Skip to main content

Emulsification

  • Chapter
Emulsion Science

Abstract

Emulsification consists of dispersing one fluid into another, nonmiscible one, via creation of an interface. Properties of emulsions (e.g., stability, rheological properties) and their industrial uses are governed not only by variables such as temperature and composition but also by the droplet size distribution. The highest level of control consists of producing “monodisperse,” that is, narrow size distributed emulsions with a tunable mean size. From a fundamental perspective, monodispersity has allowed significant progress in emulsion science as will be shown throughout this book. Monodispersity also opens perspectives for new technological applications that are reviewed in Chapter 7. Usually, industrial emulsification is empirically controlled and the purpose of this chapter is to provide fundamental concepts that support such empirical knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.Y. Soon, J. Harbidge, N.J. Titchener-Hooker, and P.A. Shamlou: “Prediction of Drop Breakage in an Ultra Velocity Jet Homogenizer.” J. Chem. Eng. Jpn. 34, 640 (2001).

    Google Scholar 

  2. S. Mohan and G. Narsimham: “Coalescence of Protein-Stabilized Emulsions in a High-Pressure Homogenizer.” J. Colloid Interface Sci. 192, 1 (1997).

    Google Scholar 

  3. P. Paquin: “Technological Properties of High-Pressure Homogenizers: The Effect of Fat Globules, Milk Proteins, and Polysachharides.” Int. Dairy J. 9, 329 (1999).

    Google Scholar 

  4. S. Brösel and H. Schubert: “Investigation of the Role of Surfactants in Mechanical Emulsification Using a High-Pressure Homogenizer with an Orifice Valve.” Chem. Eng. Process. 38, 533 (1999).

    Google Scholar 

  5. G. Narsimham and P. Goel: “Drop Coalescence During Emulsion Formation in a High-Pressure Homogenizer for Tetradecane-in-Water Emulsion Stabilized by Sodium Dodecyl Sulfate.” J. Colloid Interface Sci. 238, 420 (2001).

    Google Scholar 

  6. L. Taisne, P. Walstra, and B. Cabane: “Transfer of Oil Between Emulsion Droplets.” J. Colloid Interface Sci. 184, 378 (1996).

    Google Scholar 

  7. L. Lobo, A. Svereika, and M. Nair: “Coalescence During Emulsification. 1. Method Development.” J. Colloid Interface Sci. 253, 409 (2002).

    Google Scholar 

  8. L. Lobo and A. Svereika: “Coalescence During Emulsification. 2. Role of Small Molecule Surfactants.” J. Colloid Interface Sci. 261, 498 (2003).

    Google Scholar 

  9. P. Marie, J.M. Perrier-Cornet, and P. Gervais: “Influence of Major Parameters in Emulsification Mechanisms Using a High-Pressure Jet.” J. Food Eng. 53, 43 (2002).

    Google Scholar 

  10. P. Walstra: “Formation of Emulsions.” In P. Belcher (ed), Encyclopedia of Emulsion Technology, Basic Theory, Marcel Dekker, New York (1983).

    Google Scholar 

  11. P. Walstra and P.E.A. Smulders: “Emulsion Formation.” In B.P. Binks (ed), Modern Aspects of Emulsion Science.The Royal Society of Chemistry Cambridge, UK, 1998.

    Google Scholar 

  12. J. Floury, A. Desrumaux, and J. Lardières: “Effect of High-Pressure Homogenization on Droplet Size Distributions and Rheological Properties of Model Oil-in-Water Emulsions.” Innovat. Food Sci. Emergi. Technol. 1, 127 (2000).

    Google Scholar 

  13. E. Tornberg: “Functional Characterization of Protein Stabilized Emulsions: Emulsifying Behavior of Proteins in a Valve Homogenizer.” J. Sci. Food Agric. 29, 867 (1978).

    Google Scholar 

  14. K. Kandori: “Application of Microporous Glass Membranes: Membrane Emulsification.” In A.G. Gaonkar (ed), Food Processing: Recent Developments" Elsevier, Amsterdam (1995).

    Google Scholar 

  15. R.A. Williams, S.J. Peng, D.A. Wheeler, N.C. Morley, D. Taylor, M. Whalley, and D.W. Houldsworth: “Controlled Production of Emulsions Using Crossflow Membrane Part II. Industrial Scale Manufacture.” Chem. Eng. Res. Des. 76 A, 902 (1998).

    Google Scholar 

  16. S.J. Peng and R.A. Williams: “Controlled Production of Emulsions Using a Crossflow Membrane.” Part. Part. Syst. Charact. 15, 21 (1998).

    Google Scholar 

  17. R. Katoh, Y. Asano, A. Furuya, K. Sotoyama, and M. Tomita: “Preparation of Food Emulsions Using Membrane Emulsification System.” Proceedings of the 7th International Symposium on Synthetic Membranes in Science 407, Tübingen, Germany (1994).

    Google Scholar 

  18. Y. Mine, M. Shimizu, and T. Nakashima: “Preparation and Stabilization of Simple and Multiple Emulsions Using Microporous Glass Membrane.” Colloid Surfaces B Biointerfaces 6, 261 (1996).

    Google Scholar 

  19. V. Schröder, O. Behrend, and H. Schubert: “Effect of Dynamic Interfacial Tension on the Emulsification Process Using Microporous Ceramic Membranes.” J. Colloid Interface Sci. 202, 334 (1998).

    Google Scholar 

  20. T. Nakashima, M. Shimizu, and M. Kukizaki: “Membrane Emulsification by Microporous Glass.” Key Eng. Mater. 61/62, 513 (1991).

    Google Scholar 

  21. V. Schröder and H. Schubert: “Emulsification Using Microporous Ceramic Membranes.” In Proceedings of the First European Congress on Chemical Engineering (ECCE 1) 2491, Florence Italy (1997).

    Google Scholar 

  22. V. Schröder, Z. Wang, and H. Schubert: “Production of Oil-in-Water Emulsions by Microporous Membranes.” In Proceedings of the Third International Symposium on Progress in Membrane Science and Technology, Euromembrane 1997 439, University of Twente (1997).

    Google Scholar 

  23. G. Muschiolik and S. Dräger: “Emulsionbildung Mittels Mikroporösen Glas.” Deutsche Milchwirtsch. 46, 1041 (1995).

    Google Scholar 

  24. R. Katoh, Y. Asano, A. Furuya, K. Sotoyama, and M. Tomita: “Preparation of Food Emulsions Using a Membrane Emulsification System.” J. Membr. Sci. 113, 131 (1996).

    Google Scholar 

  25. R. Katoh, Y. Asano, A. Furuya, and M. Tomita: “Conditions for Preparation of O/W Food Emulsions Using a Membrane Emulsification System.” Nippon Shokuhin Kagaku Kogaku Kaishi 42, 548 (1995).

    Google Scholar 

  26. S. Ban, M. Kitana, and A. Yamasaki: “Preparation of O/W Emulsions with Poly(Oxyethylene) Hydrogenated Castor Oil by Using Spg Membrane Emulsification.” Nippon Kagaku Kogaku Kaishi 8, 737 (1994).

    Google Scholar 

  27. K. Kandori, K. Kishi, and T. Ishikawa: “Preparation of Monodispersed W/O Emulsions by Shirasu-Porous-Glass Filter Emulsification Technique.” Colloid Surfaces 55, 73 (1991).

    Google Scholar 

  28. S.M. Joscelyne and G. Trägardh: “Membrane Emulsification—a Literature Review.” J. Membr. Sci. 169, 107 (2000).

    Google Scholar 

  29. S. Van der Graaf, C.G.P.H. Schroën, and R.M. Boom: “Preparation of Double Emulsions by Membrane Emulsification—a Review.” J. Membr. Sci. 251, 7 (2005).

    Google Scholar 

  30. T. Kawakatsu, Y. Kikuchi, and M. Nakajima: “Regular-Sized Cell Creation in Micro-Channel Emulsification by Visual Microprocessing Method.” JAOCS 74, 317 (1997).

    Google Scholar 

  31. T. Kawakatsu, H. Komori, M. Nakajima, Y. Kikuchi, and T. Yonemoto: “Production of Monodispersed Oil-in-Water Emulsion Using Crossflow-Type Silicon Microchannel Plate.” J. Chem. Eng. Jpn 32, 241 (1999).

    Google Scholar 

  32. S. Sugiura, M. Nakajima, S. Iwamoto, and M. Seki: “Interfacial Tension Driven Monodispersed Droplet Formation from Microfabricated Channel Array.” Langmuir 17, 5562 (2001).

    Google Scholar 

  33. S. Sugiura, M. Nakajima, N. Kumazawa, S. Iwamoto, and M. Seki: “Characterization of Spontaneous Transformation-Based Droplet Formation During Microchannel Emulsification.” J. Phys. Chem. B 106, 9405 (2002).

    Google Scholar 

  34. S. Sugiura, M. Nakajima, K. Yamamoto, S. Iwamoto, T. Oda, M. Satake, and M. Seki: “Prepartion Characteristics of Water-in-Oil-in-Water Multiple Emulsions Using Microchannel Emulsification.” J. Colloid Interface Sci. 270, 221 (2004).

    Google Scholar 

  35. T. Kawakatsu, G. Trägardh, C. Trägardh, M. Nakajima, N. Oda, and T. Yonemoto: “The Effect of Hydrophobicity of Microchannels and Components in Water and Oil Phases on Droplet Formation in Microchannel Water-in-Oil Emulsification.” Colloid and Surfaces A Physicochem. Eng. Aspects 179, 29 (2001).

    Google Scholar 

  36. S. Sugiura, M. Nakajima, and M. Seki: “Effect of Channel Structure on Microchannel Emulsification.” Langmuir 18, 5708 (2002).

    Google Scholar 

  37. S. Sugiura, M. Nakajima, and M. Seki: “Prediction of Droplet Diameter for Microchannel Emulsification.” Langmuir 18, 3854 (2002).

    Google Scholar 

  38. S. Sugiura, M. Nakajima, T. Oda, M. Satake, and M. Seki: “Effect of Interfacial Tension on the Dynamic Behavior of Droplet Formation During Microchannel Emulsification.” J. Colloid Interface Sci. 269, 178 (2004).

    Google Scholar 

  39. I. Kobayashi, M. Nakajima, and S. Mukataka: “Preparation Characteristics of Oil-in-Water Emulsion Using Differently Charged Surfactants in Straight-Through Microchannel Emulsification.” Colloid Surfaces A Physicochem. Eng. Aspects 229, 33 (2003).

    Google Scholar 

  40. S. Sugiura, M. Nakajima, and M. Seki: “Prediction of Droplet Diameter for Microchannel Emulsification: Prediction Model for Complicated Microchannel Geometries.” Ind. Eng. Chem. Res. 43, 8233 (2004).

    Google Scholar 

  41. I. Kobayashi, and M. Nakajima: “Effect of Emulsifiers on the Preparation of Food-Grade Oil-in-Water Emulsions Using a Straight-through Extrusion Filter.” Eur. J. Lipid Sci. Technol. 104, 720 (2002).

    Google Scholar 

  42. S. Sugiura, M. Nakajima, H. Itou, and M. Seki: “Synthesis of Polymeric Microspheres with Narrow Size Distributions Employing Microchannel Emulsification.” Macromol. Rapid Commun. 22, 773 (2001).

    Google Scholar 

  43. S. Sugiura, M. Nakajima, and M. Seki: “Prepartion of Monodispersed Polymeric Microspheres over 50 μm Employing Microchannel Emulsification.” Ind. Eng. Chem. Res. 41, 4043 (2002).

    Google Scholar 

  44. K. Nakagawa, S. Iwamoto, M. Nakajima, A. Shono, and K. Satoh: “Microchannel Emulsification Using Gelation and Surfactant-Free Coacervate Microencapsulation.” J. Colloid Interface Sci. 278, 198 (2004).

    Google Scholar 

  45. S.L. Anna, N. Bontoux, and H.A. Stone: “Formation of Dispersions Using Flow Focusing in Microchannels.” Appl. Phys. Lett. 82, 364 (2003).

    ADS  Google Scholar 

  46. Q. Xu and M. Nakajima: “The Generation of Highly Monodisperse Droplets through the Breakup of Hydrodynamically Focused Microthread in a Microfluidic Device.” Appl. Phys. Lett. 85, 3726 (2004).

    ADS  Google Scholar 

  47. Y. Tan, V. Cristini, and A.P. Lee: “Monodispersed Microfluidic Droplet Generation by Shear Focusing Microfluidic Device.” Sensors and Actuactors B: Chem. 144, 350 (2006).

    Google Scholar 

  48. J.D. Tice, A.D. Lyon, and R.F. Ismagilov: “Effects of Viscosity on Droplet Formation and Mixing in Microfluidic Channels.” Anal. Chim. Acta 507, 73 (2004).

    Google Scholar 

  49. D.R. Link, S.L. Anna, D.A. Weitz, and H.A. Stone: “Geometrically Mediated Breakup of Drops in Microfluidic Devices.” Phys. Rev. Lett 92, 054503 (2004).

    ADS  Google Scholar 

  50. S. Okushima, T. Nisisako, T. Torii, and T. Higuchi: “Controlled Production of Monodisperse Double Emulsions by Two-Step Droplet Breakup in Microfluidic Devices.” Langmuir 20, 9905 (2004).

    Google Scholar 

  51. M. Pollack, R.B. Fair, and A.D. Shenderov: “Electrowetting-Based Actuation of Liquid Droplets for Microfluidic Applications.” Appl. Phys. Lett. 77(11), 1725 (2000).

    ADS  Google Scholar 

  52. B. Zheng, L.S. Roach, and R.F. Ismagilov: “Screening of Protein Crystallization Conditions on a Microfluidic Chip Using Nanoliter-Size Droplets.” J. Am. Chem. Soc. 125, 11170 (2003).

    Google Scholar 

  53. B. Zheng, J.D. Tice, and R.F. Ismagilov: “Formation of Droplets of Alternating Composition in Microfluidic Channels and Applications to Indexing of Concentrations in Droplets-Based Assays.” Anal. Chem. 76, 4977 (2004).

    Google Scholar 

  54. B. Zheng, J.D. Tice, L.S. Roach, and R.F. Ismagilov: “A Droplet-Based, Composite PDMS/Glass Capillary Microfluidic System for Evaluating Protein Crystallization Conditions by Microbatch and Vapor-Diffusion Methods with on-Chip X-Ray Diffraction.” Angew. Chem. Int. Ed. 43, 2508 (2004).

    Google Scholar 

  55. V. Srinivasan, V.K. Pamula, and R.B. Fair: “Droplet-Based Microfluidic Lab-on-a-Chip for Glucose Detection.” Anal. Chim. Acta 507, 145 (2004).

    Google Scholar 

  56. H. Song, J.D. Tice, and R.F. Ismagilov: “A Mocrofluidic System for Controlling Reaction Networks in Time.” Angew. Chem. Int. Ed. 42, 767 (2003).

    Google Scholar 

  57. H. Song, M.R. Bringer, J.D. Tice, C.J. Gerdts, and R.F. Ismagilov: “Experimental Test of Scaling of Mixing by Chaotic Advection in Droplets Moving through Microfluidics Channels.” Appl. Phys. Lett. 83, 4664 (2003).

    ADS  Google Scholar 

  58. M.J. Groves: “Spontaneous Emulsification.” Chem. Indust. 12, 417 (1978).

    Google Scholar 

  59. G. Quincke: “Ueber Emulsionbildung Und Den Einfluss Der Galle Bei Der Verdauung.” Plüger Arch. Physiol. 19, 129 (1879).

    Google Scholar 

  60. G. Quincke: “Ueber Periodische Ausbreitung an Flüssigkeitsoberflächen Und Dadurch Hervorgerufene Bewegungserscheinungen.” Wiedemanss Annalen der Physik und Chemie. Neue Folge 35, 580 (1888).

    ADS  Google Scholar 

  61. J.T. Davies and E.K. Rideal: “Diffusion Through Interfaces.” In H. Willmer (ed), Interfacial Phenomena. Academic Press, New York (1961).

    Google Scholar 

  62. J.T. Davies and D.A. Haydon: “Spontaneous Emulsification.” In Proceedings of the International Congress of Surfactants Act 2nd 1, 417, (1957).

    Google Scholar 

  63. J.W. McBain and T.M. Woo: “Spontaneous Emulsification and Reactions Overshooting Equilibrium.” Proc. Roy. Soc. A163, 182 (1937).

    ADS  Google Scholar 

  64. J. Schulman and E.G. Cockbain: “Molecular Interactions at Oil/Water Interfaces. Part I. Molecular Complex Formation and the Stability of Oil in Water Emulsions.” Transact. Faraday Soc. 36, 651 (1940).

    Google Scholar 

  65. R.E.S. Gopal: “Principles of Emulsion Formation.” In P. Sherman (ed), Emulsion Science, Academic Press, London (1968).

    Google Scholar 

  66. C.A. Miller, R.-N. Hwan, W.J. Benton, and T.J. Fort: “Ultralow Interfacial Tensions and Their Relation to Phase Separation in Micellar Solutions.” J. Colloid Interface Sci. 61, 554 (1977).

    Google Scholar 

  67. C.A. Miller: “Spontaneous Emulsification Produced by Diffusion—a Review.” Colloid Surfaces 29, 89 (1988).

    Google Scholar 

  68. K.J. Ruschak and C.A. Miller: “Spontaneous Emulsification in Ternary Systems with Mass Transfer.” Ind. Eng. Chem. Fundam. 11, 534 (1972).

    Google Scholar 

  69. M.J. Rang and C.A. Miller: “Emulsions and Microemulsions—Spontaneous Emulsification of Oil Drops Containing Surfactants and Medium-Chain Alcohols.” Prog. Colloid Polym. Sci. 109, 101 (1998).

    Google Scholar 

  70. M.J. Rang and C.A. Miller: “Spontaneous Emulsification of Oils Containing Hydrocarbon, Nonionic Surfactant, and Oleyl Alcohol.” J. Colloid Interface Sci. 209, 179 (1999).

    Google Scholar 

  71. J.T. Davies and E.K. Rideal: “Disperse Systems and Adhesion.” In H. Willmer (ed), Interfacial Phenomena. Academic Press, New York (1961).

    Google Scholar 

  72. N. Shahidzadeh, D. Bonn, and J. Meunier: “A New Mechanism of Spontaneous Emulsification: Relation to Surfactant Properties.” Europhys. Lett 40, 459 (1997).

    ADS  Google Scholar 

  73. R.W. Greiner and D.F. Evans: “Spontaneous Formation of a Water-Continuous Emulsion from a W/O Microemulsion.” Langmuir 6, 1793 (1990).

    Google Scholar 

  74. J.J. Rang, C.A. Miller, H.H. Hoffmann, and C. Thunig: “Behavior of Hydrocarbon/Alcohol Drops Injected into Dilute Solutions of an Amine Oxide Surfactant.” Ind. Eng. Chem. Res. 35, 3233 (1996).

    Google Scholar 

  75. J.C. Lopez-Montilla, P.E. Herrera-Morales, and D.O. Shah: “New Method to Quantitatively Determine Spontaneity of Emulsification Process.” Langmuir 18, 4258 (2002).

    Google Scholar 

  76. Y.A. Shchipunov and P. Schmiedel: “Phase Behavior of Lecithin at the Oil/Water Interface.” Langmuir 12, 6443 (1996).

    Google Scholar 

  77. M.G. Wakerly, C.W. Pouton, B.J. Meakin, and F.S. Morton: “Self emulsification of vegetable oil non-ionic mixtures: a proposed mechanism of action”. In Phenomena in Mixed Surfactant Systems. American Chemical Society, Washington, DC (1986).

    Google Scholar 

  78. J.C. Lopez-Montilla, P.E. Herrera-Morales, S. Pandey, and D.O. Shah: “Spontaneous Emulsification: Mechanisms, Physicochemical Aspects, Modeling and Applications.” J. Dispersion Sci. Technol. 23, 219 (2002).

    Google Scholar 

  79. T. Förster, W. Von Rybinski, H. Tesmann, and A. Wadle: “Calculation of Optimum Emulsifier Mixtures for Phase Inversion Emulsification.” Int. J. Cosmet. Sci. 16, 84 (1994).

    Google Scholar 

  80. D.J. Miller, T. Henning, and W. Grübein: “Phase Inversion of W/O Emulsions by Adding Hydrophilic Surfactant—a Technique for Making Cosmetics Products.” Colloids Surfaces 183–185, 681 (2001).

    Google Scholar 

  81. K. Shinoda and H. Arai: “The Correlation between Phase Inversion Temperature in Emulsion and Cloud Point in Solution of Nonionic Emulsifier.” J. Phys. Chem. 68, 3485 (1964).

    Google Scholar 

  82. K. Shinoda and H. Saito: “The Stability of O/W Type Emulsions as a Function of Temperature and the HLB of Emulsifiers: The Emulsification by PIT Method.” J. Colloid Interface Sci. 30, 258 (1969).

    Google Scholar 

  83. K. Shinoda and H. Kunieda: “Conditions to Produce So-Called Microemulsions: Factors to Increase the Mutual Solubility of Oil and Water by Solubilizer.” J. Colloid Interface Sci. 42, 381 (1973).

    Google Scholar 

  84. W.D. Bancroft: “The Theory of Emulsification, V.” J. Phys. Chem. 17, 501 (1913).

    Google Scholar 

  85. K. Shinoda and H. Saito: “The Effect of Temperature on the Phase Equilibrium and the Types of Dispersions of the Ternary System Composed of Water, Cyclohexane and Nonionic Surfactant.” J. Colloid Interface Sci. 26, 70 (1968).

    Google Scholar 

  86. V.E. Wellman and H.V. Tartar: “The Factors Controlling Type of Water-Soap-Oil Emulsions.” J. Phys. Chem. 34, 379 (1930).

    Google Scholar 

  87. H. Saito and K. Shinoda: “The Stability of W/O Type Emulsions as a Function of Temperature and of the Hydrophilic Chain Length of the Emulsifier.” J. Colloid Interface Sci. 32, 647 (1970).

    Google Scholar 

  88. H. Kunieda and K. Shinoda: “Phase Behavior in Systems of Nonionic Surfactant/Water/Oil Around the Hydrophilic-Lypophilic-Balance-Temperature.” J. Dispersion Sci. Technol. 3, 233 (1982).

    Google Scholar 

  89. K. Shinoda: “Solution Behavior of Surfactants: The Importance of Surfactant Phase and the Continuous Change in HLB of Surfactant.” Prog. Colloid Polymer Sci. 68, 1 (1983).

    Google Scholar 

  90. R. Aveyard, B.P. Binks, T.A. Lawless, and J. Mead: “Interfacial Tension Minima in Oil + Water + Surfactant Systems. Effects of Salt and Temperature in Systems Containing Nonionic Surfactants.” J. Chem. Soc. Faraday Trans. 1 81, 2155 (1985).

    Google Scholar 

  91. R. Aveyard and T.A. Lawless: “Interfacial Tension Minima in Oil-Water-Surfactant Systems. Systems Containing Pure Nonionic Surfactants, Alkanes, and Inorganic Salts.” J. Chem. Soc. Faraday Trans. 1 82, 2951 (1986).

    Google Scholar 

  92. R. Aveyard, B.P. Binks, S. Clark, and J. Mead: “Interfacial Tension Minima in Oil-Water-Surfactant Systems. Behavior of Alkane-Aqueous Sodium Chloride Systems Containing Aerosol OT.” J. Chem. Soc. Faraday Trans. I 82, 125 (1986).

    Google Scholar 

  93. R. Aveyard, B. Binks, T.A. Lawless, and J. Mead: “Nature of the Oil/Water Interface and Equilibrium Surfactant Aggregates in Systems Exhibiting Low Tensions.” Can. J. Chem. 66, 3031 (1988).

    Google Scholar 

  94. P.D.I. Fletcher and D.I. Horsup: “Droplet Dynamics in Water-in-Oil Microemulsions and Macroemulsions Stabilized by Non-Ionic Surfactants.” J. Chem. Soc. Faraday Trans. I 88, 855 (1992).

    Google Scholar 

  95. L.T. Lee, D. Langevin, J. Meunier, K. Wong, and B. Cabane: “Film Bending Elasticity in Microemulsions Made with Nonionic Surfactants.” Prog. Colloid Polymer Sci. 81, 209 (1990).

    Google Scholar 

  96. D. Langevin: In S.-H. Chen, J. S. Huang, and P. Tartaglia (eds), “Low interfacial tensions in microemulsion systems.” Structure and Dynamics of Strongly Interacting Colloids and Supramolecular Aggregates in Solution. 325. p. Kluwer, Dordrecht (1992).

    Google Scholar 

  97. R. Strey: “Microemulsion, Microstructure and Interfacial Curvature.” Colloid Polym. Sci. 272, 1005 (1994).

    Google Scholar 

  98. T. Sottmann and R. Strey: “Shape Similarities of Ultra-Low Interfacial Tension Curves in Ternary Microemulsion Systems of the Water-Alkane-CiEj Type.” Ber. Bunsenges Phys. Chem. 100, 237 (1996).

    Google Scholar 

  99. T. Sottmann and R. Strey: “Ultralow Interfacial Tension in Water-N-Alkane-Surfactant Systems.” J. Chem. Phys. 106, 8606 (1997).

    ADS  Google Scholar 

  100. M. Kahlweit, R. Strey, and G. Busse: “Weakly to Strongly Structured Mixtures.” Phys. Rev. E 47, 4197 (1993).

    ADS  Google Scholar 

  101. K. Shinoda: “The Correlation between the Dissolution State of Nonionic Surfactant and the Type of Dispersion Stabilized with the Surfactant.” J. Colloid Interface Sci. 24, 4 (1967).

    Google Scholar 

  102. F. Groeneweg, W.G.M. Agterof, P. Jaeger, J.J.M. Janssen, J.A. Wieringa, and J.K. Klahn: “On the Mechanism of the Inversion of Emulsions.” Chem. Eng. Res. Des. 76, 55 (1998).

    Google Scholar 

  103. B.W. Brooks and H.N. Richmond: “Phase Inversion in Non-Ionic Surfactant-Oil-Water Systems, I. The Effect of Transitional Inversion on Emulsion Drop Size.” Chem. Eng. Sci. 49, 1053 (1994).

    Google Scholar 

  104. J.L. Salager: “Phase Transformation and Emulsion Inversion on the Basis of Catastrophe Theory.” In P. Becher (ed), Encyclopedia of Emulsion Technology. Vol. 3. Basic Theory. Measurement. Applications. Marcel Dekker, New York (1988).

    Google Scholar 

  105. J.L. Salager, M. Perez-Sanchez, and Y. Garcia: “Physicochemical Parameters Influencing the Emulsion Drop Size.” Colloid Polym. Sci. 274, 81 (1996).

    Google Scholar 

  106. P. Izquierdo, J. Esquena, T.F. Tadros, J.C. Dederen, M.J. Garcia, N. Azemar, and C. Solans: “Formation and Stability of Nano-Emulsions Prepared Using the Phase Inversion Method.” Langmuir 18, 26 (2002).

    Google Scholar 

  107. T. Förster, F. Schambil, and W. Von Rybinski: “Production of Fine Dispersion and Long-Term Stable Oil-in-Water Emulsions by the Phase Inversion Temperature Method.” J. Dispersion Sci. Technol. 13, 183 (1992).

    Google Scholar 

  108. A. Wadle, T. Förster, and W. Von Rybinski: “Influence of the Microemulsion Phase Structure on the Phase Inversion Temperature Emulsification of Polar Oils.” Colloid and Surfaces A Physicochem. Eng. Aspects 76, 51 (1993).

    Google Scholar 

  109. L. Taisne and B. Cabane: “Emulsification and Ripening Following a Temperature Quench.” Langmuir 14, 4744 (1998).

    Google Scholar 

  110. J.L. Salager: “Macro Emulsions Stabilized by an Ethoxylated Fatty Alcohol and an Alkyl Quat: Emulsion Type and Stability in View of the Phase Behavior.” In Proceedings of the 3rd World Congress on Emulsions 1-F-107, Lyon, France (2001).

    Google Scholar 

  111. J.L. Salager: “Evolution of Emulsion Properties Along a Transitional Inversion Produced by a Temperature Variation.” In Proceedings of the 3rd Word Congress on Emulsions 1-F-094, Lyon, France (2001).

    Google Scholar 

  112. P. Izquierdo, J. Esquena, T.F. Tadros, J.C. Dederen, J. Feng, J. Garcia-Celma, N. Azemar, and C. Solans: “Phase Behavior and Nano-Emulsion Formation by the Phase Inversion Temperature Method.” Langmuir 20, 6594 (2004).

    Google Scholar 

  113. P. Fernandez, V. André, J. Rieger, and A. Kühnle: “Nano-Emulsion Formation by Emulsion Phase Inversion.” Colloid and Surfaces A Physicochem. Eng. Aspects 251, 53 (2004).

    Google Scholar 

  114. J.K. Klahn, J.J.M. Janssen, G.E.J. Vaessen, R. de Swart, and W.G.M. Agterof: “On the Escape Process During Phase Inversion of an Emulsion.” Colloid and Surfaces A: Physicochem. Eng. Aspects 210, 167 (2002).

    Google Scholar 

  115. J.L. Salager: “Properties of Emulsions at the Onset of Catastrophic Phase Inversion in the Normal to Abnormal Inversion.” In Proceedings of the 3rd World Congress on Emulsions 1-F-185, Lyon, France (2001).

    Google Scholar 

  116. N. Zambrano, E. Tyrode, I. Mira, L. Marquez, M.-P. Rodriguez, and J.L. Salager: “Emulsion Catastrophic Inversion from Abnormal to Normal Morphology. 1. Effect of the Water-to-Oil Ratio Rate of Change on the Dynamic Inversion Frontier.” Ind. Eng. Chem. Res. 42, 50 (2003).

    Google Scholar 

  117. A.S. Kabalnov and H. Wennerström: “Macroemulsion Stability : The Oriented Wedge Theory Revisited.” Langmuir 12, 276 (1996).

    Google Scholar 

  118. A.W. Nienow: “Breakup, Coalescence and Catastrophic Phase Inversion in Turbulent Contactors.” Adv. Coll. Int. Sci. 108–109, 95 (2004).

    Google Scholar 

  119. A. Wadle, H. Tesmann, M. Leonard, and T. Förster: “Phase Inversion in Emulsions: Capico-Concept and Application.” Surfactant Science Series 68, 207 (1997).

    Google Scholar 

  120. T. Iwanaga, M. Suzuki, and H. Kunieda “Effect of Added Salts or polyols on the Liquid Crystolline Structures of Polyesayethylene-Type Nonionic Surfactants” Langmuir 14, 5775 (1998).

    Google Scholar 

  121. J.L. Salager: “A 3rd Type of Emulsion Inversion Attained by Overlapping the Two Classical Methods: Combined Inversion.” In Proceedings of the 3rd Word Congress on Emulsions 1-F-180, Lyon, France (2001).

    Google Scholar 

  122. M. Perez, N. Zambrano, M. Ramirez, E. Tyrode, and J.L. Salager: “Surfactant-Oil-Water System near the Affinity Inversion. XII. Emulsion Drop Size Formulation and Composition.” J. Dispersion Sci. Technol. 23, 55 (2002).

    Google Scholar 

  123. J.L. Salager, A. Forgiarini, L. Marquez, A. Pena, A. Pizzino, M.-P. Rodriguez, and M. Rondon-Gonzalez: “Using Emulsion Inversion in Inductrial Processes.” Adv. Coll. Int. Sci. 108–109, 259 (2004).

    Google Scholar 

  124. J.L. Salager, M. Minana-Perez, M. Perez-Sanchez, M. Ramirez-Gouveia, and C.I. Rojas: “Surfactant-Oil-Water Systems near the Affinity Inversion. Part III: The Two Kinds of Emulsion Inversion.” J. Dispersion Sci. Technol. 4, 313 (1983).

    Google Scholar 

  125. I. Mira, N. Zambrano, E. Tyrode, L. Marquez, A.A. Pena, A. Pizzino, and J.L. Salager: “Emulsion Catastrophic Inversion from Abnormal to Normal Morphology. 2. Effect of the Stirring Intensity on the Dynamic Inversion Frontier.” Ind. Eng. Chem. Res. 42, 57 (2003).

    Google Scholar 

  126. S. Sajjadi, F. Jahanzad, and M. Yianneskis: “Catastrophic Phase Inversion of Abnormal Emulsions in the Vicinity of the Locus of Transitional Inversion.” Colloid and Surfaces A Physicochem. Eng. Aspects 240, 149 (2004).

    Google Scholar 

  127. N. Uson, M.J. Garcia, and C. Solans: “Formation of Water-in-Oil (W/O) Nano-Emulsions in a Water/Mixed Non-Ionic Surfactant/Oil Systems Prepared by a Low-Energy Emulsification Method.” Colloid and Surfaces A Physicochem. Eng. Aspects 250, 415 (2004).

    Google Scholar 

  128. J. Allouche, E. Tyrode, V. Sadtler, L. Choplin, and J.L. Salager: “Simultaneous Conductivity and Viscosity Measurements as a Technique to Track Emulsion Inversion by the Phase-Inversion-Temperature Method.” Langmuir 20, 2134 (2004).

    Google Scholar 

  129. L. Liu, O.K. Matar, E.S. Perez de Ortiz, and G.F. Hewitt: “Experimental Investigation of Phase Inversion in a Strirred Vessel Using Lif.” Chem. Eng. Sci. 60, 85 (2005).

    Google Scholar 

  130. R. Pons, I. Carrera, P. Erra, H. Kunieda, and C. Solans: “Novel Preparation Methods for Highly Concentrated Water-in-Oil Emulsions.” Colloids Surf., A Physicochem. Eng. Asp. 91, 259 (1994).

    Google Scholar 

  131. H. Kunieda, Y. Fukui, H. Uchiyama, and C. Solans: “Spontaneous Formation of Highly Concentrated Water-in-Oil Emulsions (Gel-Emulsions).” Langmuir 12, 2136 (1996).

    Google Scholar 

  132. K. Ozawa, C. Solans, and H. Kunieda: “Spontaneous Formation of Highly Concentrated Oil-in-Water Emulsions.” J. Colloid Interface Sci. 188, 275 (1997).

    Google Scholar 

  133. C. Solans, R. Pons, and H. Kunieda: “Gel Emulsions - Relationship between Phase Behaviour and Formation.” In B.P. Binks (ed), Modern Aspects of Emulsion Science. The Royal Society of Chemistry, Cambridge (1998).

    Google Scholar 

  134. F. Leal Calderon, J. Bibette, and F. Guimberteau: “Method for Preparing Concentrated and Calibrated Emulsions in a Highly Viscous Phase, in Particular Bitumen Emulsions.” US Patent 6602917 (1998).

    Google Scholar 

  135. T.G. Mason and J. Bibette: “Emulsification in Viscoelastic Media.” Phys. Rev. Let 77, 3481 (1996).

    ADS  Google Scholar 

  136. J. Bibette and T.G. Mason: “Procédé de Préparation d'une émulsion.” French Patent 96 04736 PCT SR97/00690 (1996).

    Google Scholar 

  137. C. Mabille, V. Schmitt, P. Gorria, F. Leal Calderon, V. Faye, and B. Deminière: “Rheological and Shearing Conditions for the Preparation of Monodisperse Emulsions.” Langmuir 16, 422 (2000).

    Google Scholar 

  138. G.I. Taylor: “The Formation of Emulsions in Definable Fields of Flow.” Proc. R. Soc. A146, 501 (1934).

    ADS  Google Scholar 

  139. H.P. Grace: “Dispersion Phenomena in High Viscosity Immiscible Fluid Systems and Application of Static Mixers as Dispersion Devices in Such Systems.” Chem. Eng. Commun 14, 225 (1982).

    Google Scholar 

  140. R.A. De Bruijn: “Deformation and Breakup of Drops in Simple Shear Flows.” Ph. D. Thesis Eindhoven University of Technology (1989).

    Google Scholar 

  141. B.J. Bentley and L.G. Leal: “An Experimental Investigation of Drop Deformation and Breakup in Steady Two-Dimensional Linear Flows.” J. Fluid. Mech. 167, 241 (1986).

    MATH  ADS  Google Scholar 

  142. J.W.S. Rayleigh: “On the Instability of Jets.” Proc. London Math. Soc. 10, 4 (1878).

    Google Scholar 

  143. J.W.S. Rayleigh: “On the Capillary Phenomena of Jets.” Proc. Roy. Soc. 29, 71 (1879).

    Google Scholar 

  144. J.W.S. Rayleigh: “On the Instability of a Cylinder of Viscous Liquid Under Capillary Force.” Philos. Mag. 34, 145 (1892).

    Google Scholar 

  145. F.D. Rumscheidt and S.G. Mason: “Breakup of Stationary Liquid Threads.” J. Colloid Sci. 17, 260 (1962).

    Google Scholar 

  146. R.A. De Bruijn: “Tip Streaming of Drops in Simple Shear Flow.” Chem. Eng. Sci. 48, 277 (1993).

    Google Scholar 

  147. H.A. Stone, B.J. Bentley, and L.G. Leal: “An Experimental Study of Transient Effects in the Breakup of Viscous Drops.” J. Fluid Mech. 173, 131 (1986).

    ADS  Google Scholar 

  148. E.J. Hinch and A. Acrivos: “Long Slender Drops in a Simple Shear Flow.” J. Fluid. Mech. 98, 305 (1980).

    MATH  ADS  MathSciNet  Google Scholar 

  149. C. Mabille, F. Leal-Calderon, J. Bibette, and V. Schmitt: “Monodisperse Fragmentation in Emulsions: Mechanisms and Kinetics.” Europhys. Lett 61, 708 (2003).

    ADS  Google Scholar 

  150. C. Mabille: “Fragmentation in Emulsions Submitted to a Simple Shear.” Ph.D Thesis, Bordeaux I University (2000).

    Google Scholar 

  151. T. Tomotika: “On the Instability of a Cylindrical Thread of a Viscous Fluid.” Proc. Roy. Soc. (Lond.) A150, 322 (1935).

    ADS  Google Scholar 

  152. D.C. Chappelear: “Interfacial Tension between Molten Polymers.” Polym. Prep. 5, 363 (1964).

    Google Scholar 

  153. P.H.M. Elemans, J.M.H. Janssen, and H.E.H. Meier: “The Measurement of Interfacial Tension in Polymer/Polymer Systems: The Breaking Thread Method.” J. Rheol. 34, 1311 (1990).

    ADS  Google Scholar 

  154. D.V. Khakhar and J.M. Otino: “Deformation and Breakup of Slender Drops in Linear Flows.” J. Fluid Mech. 166, 265 (1986).

    MATH  ADS  Google Scholar 

  155. D. Rusu: “Etude in-Situ, Par Diffusion De La Lumière, De La Morphologie De Mélanges De Polymères Immiscibles Durant Un Cisaillement.” Thèse de l'ecole des Mines de Paris, Sophia Antipolis (1997).

    Google Scholar 

  156. V. Schmitt, F. Leal-Calderon, and J. Bibette: “Preparation of Monodisperse Particles and Emulsions by Controlled Shear.” In M. Antonietti (ed), Colloid Chemistry II. Springer-Verlag, Berlin (2003).

    Google Scholar 

  157. M.P. Aronson: “The Role of Free Surfactant in Destabilizing Oil-in-Water Emulsions.” Langmuir 5, 494 (1989).

    Google Scholar 

  158. G.I. Taylor: “The Viscosity of a Fluid Containing Small Drops of Another Fluid.” Proc. R. Soc. A138, 41 (1932).

    ADS  Google Scholar 

  159. J. Bibette and T.G. Mason: “Emulsion Manufacturing Process.” US Patent 5,938,581 (1999).

    Google Scholar 

  160. P. Perrin: “Amphiphilic Copolymers: A New Route to Prepare Ordered Monodisperse Emulsions.” Langmuir 14, 5977 (1998).

    Google Scholar 

  161. P. Perrin and F. Lafuma: “Low Hydrophobically Modified Poly (Acrylic Acid) Stabilizing Macroemulsions: Relationship Between Copolymer Structure and Emulsions Properties.” J. Colloid Interface Sci. 197, 317 (1998).

    Google Scholar 

  162. C. Goubault, K. Pays, D. Olea, J. Bibette, V. Schmitt, and F. Leal-Calderon: “Shear Rupturing of Complex Fluids: Application to the Preparation of Quasi-Monodisperse W/O/W Double Emulsions.” Langmuir 17, 5184 (2001).

    Google Scholar 

  163. K. Pays, J. Giermanska-Kahn, P. Pouligny, J. Bibette, and F. Leal-Calderon: “Double Emulsions: A Tool for Probing Thin Film Metastability.” Phys. Rev. Lett. 87, 178304 (2001).

    ADS  Google Scholar 

  164. K. Pays, J. Kahn, B. Pouligny, J. Bibette, and F. Leal-Calderon: “Coalescence in Surfactant-Stabilized Double Emulsions.” Langmuir 17, 7758 (2001).

    Google Scholar 

  165. J. Bibette, F. Leal-Calderon, and P. Gorria: “Polydisperse Double Emulsion, Corresponding Monodisperse Double Emulsion and Process to Fabricate the Monodisperse Emulsion.” Patent WO0121297 (1999).

    Google Scholar 

  166. K. Pays, F. Leal Calderon, and J. Bibette: “Method to Produce a Monodisperse Double Emulsion.” French Patent 00 05880 (2000).

    Google Scholar 

  167. T.G. Mason and J. Bibette: “Shear Rupturing of Droplets in Complex Fluids.” Langmuir 13, 4600 (1997).

    Google Scholar 

  168. F. Leal-Calderon, T. Stora, O. Mondain Monval, P. Poulin, and J. Bibette: “Direct Measurement of Colloidal Forces.” Phys. Rev. Lett. 72, 2959 (1994).

    ADS  Google Scholar 

  169. G. Reimers and S. Khalafalla: “Production of Magnetic Fluids by Peptization Techniques.” US Patent 38,435,40 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Leal-Calderon, F., Bibette, J., Schmitt, V. (2007). Emulsification. In: Emulsion Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39683-5_2

Download citation

Publish with us

Policies and ethics