Skip to main content

Cellular Mechanisms Underlying the Remodeling of Retinogeniculate Connections

  • Chapter
Development and Plasticity in Sensory Thalamus and Cortex

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  • Ahlsén G., Lindström S., and Lo F-S (1985). Interaction between inhibitory pathways to principal cells in the lateral geniculate nucleus of the cat. Exp. Brain Res. 58: 134–143.

    Article  PubMed  Google Scholar 

  • Angelucci A., Clasca F., and Sur M. (1996) Anterograde axonal tracing with the subunit B of cholera toxin: a highly sensitive immunohistochemical protocol for revealing fine axonal morphology in adult and neonatal brains. J. Neurosci. Meth. 65: 101–112.

    Article  CAS  Google Scholar 

  • Bear M.F., Cooper L.N., and Ebner F.F. (1987). A physiological basis for a theory of synapse modification. Science 237: 42–48.

    Article  PubMed  CAS  Google Scholar 

  • Bear M.F. and Malenka R.C. (1994) Synaptic plasticity, LTP and LTD. Curr Opin Neurobiol. 4: 389–399.

    Article  PubMed  CAS  Google Scholar 

  • Blitz, D.M. and Regehr W.G. (2005) Timing and specificity of feedforward inhibition within the LGN. Neuron 45: 917–928.

    Article  PubMed  CAS  Google Scholar 

  • Budde T., Munsch T., and Pape H-C. (1998). Distribution of L-type calcium channels in rat thalamic neurons. Eur. J. Neurosci. 10: 586–597.

    Article  PubMed  CAS  Google Scholar 

  • Chapman B. (2004). The role of eye specific segregation iin the retino-geniculostriate pathway, In: Chalupa, L.M. and Werner, J.S. (eds.) The Visual Neurosciences, Volume 1. MIT Press, Cambridge MA, pp 108–116.

    Google Scholar 

  • Chen C. and Regehr W.G. (2000) Developmental remodeling of the retinogeniculate synapse. Neuron 28: 955–966.

    Article  PubMed  CAS  Google Scholar 

  • Collingridge G. (1992). The mechanism of induction of receptor-dependent long-term potentiation in the hippocampus. Exp. Physiol. 77: 771–797.

    PubMed  CAS  Google Scholar 

  • Constantine-Paton M, Cline HT, and Debski E. Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annual Review of Neuroscience 13: 129–154, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Cork R.J., Namkung Y., Shin H.S., and Mize R.R. (2001). Development of the visual pathway is disrupted in mice with a targeted disruption of the calcium channel beta(3)-subunit gene. J. Comp. Neurol. 440: 177–91.

    Article  PubMed  CAS  Google Scholar 

  • Cramer, K.S. and Sur, M. (1995). Activity dependent remodeling of connections in the mammalian visual system. Curr. Opin. Neurobiol. 5: 106–111.

    Article  PubMed  CAS  Google Scholar 

  • Crunelli V., Haby M., Jassik-Gersfeld, Leresche N., and Pirchio M. (1988) Cl− and K+ dependent inhibitory postsynaptic potentials evoked by interneurones of the rat lateral geniculate nucleus. J. Physiol. 399: 153–176.

    PubMed  CAS  Google Scholar 

  • Demas J., Eglen, S.J., and Wong, R.O. (2003). Developmental loss of synchronous spontaneous activity in the mouse retina is independent of visual experience. J. Neurosci. 23, 2851–2860.

    PubMed  CAS  Google Scholar 

  • Dicaprio, R. (1997). Plateau potentials in motor neurons in the ventilatory system of the crab. J. Exp. Biol. 200: 1725–1736.

    PubMed  Google Scholar 

  • Feller, M.B. (2002). The role of nAChR-mediated spontaneous retinal activity in visual system development. J. Neurobiol. 53: 556–567.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A. and Greenberg M.E. (1993) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268: 239–247, 1995.

    Google Scholar 

  • Godement, P., Salaun, J., and Imbert, M. (1984). Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J. Comp. Neurol. 230: 552–575.

    Article  PubMed  CAS  Google Scholar 

  • Goodman C.S. and Shatz C.J. (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell (Suppl) 72: 77–98, 1993.

    Article  PubMed  Google Scholar 

  • Grieve, K.L. (2005). Binocular visual responses in cells of the rat dLGN J. Physiol. 566: 119–124.

    Article  PubMed  CAS  Google Scholar 

  • Grossman A, Lieberman AR, Webster KE. (1973) A Golgi study of the rat lateral geniculate nucleus. J. Comp. Neurol. 150: 441–446.

    Article  PubMed  CAS  Google Scholar 

  • Grubb, M.S. and Thompson, I.D. (2003). Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus. J. Neurophysiol. 90: 3594–3607.

    Article  PubMed  Google Scholar 

  • Grubb, M.S., and Thompson, I.D. (2004). The influence of early experience on the development of sensory systems. Cur. Opin. Neurobiol. 14: 503–512.

    Article  CAS  Google Scholar 

  • Guido W, Lo F-S, and Erzurumlu R.S. (2001) Synaptic plasticity in the trigeminal principal nucleus during the period of barrelette formation and consolidation. Dev. Brain Res. 132: 97–102.

    Article  CAS  Google Scholar 

  • Guido W, Tumosa N, and Spear P. D. (1989) Binocular interactions in the cat’s dorsal lateral geniculate nucleus. I. Spatial-frequency analysis of responses of X, Y and W cells to nondominant-eye stimulation. J. Neurophysiol. 62: 526–543.

    PubMed  CAS  Google Scholar 

  • Hebb, D.O. (1949) The organization of behavior. Wiley, New York.

    Google Scholar 

  • Hu, B. (1993). Membrane potential oscillations and corticothalamic connectivity in rat associational thalamic neurons in vitro. Acta Physiol. Scand. 148: 109–113.

    Article  PubMed  CAS  Google Scholar 

  • Jaubert-Miazza, L, Green, E., Lo, F-S, Bui, K., Mills, J., and Guido, W. (2005) Structural and functional composition of the developing retinogeniculate pathway in the mouse. Visual Neuroscience, 22:661–676.

    PubMed  Google Scholar 

  • Jeffery, G. (1984). Retinal ganglion cell death and terminal field retraction in the developing rodent visual system. Dev. Brain Res. 13: 81–96.

    Article  Google Scholar 

  • Kammermeier P.J. and Jones S.W. (1998) Facilitation of L-type calcium current in thalamic neurons. J. Neurophysiol. 79: 410–417.

    PubMed  CAS  Google Scholar 

  • Kiehn, O. and Eken, T. (1998). Functional role of plateau potentials in vertebrate motor neurons. Curr. Opin. Neurosci. 8: 746–752

    Article  CAS  Google Scholar 

  • Kirkwood A. and Bear M.F. (1994a) Hebbian synapses in visual cortex. J. Neurosci. 14: 1634–1645.

    PubMed  CAS  Google Scholar 

  • Kirkwood A. and Bear M.F. (1994b) Homosynaptic long-term depression in the visual cortex. J. Neurosci. 14: 3404–3412.

    PubMed  CAS  Google Scholar 

  • Kirkwood A., Dudek S.M., Aizenman C.D., and Bear M.F. (1993). Commonforms of synaptic plasticity in the hippocampus and neocortex in vitro. Science 260:1518–1521.

    Article  PubMed  CAS  Google Scholar 

  • Lindström S. Synaptic organization of inhibitory pathways to principal cells in the lateral geniculate nucleus of the cat. Brain Research 234: 447–453, 1982.

    Article  PubMed  Google Scholar 

  • Lipscombe D., Helton, T.D., Xu, W. (2004). L-type calcium channels: the low down. J. Neurophysiol. 92: 2633–2641.

    Article  PubMed  CAS  Google Scholar 

  • Lo, F-S., and Erzurumlu, R.S. (2002). L-type calcium channel-mediated plateau potentials in barrelette cells during structural plasticity. J. Neurophysiol. 88:794–801.

    PubMed  CAS  Google Scholar 

  • Lo F-S. and Mize R.R. (2000) Synaptic regulation of L-type Ca2+ channel activity and long-term depression during refinement of the retinocollicular pathway in developing rodent superior colliculus. J. Neurosci. 20: 1–6.

    Google Scholar 

  • Lo F-S., Ziburkus J., and Guido W. (2002) Synaptic mechanisms regulating the activation of a Ca2+-mediated plateau potential in developing relay cells of the lateral geniculate nucleus. J. Neurophysiol. 87: 1175–1185.

    PubMed  CAS  Google Scholar 

  • MacLeod, N., Turner, C., and Edgar, J (1997) Properties of developing lateral geniculate neurones in the mouse. Int. J. Dev. Neurosci. 15: 205–224.

    Article  PubMed  CAS  Google Scholar 

  • Magee, J.C. and Johnston, D. (1997). Asynaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275(5297), 209–213.

    Article  PubMed  CAS  Google Scholar 

  • Malenka, R.C. and Bear, M.F. (2004). LTP and LTD: an embarrassment of riches. Neuron 44: 5–21.

    Article  PubMed  CAS  Google Scholar 

  • Mermelstein, P.G., Bito, H., Deisseroth, K., and Tsien, R.W. (2000). Critical dependence of cAMP response element-binding protein phosphorylation on L-type calcium channels supports a selective response to EPSPs in preference to action potentials. J. Neurosci. 20: 266–273.

    PubMed  CAS  Google Scholar 

  • Mooney, R., Madison, D.V., and Shatz, C.J. (1993). Enhancement of transmission at the developing retinogeniculate synapse. Neuron 10: 815–825.

    Article  PubMed  CAS  Google Scholar 

  • Mooney, R., Penn, A.A., Gallego, R., and Shatz, C.J. (1996). Thalamic relay of spontaneous retinal activity prior to vision. Neuron 17: 863–874.

    Article  PubMed  CAS  Google Scholar 

  • Muir Robinson, G., Hwang, B.J., and Feller, M.B. (2002). Retinogeniculate axons undergo eye specific segregation in the absence of eye specific layers. J. Neurosci. 22: 5259.

    PubMed  CAS  Google Scholar 

  • Parnavelas J.G., Mounty E.J., Bradford R., and Lieberman A.R. (1975) The postnatal development of neurons in the dorsal lateral geniculate nucleus of the rat: a golgi study. J. Comp. Neurol. 171: 481–500.

    Article  Google Scholar 

  • Pham, T.A., Rubenstein, J.L., Silva, A.J., Storm, D.R., and Stryker, M.P. (2001). The CRE/CREB pathway is transiently expressed in thalamic circuit development and contributes to refinement of retinogeniculate axons. Neuron 31(3), 409–420.

    Article  PubMed  CAS  Google Scholar 

  • Rekling, J.C. and Feldman, J.L. (1997). Calcium-dependent plateau potentials in rostral ambiguous neurons in the newborn mouse brain stem in vitro. J. Neurophysiol. 78: 2483–2492.

    PubMed  CAS  Google Scholar 

  • Ramoa A.S. and McCormick D.A. (1994). Enhanced activation of NMDA receptor responses at the immature retinogeniculate synapse. J. Neurosci 14:2098–2105.

    PubMed  CAS  Google Scholar 

  • Ramoa A.S. and Prusky G. (1997) Retinal activity regulates developmental switches in functional properties and ifenprodil sensitivity of NMDA receptors in the lateral geniculate nucleus. Dev. Brain Res. 101: 165–176.

    Article  CAS  Google Scholar 

  • Reese, B.E. (1988). ‘Hidden lamination’ in the dorsal lateral geniculate nucleus: the functional organization of this thalamic region in the rat. Brain Res. 472:119–137.

    PubMed  CAS  Google Scholar 

  • Reese B.E. and Cowey A. (1983) Projection lines and the ipsilateral retinogeniculate pathway in the hooded rat. Neurosci 10: 1233–1247.

    Article  CAS  Google Scholar 

  • Reese B.E. and Cowey A. (1987). The crossed projection from the temporal retina to the dorsal lateral geniculate nucleus in the rat. Neurosci. 20: 951–959.

    Article  CAS  Google Scholar 

  • Reese B.E. and Jeffrey G. (1983) Crossed and uncrossed visual topography in dorsal lateral geniculate nucleus of the pigmented rat. J. Neurophysiol. 49:878–885.

    Google Scholar 

  • Scharfman H.E., Lu S-M, Guido W., Adams P.R. and Sherman S.M. (1990) N-Methyl-D-aspartate (NMDA) receptors contribute to excitatory postsynaptic potentials of cat lateral geniculate neurons recorded in thalamic slices. Proc. Nat Acad. Sci. (USA) 87: 4548–4552.

    Article  CAS  Google Scholar 

  • Schroeder C.E., Tenke C.E., Arezzo J.C. and Vaughan H.G. (1990) Binocularity in the lateral geniculate nucleus of the alert macaque. Brain Res. 52: 303–310.

    Article  Google Scholar 

  • Shatz, C.J. (1996) Emergence of order in visual system development. Proc. Nat. Acad. Sci. (USA) 93: 602–608.

    Article  CAS  Google Scholar 

  • Shatz C.J. (1990) Impulse activity and the patterning of connections during CNS development. Neuron 5: 745–756.

    Article  PubMed  CAS  Google Scholar 

  • Shatz, C.J. and Kirkwood, P.A. (1984). Prenatal development of functional connections in the cat’s retinogeniculate pathway. J. Neurosci. 3: 482–489.

    Google Scholar 

  • Sefton AJ. and Dreher B. (1995) Visual system. In: Rat Nervous System, Chap. 32, Paxinos, G. (ed.). Academic Press, London, pp. 833–898.

    Google Scholar 

  • Sherman S.M. and Guillery R. (1996) The functional organization of thalamocortical relays. Journal of Neurophysiology 76: 1367–1395.

    PubMed  CAS  Google Scholar 

  • Stent G.S. (1973). A physiological mechanism for Hebb’s postulate of learning. Proc. Nat. Acad.Sci. (USA) 70: 997–1001.

    Article  CAS  Google Scholar 

  • Tavazoie S.F. and Reid R.C. (2000). Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development. Nature Neurosci. 3: 606–616.

    Google Scholar 

  • Torborg, C.L. and Feller, M.B. (2004). Unbiased analysis of bulk axonal segregation patterns. J. Neurosci. Meth. 135: 17–26.

    Article  CAS  Google Scholar 

  • Torborg, C.L., Hansen, K.A., and Feller, M.B. (2005). High frequency, synchronized bursting drives eye-specific segregation of retinogeniculate projections. Nature Neuroscience 8(1), 72–78.

    Article  PubMed  CAS  Google Scholar 

  • Tootle, J.S. and Friedlander, M.J. (1986) Postnatal development of receptive field surround inhibition in kitten dorsal lateral geniculate nucleus. J. Neurosci. 56:523–541.

    CAS  Google Scholar 

  • Wilson J.R., Friedlander M.J., and Sherman S.M. (1984) Fine structural morphology of identified X-and Y-cells in the cat’s lateral geniculate nucleus. Proc. Royal Soc. Lond. Biol. Sci. 221: 441–486.

    Google Scholar 

  • Weliky M. and Katz L.C. (1999) Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo. Science 285: 599–604.

    Article  PubMed  CAS  Google Scholar 

  • Wong R.O.L. (1999) Retinal waves and visual system development. Ann. Rev. Neurosci. 22: 29–47.

    Article  PubMed  CAS  Google Scholar 

  • Wong R.O.L., Miester M., and Shatz C.J. (1993) Transient period of correlated bursting activity during the development of the mammalian retina. Neuron 11: 923–938.

    Article  PubMed  CAS  Google Scholar 

  • Wong ROL and Oakley DM. (1996) Changing patterns of spontaneous bursting activity of on-and off-retinal ganglion cells during development. Neuron 16:1087–1095.

    Article  PubMed  CAS  Google Scholar 

  • Ziburkus, J. and Guido, W. (2005). Loss of binocular responses and reduced retinal convergence during the period of retinogeniculate axon segregation. J. Neurophysiol., accepted with revision.

    Google Scholar 

  • Ziburkus, J., Lo, F-S., and Guido, W. (2003). Nature of inhibitory postsynaptic activity in developing relay cells of the lateral geniculate nucleus. J. Neurophysiol. 90: 1063–1070.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Guido, W. (2006). Cellular Mechanisms Underlying the Remodeling of Retinogeniculate Connections. In: Erzurumlu, R., Guido, W., Molnár, Z. (eds) Development and Plasticity in Sensory Thalamus and Cortex. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-38607-2_12

Download citation

Publish with us

Policies and ethics