    Article  CAS  Google Scholar 

  109. Ono T-A, Inoue Y. Discrete extraction of the Ca atom functional for O2 evolution in higher plant photosystem II by a simple low pH treatment FEBS Lett 1988; 227:147–152.

    Article  CAS  Google Scholar 

  110. Ono T-A, Inoue Y. Roles of Ca2+ in O2 evolution in higher plant photosystem II: effects of replacement of Ca2+ site by other cations Arch Biochem Biophys 1989; 275:440–448.

    Article  PubMed  CAS  Google Scholar 

  111. Latimer MJ, DeRose VJ, Mukerji I et al. Evidence for the proximity of calcium to the manganese cluster of photosystem II: determination by X-ray absorption spectroscopy Biochemistry 1995; 34:10898–10909.

    Article  PubMed  CAS  Google Scholar 

  112. Noguchi T, Ono T-A, Inoue Y. Direct detection of a carboxylate bridge between Mn and Ca2+ in the photosynthetic oxygen-evolving center by means of Fourier transform infrared spectroscopy Biochim Biophys Acta 1995; 1228:189–200.

    Article  Google Scholar 

  113. MacLachlan DJ, Hallahan BJ, Ruffle SV et al. An e.x.a.f.s. study of the manganese O2-evolving complex in purified photosystem II membrane fractions. The S1 and S2 states. Biochem J 1992; 285:569–576.

    PubMed  CAS  Google Scholar 

  114. Booth PJ, Rutherford AW, Boussac A. Location of the calcium binding site in Photosystem II: a Mn2+ substitution study. Biochim Biophys Acta 1996; 1277:127–134.

    Article  Google Scholar 

  115. Cinco RM, Robblee JH, Rompel A et al. Strontium EXAFS Reveals the Proximity of Calcium to the Manganese Cluster of Oxygen-Evolving Photosystem II. J Phys Chem B 1998; 102:8248–8256.

    Article  CAS  Google Scholar 

  116. Cammarata KV, Cheniae GM. Studies on 17,24 kDa depleted Photosystem II membranes. Plant Physiol 1987; 84:587–595.

    PubMed  CAS  Google Scholar 

  117. Katoh S, Satoh K, Ohno T et al. In: J Biggins, ed. Progress in Photosynthesis Research. Dordrecht: Martinus Nijhoff, 1987:625–628.

    Google Scholar 

  118. Shen J-R, Satoh K, Katoh S. Calcium content of oxygen-evolving Photosystem II preparations from higher plants. Effects of NaCl treatment. Biochim Biophys Acta 1988; 933:358–364.

    Article  CAS  Google Scholar 

  119. Ädelroth P, Lindberg K, Andréasson L-E. Studies of Ca2+ binding in spinach photosystem II using 45Ca2+. Biochemistry 1995; 34:9021–9027.

    Article  PubMed  Google Scholar 

  120. Sandusky PO, Yocum CF. The chloride requirement for photosynthetic oxygen evolution. Analysis of the effects of chlorie and other anions on amine inhibition of the oxygen-evolving complex. Biochim Biophys Acta 1984; 776:603–611.

    Google Scholar 

  121. Wydrzynski T, Baumgart F, MacMillan F et al. Is there a direct chloride cofactor requirement in the oxygen-evolving reactions of photosystem II? Photosynth Res 1990; 25:59–72.

    Article  CAS  Google Scholar 

  122. Rutherford AW, Zimmermann J-L, Boussac A. In: Barber J, eds. Elsevier The Photosystems: Structure, Function and Molecular Biology. Amsterdam, 1992:179–229.

    Google Scholar 

  123. Kelley W, Izawa S. The role of chloride ion in Photosystem II. I. Effects of chloride ion in Photosystem II electron transport and on hydroxylamine inhibition. Biochim Biophys Acta 1978; 502:198–210.

    Article  PubMed  CAS  Google Scholar 

  124. Miyao M, Murata N. The chloride effect on photosynthetic oxygen evolution: interaction of chloride with 18-kDa, 24-kDa and 33-kDa proteins FEBS Lett 1985; 180:303–308.

    Article  CAS  Google Scholar 

  125. Homann PH. Chloride relations of photosystem II membrane preparations depleted of, and resupplied with, their 17 and 23 kDa extrinsic polypeptides Photosynth Res 1988; 15:205–220.

    Article  CAS  Google Scholar 

  126. Homann PH. Structural effects of chloride and other anions on the water oxidizing complex of chloroplast photosystem II. Plant Physiol 1988; 88:194–199.

    PubMed  CAS  Google Scholar 

  127. Lindberg K, Wydrzynski T, Vänngard T et al. Slow release of chloride from 36Cl-labeled photosystem II membranes FEBS Lett 1990; 264:153–155.

    Article  CAS  Google Scholar 

  128. Lindberg K, Andréasson L-E. A One-Site, Two-State Model for the Binding of Anions in Photosystem II. Biochemistry 1996; 35:14259–14267.

    Article  PubMed  CAS  Google Scholar 

  129. Wincencjusz H, van Gorkom HJ, Yocum CF. The photosynthetic oxygen evolving complex requires chloride for its redox state S2→S3 and S3→S0 transitions but not for S0→S1 or S12 transitions. Biochemistry 1997; 36:3663–3670.

    Article  PubMed  CAS  Google Scholar 

  130. Wincencjusz H, Yocum CF, van Gorkom HJ. Activating anions that replace Cl in the O2-evolving complex of photosystem II slow the kinetics of the terminal step in water oxidation and destabilize the S2 and S3 states Biochemistry 1999; 38:3719–3725.

    Article  PubMed  CAS  Google Scholar 

  131. Seidler A. The extrinsic polypeptides of Photosystem II. Biochim Biophys Acta 1996; 1277:36–60.

    Google Scholar 

  132. Ono T, Inoue Y. Reconstitution of photosynthetic oxygen evolving activity by rebinding of 33-kDa protein to CaCl2-extracted PSII particles. FEBS Lett 1984; 166:381–384.

    Article  CAS  Google Scholar 

  133. Miyao M, Murata N. Role of the 33 kDa polypeptide in preserving Mn in the photosynthetic oxygen evolution system and its replacement by chloride ions. FEBS Lett 1984; 168:281–286.

    Article  Google Scholar 

  134. Mavankal G, McCain DC, Bricker TM. Effects of chloride on paramagnetic coupling of manganese in calcium chloride-washed Photosystem II preparations. FEBS Lett 1986; 202:235–239.

    Article  CAS  Google Scholar 

  135. Kuwabara T, Miyao M, Murata T et al. The function of 33-kDa protein in the photosynthetic oxygen-evolution system studied by reconstitution experiments. Biochim Biophys Acta 1985; 806:283–289.

    Article  CAS  Google Scholar 

  136. Ono T, Kajikawa H, Inoue Y. Changes in protein composition and Mn abundance in Photosystem II particles on photoactivation of the latent O2-evolving system in flash-grown wheat leaves. Plant Physiol 1986; 80:85–90.

    Article  PubMed  CAS  Google Scholar 

  137. Burnap LR, Sherman LA. Deletion mutagenesis in Synechocystis sp. PCC6803 indicates that the Mn-stabilizing protein in photosystem II is not essential for O2 evolution. Biochemistry 1991; 30:440–446.

    Article  PubMed  CAS  Google Scholar 

  138. Philbrick JB, Diner BA, Zilinskas B. Construction and characterization of cyanobacterial mutants lacking the managanese-stabilizing polypeptide of photosystem II. J Biol Chem 1991; 266:13370–13376.

    PubMed  CAS  Google Scholar 

  139. Koike H, Inoue Y. Properties of a peripheral 34-kDa protein in Synechococcus vulcanus Photosystem II particles. Its exchangeability with spinach 33-kDa protein in reconstitution of oxygen evolution. Biochim Biophys Acta 1985; 807:64–73.

    Article  CAS  Google Scholar 

  140. Betts S, Hachigian TM, Pichersky RE et al. Reconstitution of the spinach oxygen-evolving complex with recombinant Arabidopsis manganese-stabilizing protein. Plant Mol Biol 1994; 26:117–130.

    Article  PubMed  CAS  Google Scholar 

  141. Leuschner C, Bricker TM. Interaction of the 33 kDa extrinsic protein with photosystem II: Rebinding of the 33 kDa extrinsic protein to photosystem II membranes that contain four, two or zero manganese per photosystem II reaction center. Biochemistry 1996; 35:4551–4557.

    Article  PubMed  CAS  Google Scholar 

  142. Hankamer B, Barber J, Boekema EJ. Structure and membrane organization of photosystem II in green plants. Annu Rev Plant Physiol Plant Mol Biol 1997; 48:641–671.

    Article  PubMed  CAS  Google Scholar 

  143. Miyao M, Murata N. The model of binding of the three extrinsic proteins of 33 kDa, 23 kDa and 18 kDa in the photosystem II complex of spinach. Biochim Biophys Acta 1989; 977:315–321.

    Article  CAS  Google Scholar 

  144. Kavelaki K, Ghanotakis DF. Effect of the manganese complex on the binding of the extrinsic proteins (17, 23 and 33 kDa) of photosystem II. Photosynth Res 1991; 29:149–155.

    CAS  Google Scholar 

  145. Enami I, Miyaoka T, Mochizuki Y et al. Nearest neghbor relationships among constituent proteins of oxygen-evolving photosystem II membranes: binding and function of the extrinsic 33 kDa protein. Biochim Biophys Acta 1989; 973:35–40.

    CAS  Google Scholar 

  146. Tichy M, Vermaas WFJ. Functional analysis of combinatorial mutants altered in a conserved region in loop E of the CP47 protein in Synechocystis sp. PCC 6803. Biochemistry 1998; 37:1523–1531.

    Article  PubMed  CAS  Google Scholar 

  147. Enami I, Tohri A, Kamo M et al. Identification of domains on the 43 kDa chlorophyll-carrying protein (CP43) that are shielded from tryptic attack by binding of the extrinsic 33 kDa protein with photosystem II complex. Biochim Biophys Acta 1997; 1320:17–26.

    Article  PubMed  CAS  Google Scholar 

  148. Eaton-Rye JJ, Murata N. Evidence that the amino-terminus of the 33 kDa extrinsic protein is required for binding to the photosystem II complex. Biochim Biophys Acta 1989; 977:219–226.

    Article  PubMed  CAS  Google Scholar 

  149. Bricker TM, Frankel LK. The structure and function of the 33 kDa extrinsic protein of photosystem II: a critical assessment. Photosynth Res 1998; 56:157–173.

    Article  CAS  Google Scholar 

  150. Ahmed A, Tajmir-Riahi HA, Carpentier R. A quantitative secondary structure analysis of the 33 kDa extrinsic polypeptide of photosystem II by FTIR spectroscopy. FEBS Lett 1995; 363:65–68.

    Article  PubMed  CAS  Google Scholar 

  151. Zhang HM, Fischer G, Wydrznski T. In: Mathis P, ed. Photosynthesis: From Light to Biosphere. Dordrecht: Kluwer Academic Press, 1995:447–450

    Google Scholar 

  152. Xu Q, Nelson J, Bricker TM. Secondary structure of the 33 kDa, extrinsic protein of Photosystem II: a far-UV circular dichroism study. Biochim Biophys Acta 1994; 1188:427–431.

    Article  PubMed  Google Scholar 

  153. Shutova T, Irrgang K-D, Shubin V et al. Analysis of pH-Induced Structural Changes of the Isolated Extrinsic 33 Kilodalton Protein of Photosystem II. Biochemistry 1997; 36:6350–6358.

    Article  PubMed  CAS  Google Scholar 

  154. Lydakis-Simantiris N, Hutchison RS, Betts SD et al. Manganese stabilizing protein of photosystem II is a thermostable, natively unfolded polypeptide. Biochemistry 1999; 38:404–414.

    Article  PubMed  CAS  Google Scholar 

  155. Shutova T, Irrgang K-D, Klimov VV et al. Is the manganese stabilizing 33 kDa protein of photo-system II attaining a ‘natively unfolded’ or a ‘molten globule’ structure in solution? FEBS Lett 2000; 467:137–140.

    Article  PubMed  CAS  Google Scholar 

  156. Nield J, Balsera M, de las Rivas J et al. Three-dimensional Electron Cryomicroscopy Study of the Extrinsic Domains of the Oxygen-evolving Complex from Spinach. J Biol Chem 2002; 277:15006–15012.

    Article  PubMed  CAS  Google Scholar 

  157. Motoki A, Hirano M, Katoh S. Two regions of the Mn-stabilizing protein from Synechococcus elongatus that are involved in binding to Photosystem II complexes. Biochim Biophys Acta 1998; 1365:492–502.

    Article  PubMed  CAS  Google Scholar 

  158. Motoki A, Usui M, Shimazu T et al. A Domain of the Manganese-stabilizing Protein from Synechococcus elongatus Involved in Functional Binding to Photosystem II. J Biol Chem 2002; 277:14747–14756.

    Article  PubMed  CAS  Google Scholar 

  159. Motoki A, Miura K, Shimazu T et al. Characterization of the manganese-stabilizing protein from Synechococcus elongatus. In: Murata N, ed. Research in Photosynthesis. Netherlands: Kluwer Academic Publishers, 1992:413–416.

    Google Scholar 

  160. Hutchison RS, Betts SD, Yocum CF et al. Conformational changes in the extrinsic manganese stabilizing protein can occur upon binding to the photosystem II reaction center: an isotope editing and FTIR study. Biochemistry 1998; 37:5643–5653.

    Article  PubMed  CAS  Google Scholar 

  161. Enami I, Kamo M, Ohta H et al. Intramolecular crosslinking of the extrinsic 33-kDa protein leads to loss of oxygen evolution but not its ability of binding to photosystem II and stabilization of the manganese cluster. J Biol Chem 1998; 273:4629–4634.

    Article  PubMed  CAS  Google Scholar 

  162. Kuwabara T, Reddy KJ, Sherman LA. Nucleotide sequence of the gene from the cyanobacterium Anacystis nidulans R2 encoding the Mn-stabilizing protein involved in photosystem II water oxidation. Proc Natl Acad Sci USA 1987; 84:8230–8234.

    Article  PubMed  CAS  Google Scholar 

  163. Philbrick JB, Zilinskas BA. Cloning, nucleotide sequence and mutational analysis of the gene encoding the Photosystem II manganese-stabilizing polypeptide of Synechocystis 6803. Mol Gen Genet 1988; 212:418–425.

    Article  PubMed  CAS  Google Scholar 

  164. Borthakur D, Haselkorn R. Nucleotide sequence of the gene encoding the 33 kDa water oxidizing polypeptide in Anabaena sp. strain PCC 7120 and its expression in Eschericia coli. Plant Mol Biol 1989; 13:427–439.

    Article  PubMed  CAS  Google Scholar 

  165. Miura K, Shimazu T, Motoki A et al. Nucleotide sequence of the Mn-stabilizing protein gene of the thermophilic cyanobacterium Synechococcus elongatus. Biochim Biophys Acta 1993; 1172:357–360.

    PubMed  CAS  Google Scholar 

  166. Tucker DL, Hirsh K, Li H et al. The manganese stabilizing protein (MSP) and the control of O2 evolution in the unicellular, diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. Biochim Biophys Acta 2001; 1504:409–422.

    Article  PubMed  CAS  Google Scholar 

  167. Shigemori Y, Inagaki J, Mori H et al. The presequence of the precursor to the nucleus-encoded 30 kDa protein of photosystem II in Euglena gracilis Z induces two hydrophobic domains. Plant Mol Biol 1994; 24:209–215.

    Article  PubMed  CAS  Google Scholar 

  168. Mayfield SP, Rahire M, Frank G et al. Analysis of the genes of the OEE1 and OEE3 proteins of the photosystem II complex from Chlamydomonas reinhardtii. Plant Mol Biol 1989; 12:683–693.

    Article  CAS  Google Scholar 

  169. Tyagi A, Hermans J, Steppuhn J et al. Nucleotide sequence of cDNA clones encoding the complete “33kDa” precursor protein associated with the photosynthetic oxygen evolving complex from spinach. Mol Gen Genet 1987; 207:288–293.

    Article  CAS  Google Scholar 

  170. Wales R, Newman BJ, Pappin D et al. The extrinsic 33 kDa polypeptide of the oxygen-evolving complex of photosystem II is a putative calcium-binding protein and is encoded by a multigene family in pea. Plant Mol Biol 1989; 12:439–451.

    Article  CAS  Google Scholar 

  171. Meadows JW, Holford A, Eaines CA et al. Nucleotide sequence of a cDNA clone encoding the precursor of the 33 kDa protein of the oxygen-evolving complex from wheat. Plant Mol Biol 1991; 16:1085–1087.

    Article  PubMed  CAS  Google Scholar 

  172. Van Spanje M, Dirkse WG, Nap JP et al. Isolation and analysis of cDNA encoding the 33 kDa precursor protein of the oxygen-evolving complex of potato. Plant Mol Biol 1991; 17:157–160.

    Article  PubMed  Google Scholar 

  173. Görlach J, Schmid J and Amrhein N. The 33 kDa protein of the oxygen-evolving complex: A multi-gene family in tomato. Plant Cell Physiol 1993; 34:497–501.

    PubMed  Google Scholar 

  174. Enami I, Yoshihara S, Tohri A et al. Cross-reconstitution of various extrinsic proteins and photosystem II complexes from cyanobacteria, red algae and higher plants. Plant Cell Physiol 2000; 41:1354–1364.

    Article  PubMed  CAS  Google Scholar 

  175. Tohri A, Suzuki T, Okuyama S et al. Comparison of the structure of the extrinsic 33 kDa protein from different organisms. Plant and Cell Physiol 2002; 43:429–439.

    Article  CAS  Google Scholar 

  176. Vogt J, Schulz GE. The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence. Struct Folding Des 1999; 7:1301–1309.

    Article  CAS  Google Scholar 

  177. Pautsch A, Schulz GE. High-resolution Structure of the OmpA Membrane Domain. J Mol Biol 2000; 298:273–282.

    Article  PubMed  CAS  Google Scholar 

  178. Pazos F, Heredia P, Valencia A et al. Threading structural model of the manganese-stabilizing protein 33 kDa protein reveals presence of two possible β-sandwich domains. Proteins Struct Funct Genet 2001; 45:372–381.

    Article  PubMed  CAS  Google Scholar 

  179. Shen G, Inoue Y. Binding and function of two new extrinsic components, cytochrome c550 and a 12 kDa protein, in cyanobacterial Photosystem II. Biochemistry 1993; 32:1825–1832.

    Article  PubMed  CAS  Google Scholar 

  180. Nishiyama Y, Hayashi H, Watanabe T et al. Photosynthetic oxygen evolution is stabilized by cytochrome c550 against heat inactivation in Synechococcus sp. PCC 7002. Plant Physiol 1994; 105:1313–1319.

    Article  PubMed  CAS  Google Scholar 

  181. Nishiyama Y, Los DA, Hayashi H et al. Thermal protection of the oxygen-evolving machinery by PsbU, an extrinsic protein of photosystem II, in Synechococcus species PCC 7002. Plant Physiol 1997; 115:1473–1480.

    Article  PubMed  CAS  Google Scholar 

  182. Nishiyama Y, Los DA and Murata N. PsbU, a protein associated with photosystem II, is required for the acquisition of cellular thermotolerance in Synechococcus species PCC 7002. Plant Physiol 1999; 120:301–308.

    Article  PubMed  CAS  Google Scholar 

  183. Ghanotakis DF, Topper J, Babcock GT et al. Water-soluble 17 and 23 kDa polypeptides restore oxygen evolution activity by creating a high-affinity binding site for Ca2+ on the oxidizing side of Photosystem II. FEBS Lett 1984; 170:169–173.

    Article  CAS  Google Scholar 

  184. Waggoner CM, Yocum CF. Selective depletion of water-soluble polypeptides associated with Photosystem II. In: Biggins J, eds. Progress in Photosynthesis Research. Dordrecht: Martinus Nijhoff, Vol. I. 1987: 685–688.

    Google Scholar 

  185. Ifuku K, Sato F. Importance of the N-terminal sequence of the extrinsic 23 kDa polypeptide in Photosystem II in ion retention in oxygen evolution. Biochim Biophys Acta 2001; 1546:196–204.

    PubMed  CAS  Google Scholar 

  186. Rashid A, Carpentier R. The 16 and 23 kDa extrinsic polypeptides and the associated Ca+2 and Cl modify atrazine interaction with the Photosystem II core complex. Photosynth Res 1990; 24:221–227.

    Article  CAS  Google Scholar 

  187. Briantais J-M, Vernotte C, Miyao M. Relationship between O2 evolution capacity and cytochrome b559 high potential form in Photosystem II particles. Biochim Biophys Acta 1985; 808:348–351.

    Article  CAS  Google Scholar 

  188. Miyao M, Murata N. Partial disintegration and reconstitution of the photosynthetic oxygen evolution system. Binding of 24 kDa and 18 kDa polypeptides. Biochim. Biophys Acta 1983; 725:87–93.

    Article  CAS  Google Scholar 

  189. Kuwabara T, Murata T, Miyao M et al. Partial degradation of the 18 kDa protein of the photosynthetic oxygen-evolving complex: A study of a binding site. Biochim Biophys Acta 1986; 850:146–155.

    Article  CAS  Google Scholar 

  190. Miyao M, Fujimura Y, Murata N. Partial degradation of the extrinsic 23 kDa protein of the Photosystem II complex of spinach. Biochim Biophys Acta 1988; 936:465–474.

    Article  CAS  Google Scholar 

  191. Becker B, Callahan F, Cheniae G. Photoactivation of NH2OH-treated leaves: Reassembly of released extrinsic polypeptides and religation of Mn into the polynuclear Mn catalyst of water oxidation. FEBS Lett 1985; 192:209–214.

    Article  CAS  Google Scholar 

  192. Zhang H, Ishikawa Y, Yamamoto Y et al. Secondary structure and thermal stability of the extrinsic 23 kDa protein of photosystem II studied by Fourier transform infrared spectroscopy. FEBS Lett 1998; 426:347–351.

    Article  PubMed  CAS  Google Scholar 

  193. Zhang H, Yamamoto Y, Ishikawa Y et al. Characterization of the extrinsic 16 kilodalton protein of spinach photosystem II by Fourier transform infrared spectroscopy. J Mol Struct 1999; 513:127–132.

    Article  CAS  Google Scholar 

  194. Frazao C, Enguita FJ, Coelho R et al. Crystal structure of low-potential cytochrome c549 from Synechocystis sp. PCC 6803 at 1.21 Å resolution. J Biol Inorg Chem 2001; 6:324–332.

    Article  PubMed  CAS  Google Scholar 

  195. Sawaya MR, Krogmann DW, Serag A et al. Structures of cytochrome c-549 and cytochrome c6 from the cyanobacterium Arthrospira maxima. Biochemistry 2001; 40:9215–9225.

    Article  PubMed  CAS  Google Scholar 

  196. Nield J, Kruse O, Ruprecht J et al. 3D structure of Chlamydomonas reinhardtii and Synechococcus elongatus photosystem II complexes allow for comparison of their OEC organisation. J Biol Chem 2000; 275:27940–27946.

    PubMed  CAS  Google Scholar 

  197. Nield JN, Funk C, Barber J. Supermolecular structure of photosystem II and location of the psbS protein. Proc R Soc London 2000; 355:1337–1344.

    CAS  Google Scholar 

  198. Andersson B, Akurlund H-E. In: Barber J, ed. Topics in Photosynthesis, Vol. 8. Amsterdam: Elsevier Science Publishers, 1987:379–420.

    Google Scholar 

  199. Han KC, Shen JR, Ikeuchi M et al. Chemical crosslinking studies of extrinsic proteins in cyanobacterial photosystem II. FEBS Lett 1994; 355:121–124.

    Article  PubMed  CAS  Google Scholar 

  200. Bricker TM, Frankel LK. The structure and function of CP47 and CP43 in photosystem II. Photosynth Res 2002; 72:131–146.

    Article  PubMed  CAS  Google Scholar 

  201. Andersson B, Larsson C, Jannson C et al. Immunological studies on the organization of proteins in photosynthetic oxygen evolution. Biochim Biophys Acta 1984; 766:21–26.

    Article  CAS  Google Scholar 

  202. Murata N, Miyao M, Omata T et al. Stoichiometry of components in the photosynthetic oxygen evolution system of Photosystem II particles prepared with TritonX-100 spinach chloroplast. Biochim Biophys Acta 1984; 765:363–369.

    Article  CAS  Google Scholar 

  203. Milner PA, Gogel G, Barber J. Investigation of the spatial relationships between Photosystem 2 polypeptides by reversible crosslinking and diagonal electrophoresis. Photosynth Res 1987; 13:185–198.

    Article  Google Scholar 

  204. Yamamoto Y, Nakayama S, Cohn CL et al. Highly efficient purification of the 33-, 24-, and 18-kDa proteins in spinach photosystem II by butanol/water phase partitioning and high-performance liquid chromatography. Arch Biochem Biophys 1987; 255:156–161.

    Article  PubMed  CAS  Google Scholar 

  205. Xu QA, Bricker TM. Structural organization of proteins on the oxidizing side of photosystem II: Two molecules of the 33 kDa manganese-stabilizing protein per reaction center. J Biol Chem 1992; 267:25816–25821.

    PubMed  CAS  Google Scholar 

  206. Betts SD, Ross JR, Pichersky E et al. Mutation val35ala weakens binding of the 33-kDa manganese stabilizing protein of photosystem II to one of two sites. Biochemistry 1997; 36:4047–4053.

    Article  PubMed  CAS  Google Scholar 

  207. Popelkova H, Im M, Lydakis-Simantiris N et al. N-terminus of the photosystem II managanese stabilizing protein: Effects of sequence elongation and truncation. Biochemistry 2002; 41:2702–2711.

    Article  PubMed  CAS  Google Scholar 

  208. Popelkova H, Im M, Yocum CF. N-terminal truncations of manganese stabilizing protein identify two amino acid sequences required for binding of the eukaryotic protein to photosystem II, and reveal the absence of one binding-related sequence in cyanobacteria. Biochemistry 2002; 41:10038–10045.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aspasia Spyridaki .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience

About this chapter

Cite this chapter

Spyridaki, A., Psylinakis, E., Ghanotakis, D.F. (2006). Photosystem II. In: Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices. Biotechnology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36672-2_3

Download citation

Publish with us

Policies and ethics