Skip to main content

Heme Oxygenase as a Therapeutic Funnel in Nutritional Redox Homeostasis and Cellular Stress Response

Role of Acetylcarnitine

  • Chapter
Heat Shock Proteins in Neural Cells

Abstract

Reduction of cellular expression and activity of antioxidant proteins and the consequent increase of oxidative stress are fundamental causes for both the aging processes and neurodegenerative diseases. Oxidative stress has been implicated in mechanisms leading to neuronal cell injury in various pathological states of the brain. Alzheimer’s disease (AD) is a progressive disorder with cognitive and memory decline, speech loss, personality changes and synapse loss. Many approaches have been undertaken to understand AD, but the heterogeneity of the etiologic factors makes it difficult to define the clinically most important factor determining the onset and progression of the disease. There is now evidence to suggest that networks of responses exist in the brain to detect and control diverse forms of stress. This is accomplished by a complex network of the so-called longevity assurance processes, which are composed of several genes termed vitagenes. Among these, heat shock proteins form a highly conserved system responsible for the preservation and repair of the correct protein conformation. Recent studies have shown that the heat shock response contributes to establish a cytoprotective state in a wide variety of human diseases, including inflammation, cancer, aging and neurodegenerative disorders. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing the heat shock response. Acetylcarnitine (LAC) is proposed as a therapeutic agent for several neurodegenerative disorders, and there is evidence that LAC may play a critical role as a modulator of cellular stress response in health and disease states. In the present review we discuss the role of the heme oxygenase pathway in cellular stress response. We then review the evidence for the role of acetylcarnitine in modulating redox-dependent mechanisms leading to up-regulation of vitagenes in brain, and hence potentiate brain stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calabrese V, Scapagnini G, Latteri S et al. Heme oxygenase, carbon monoxide and Cellular Stress Response in the Nervous System: The good and the enigmatic. Neurochemistry News 2002c; 2:57–60.

    Google Scholar 

  2. Calabrese V, Scapagnini G, Colombrita C et al. Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: A nutritional approach. Amino Acids 2003a; 25:437–444.

    CAS  PubMed  Google Scholar 

  3. Poon HF, Calabrese V, Scapagnini G et al. Free radicals: Key to brain aging and heme oxygenase as a cellular response to oxidative stress. J Gerontology 2004a; 59:478–493.

    Google Scholar 

  4. Forman HJ, Fukuto JM, Torres M. Redox signaling: Thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol 2004; 287:C246–C256.

    CAS  PubMed  Google Scholar 

  5. Poon HF, Calabrese V, Scapagnini G et al. Free radicals and brain aging. Clin Geriatr Med 2004b; 20:329–359.

    PubMed  Google Scholar 

  6. Calabrese V, Scapagnini G, Ravagna A et al. Increased expression of heat shock proteins in rat brain during aging: Relationship with mitochondrial function and glutathione redox state. Mech Age Dev 2004a; 125:325–335.

    CAS  Google Scholar 

  7. Calabrese V, Giuffrida Stella AM, Butterfield DA et al. Redox regulation in neurodegeneration and longevity: Role of the Heme Oxygenase and HSP70 systems in brain stress tolerance. Antioxid Redox Signal 2004b; 6:895–913.

    CAS  PubMed  Google Scholar 

  8. Halliwell B. Hypothesis: Proteasomal dysfunction: A primary event in neurogeneration that leads to nitrative and oxidative stress and subsequent cell death. Ann NY Acad Sci 2002; 962:182–194.

    CAS  PubMed  Google Scholar 

  9. Martindale JL, Holbrook NJ. Cellular response to oxidative stress: Signaling for suicide and survival. J Cell Physiol 2002; 192:1–15.

    CAS  PubMed  Google Scholar 

  10. Bergamini CM, Gambetti S, Dondi A et al. Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des 2004; 10:1611–1626.

    CAS  PubMed  Google Scholar 

  11. Pappolla MA, Chyan YJ, Omar RA et al. Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer’s disease: A chronic oxidative paradigm for testing antioxidant therapies in vivo. Am J Pathol 1998; 152:871–877.

    CAS  PubMed  Google Scholar 

  12. Smith MA, Hirai K, Hsiao K et al. Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 1998; 70:2212–2215.

    CAS  PubMed  Google Scholar 

  13. Butterfield DA, Drake J, Pocernich C et al. Evidence of oxidative damage in Alzheimer’s disease brain: Central role for amyloid beta-peptide. Trends Mol Med 2001; 7:548–554.

    CAS  PubMed  Google Scholar 

  14. Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress. Free Rad Biol Med 2002; 32:1050–1060.

    CAS  PubMed  Google Scholar 

  15. Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature 2004; 430:631–639.

    CAS  PubMed  Google Scholar 

  16. Drew B, Leeuwenburgh C. Aging and the role of reactive nitrogen species. Ann NY Acad Sci 2002; 959:66–81.

    Article  CAS  PubMed  Google Scholar 

  17. Kroncke KD. Nitrosative stress and transcription. Biol Chem 2003; 384:1365–1377.

    PubMed  Google Scholar 

  18. Ridnour LA, Thomas DD, Mancardi D et al. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol Chem 2004; 385:1–10.

    CAS  PubMed  Google Scholar 

  19. Maines MD. Heme oxygenase: Function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J 1988; 2:2557–2568.

    CAS  PubMed  Google Scholar 

  20. Prestera T, Talalay P, Alam J et al. Parallel induction of heme oxygenase-1 and chemoprotective phase 2 enzymes by electrophiles and antioxidants: Regulation by upstream antioxidant-responsive elements (ARE). Mol Med 1995; 1:827–837.

    CAS  PubMed  Google Scholar 

  21. Maines MD. Heme Oxygenase in Clinical Applications and Functions. Boca Raton: CRC Press, 1992.

    Google Scholar 

  22. Maines MD. The heme oxygenase system: A regulator of second messenger gases. Annu Rev Pharmacol Toxicol 1997; 37:517–554.

    CAS  PubMed  Google Scholar 

  23. Wang X, Hauptmann N, Taylor E et al. Neotrofin increases heme oxygenase-1 selectively in neurons. Brain Res 2003; 962:1–14.

    CAS  PubMed  Google Scholar 

  24. Stocker R, Yamamoto Y, McDonagh AF et al. Bilirubin is an antioxidant of possible physiological importance. Science 1987; 235:1043–1046.

    CAS  PubMed  Google Scholar 

  25. Mancuso C, Tringali G, Grossman A et al. The generation of nitric oxide and carbon monoxide produces opposite effects on the release of immunoreactive interleukin-1beta from the rat hypothalamus in vitro: Evidence for the involvement of different signaling pathways. Endocrinology 1998; 139:1031–1037.

    CAS  PubMed  Google Scholar 

  26. Otterbein LE, Bach FH, Alam J et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 2000; 6:422–428.

    CAS  PubMed  Google Scholar 

  27. Mancuso C, Bonsignore A, Di Stasio E et al. Bilirubin and s-nitrosothiols interaction: Evidence for a possible role of bilirubin as a scavenger of nitric oxide. Biochem Pharmacol 2003; 66:2355–2363.

    CAS  PubMed  Google Scholar 

  28. Turner CP, Panter SS, Sharp FR. Anti-oxidants prevent focal rat brain injury as assessed by induction of heat shock proteins (HSP70, HO-1/HSP32, HSP47) following subarachnoid injections of lysed blood. Brain Res Mol Brain Res 1999; 65:87–102.

    CAS  PubMed  Google Scholar 

  29. Motterlini R, Foresti R, Bassi R et al. Endothelial heme oxygenase-1 induction by hypoxia. Modulation by inducible nitric-oxide synthase and S-nitrosothiols. J Biol Chem 2000; 275:13613–13620.

    CAS  PubMed  Google Scholar 

  30. Hill-Kapturczak N, Sikorski EM, Voakes C et al. An internal enhancer regulates heme and cadmium-mediated induction of human heme oxygenase-1. Am J Physiol Renal Physiol 2003; 285:F515–523.

    PubMed  Google Scholar 

  31. Sun J, Hoshino O, Takaku K et al. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J 2002; 21:5216–5224.

    CAS  PubMed  Google Scholar 

  32. Stewart D, Killeen E, Naquin R et al. Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J Biol Chem 2003; 278:2396–2402.

    CAS  PubMed  Google Scholar 

  33. Scapagnini G, D’Agata V, Calabrese V et al. Gene expression profiles of heme oxygenase isoforms in the rat brain. Brain Res 2002; 954:51–59.

    CAS  PubMed  Google Scholar 

  34. Balogun E, Hoque M, Gong P et al. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 2003; 371:887–895.

    CAS  PubMed  Google Scholar 

  35. Liu N, Wang X, McCoubrey WK et al. Developmentally regulated expression of two transcripts for heme oxygenase-2 with a first exon unique to rat testis: Control by corticosterone of the oxygenase protein expression. Gene 2000; 241:175–183.

    CAS  PubMed  Google Scholar 

  36. Raju VS, McCoubrey WK, Maines MD. Regulation of heme oxygenase-2 by glucocorticoids in neonatal rat brain: Characterization of a functional glucocorticoid response element. Biochim Biophys Acta 1997; 1351:89–104.

    CAS  PubMed  Google Scholar 

  37. Simonian NA, Coyle JT. Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 1996; 36:83–106.

    CAS  PubMed  Google Scholar 

  38. Sayre LM, Smith MA, Perry G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 2001; 8:721–738.

    CAS  PubMed  Google Scholar 

  39. Andersen JK. Oxidative stress in neurodegeneration: Cause or consequence? Nat Med 2004; 10(Suppl):S18–25.

    PubMed  Google Scholar 

  40. Mancuso C. Heme oxygenase and its products in the nervous system. Antioxid Redox Signal 2004; 6:878–887.

    CAS  PubMed  Google Scholar 

  41. Panahian N, Yoshiura M, Maines MD. Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J Neurochem 1999; 72:1187–1203.

    Article  CAS  PubMed  Google Scholar 

  42. Takeda A, Perry G, Abraham NG et al. Overexpression of heme oxygenase in neuronal cells, the possible interaction with Tau. J Biol Chem 2000; 275:5395–5399.

    CAS  PubMed  Google Scholar 

  43. Premkumar DR, Smith MA, Richey PL et al. Induction of heme oxygenase-1 mRNA and protein in neocortex and cerebral vessels in Alzheimer’s disease. J Neurochem 1995; 65:1399–1402.

    Article  CAS  PubMed  Google Scholar 

  44. Schipper HM. Heme oxygenase-1: Role in brain aging and neurodegeneration. Exp Gerontol 2000; 35:821–830.

    CAS  PubMed  Google Scholar 

  45. Calabrese V, Butterfield DA, Giuffrida Stella AM. Nutritional antioxidants and the heme oxygenase pathway of stress tolerance: Novel targets for neuroprotection in Alzheimer’s disease. It J Biochemistry 2003b; 52:72–76.

    Google Scholar 

  46. Scapagnini G, Foresti R, Calabrese V et al. Caffeic acid phenethyl ester and curcumin: A novel class of heme oxygenase-1 inducers. Mol Pharmacol 2002; 61:554–561.

    CAS  PubMed  Google Scholar 

  47. Scapagnini G, Butterfield DA, Colombrita C et al. Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neurons against oxidative stress. Antioxid Redox Signal 2004; 6:811–818.

    CAS  PubMed  Google Scholar 

  48. Butterfield D, Castegna A, Pocernich C et al. Nutritional approaches to combat oxidative stress in Alzheimer’s disease. J Nutr Biochem 2002; 13:444–461.

    CAS  PubMed  Google Scholar 

  49. Motterlini R, Foresti R, Bassi R et al. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med 2000b; 28:1303–1312.

    CAS  PubMed  Google Scholar 

  50. Baranano DE, Rao M, Ferris CD et al. Biliverdin reductase: A major physiologic cytoprotectant. Proc Natl Acad Sci USA 2002; 99:16093–16098.

    CAS  PubMed  Google Scholar 

  51. Kaur H, Hughes MN, Green CJ et al. Interaction of bilirubin and biliverdin with reactive nitrogen species. FEBS Lett 2003; 543:113–119.

    CAS  PubMed  Google Scholar 

  52. Ganguli M, Chandra V, Kamboh MI et al. Apolipoprotein E polymorphism and Alzheimer disease: The Indo-US Cross-National Dementia Study. Arch Neurol 2000; 57:824–830.

    CAS  PubMed  Google Scholar 

  53. Lim GP, Yang F, Chu T et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 2000; 20:5709–5714.

    CAS  PubMed  Google Scholar 

  54. Kitamuro T, Takahashi K, Ogawa K et al. Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. J Biol Chem 2003; 278:9125–9133.

    CAS  PubMed  Google Scholar 

  55. Nakayama M, Takahashi K, Kitamuro T et al. Repression of heme oxygenase-1 by hypoxia in vascular endothelial cells. Biochem Biophys Res Commun 2000; 271:665–671.

    CAS  PubMed  Google Scholar 

  56. Okinaga S, Takahashi K, Takeda K et al. Regulation of human heme oxygenase-1 gene expression under thermal stress. Blood 1996; 87:5074–5084.

    CAS  PubMed  Google Scholar 

  57. Takahashi K, Nakayama M, Takeda K et al. Suppression of heme oxygenase-1 mRNA expression by interferon-gamma in human glioblastoma cells. J Neurochem 1999; 72:2356–2361.

    CAS  PubMed  Google Scholar 

  58. Oyake T, Itoh K, Motohashi H et al. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol 1996; 16:6083–6095.

    CAS  PubMed  Google Scholar 

  59. Sun J, Hoshino H, Takaku K et al. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J 2002; 21:5216–5224.

    CAS  PubMed  Google Scholar 

  60. Shibahara S. The heme oxygenase dilemma in cellular homeostasis: New insights for the feedback regulation of heme catabolism. Tohoku J Exp Med 2003; 200:167–186.

    CAS  PubMed  Google Scholar 

  61. Calabrese V, Boyd-Kimball D, Scapagnini G et al. Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: The role of vitagenes. In Vivo 2004c; 18:245–268.

    CAS  PubMed  Google Scholar 

  62. Kostoglou-Athanassiou I, Forsling ML, Navarra P et al. Oxytocin release is inhibited by the generation of carbon monoxide from the rat hypothalamus—further evidence for carbon monoxide as a neuromodulator. Brain Res Mol Brain Res 1996; 42:301–306.

    CAS  PubMed  Google Scholar 

  63. Mancuso C, Kostoglou-Athanassiou I, Forsling ML et al. Activation of heme oxygenase and consequent carbon monoxide formation inhibits the release of arginine vasopressin from rat hypothalamic explants. Molecular linkage between heme catabolism and neuroendocrine function. Brain Res Mol Brain Res 1997a; 50:267–276.

    CAS  PubMed  Google Scholar 

  64. Mancuso C, Ragazzoni E, Tringali G et al. Inhibition of heme oxygenase in the central nervous system potentiates endotoxin-induced vasopressin release in the rat. J Neuroimmunol 1999; 99:189–194.

    CAS  PubMed  Google Scholar 

  65. Parkes D, Kasckow J, Vale W. Carbon monoxide modulates secretion of corticotropin-releasing factor from rat hypothalamic cell cultures. Brain Res 1994; 646:315–318.

    CAS  PubMed  Google Scholar 

  66. Pozzoli G, Mancuso C, Mirtella A et al. Carbon monoxide as a novel neuroendocrine modulator: Inhibition of stimulated corticotropin-releasing hormone release from acute rat hypothalamic explants. Endocrinology 1994; 135:2314–2317.

    CAS  PubMed  Google Scholar 

  67. Mancuso C, Pistritto G, Tringali G et al. Evidence that carbon monoxide stimulates prostaglandin endoperoxide synthase activity in rat hypothalamic explants and in primary cultures of rat hypothalamic astrocytes. Brain Res Mol Brain Res 1997; 45:294–300.

    CAS  PubMed  Google Scholar 

  68. Jaggar JH, Leffler CW, Cheranov SY et al. Carbon monoxide dilates cerebral arterioles by enhancing the coupling of Ca2+ sparks to Ca2+-activated K+ channels. Circ Res 2002; 91:610–617.

    CAS  PubMed  Google Scholar 

  69. Ryter SW, Otterbein LE, Morse D et al. Heme oxygenase/carbon monoxide signaling pathways: Regulation and functional significance. Mol Cell Biochem 2002; 234-235:249–263.

    PubMed  Google Scholar 

  70. Yenari MA, Giffard RG, Sapolsky RM et al. The neuroprotective potential of heat shock protein 70 (HSP70). Mol Med Today 1999; 5:525–531.

    CAS  PubMed  Google Scholar 

  71. Yenari MA. Heat shock proteins and neuroprotection. Adv Exp Med Biol 2002; 513:281–299.

    CAS  PubMed  Google Scholar 

  72. Hata R, Maeda K, Hermann D et al. Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 2000; 20:306–315.

    CAS  PubMed  Google Scholar 

  73. Perez N, Sugar J, Charya S et al. Increased synthesis and accumulation of heat shock 70 proteins in Alzheimer’s disease. Brain Res Mol Brain Res 1991; 1:249–254.

    Google Scholar 

  74. Yoo BC, Seidl R, Cairns N et al. Heat-shock protein 70 levels in brain of patients with Down syndrome and Alzheimer’s disease. J Neural Transm Suppl 1999; 57:315–322.

    CAS  PubMed  Google Scholar 

  75. Morrison-Bogorad M, Zimmerman AL, Pardue S. Heat-shock 70 messenger RNA levels in human brain: Correlation with agonal fever. J Neurochem 1995; 64:235–246.

    Article  CAS  PubMed  Google Scholar 

  76. Kakimura J, Kitamura Y, Takata K et al. Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. FASEB J 2002; 16:601–603.

    CAS  PubMed  Google Scholar 

  77. Calabrese V, Copani A, Testa D et al. Nitric oxide synthase induction in astroglial cell cultures: Effect on heat shock protein 70 synthesis and oxidant/antioxidant balance. J Neurosci Res 2000a; 60:613–622.

    CAS  PubMed  Google Scholar 

  78. Calabrese V, Testa G, Ravagna A et al. HSP70 induction in the brain following ethanol administration in the rat: Regulation by glutathione redox state. Biochem Biophys Res Commun 2000b; 269:397–400.

    CAS  PubMed  Google Scholar 

  79. Calabrese V, Bates TE, Giuffrida Stella AM. NO synthase and NO-dependent signal pathways in brain aging and neurodegenerative disorders: The role of oxidant/antioxidant balance. Neurochem Res 2000c; 65:1315–1341.

    Google Scholar 

  80. Calabrese V, Scapagnini G, Giuffrida Stella AM et al. Mitochondrial involvement in brain function and dysfunction: Relevance to aging, neurodegenerative disorders and longevity. Neurochem Res 2001; 26:739–764.

    CAS  PubMed  Google Scholar 

  81. Iverson SL, Orrenius S. The cardiolipin-cytochrome c interaction and the mitochondrial regulation of apoptosis. Arch Biochem Biophys 2004; 423:37–46.

    CAS  PubMed  Google Scholar 

  82. Calabrese V, Ravagna A, Colombrita C et al. Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: Involvement of the transcription factor Nrf2. J Neurosci Res 2005; 79:509–521.

    CAS  PubMed  Google Scholar 

  83. Rai G, Wright G, Scott L et al. Double-blind, placebo controlled study of acetyl-L-carnitine in patients with Alzheimer’s dementia. Curr Med Res Opin 1990; 11:638–641.

    CAS  PubMed  Google Scholar 

  84. Patrick L. Nutrients and HIV: Part three-N-acetylcysteine, alpha-lipoic acid, L-glutamine, and L-carnitine. Altern Med Rev 2000; 5:290–305.

    CAS  PubMed  Google Scholar 

  85. Calabrese V, Scapagnini G, Ravagna A et al. Disruption of thiol homeostasis and nitrosative stress in the cerebrospinal fluid of patients with active multiple sclerosis: Evidence for a protective role of acetylcarnitine. Neurochem Res 2003c; 28:1321–1328.

    CAS  PubMed  Google Scholar 

  86. Albertini P, Amenta F, Bossoni G et al. Effect of acetyl-L-carnitine treatment on the density of muscarinic receptors in the brain of methylazoxymethanol-microencephalic rats. Drugs Exp Clin Res 1989; 15:421–7.

    CAS  PubMed  Google Scholar 

  87. Rao KV, Mawal YR, Qureshi LA. Progressive decrease of cerebral cytochrome C oxidase activity in sparse-fur mice: Role of acetyl-L-carnitine in restoring the ammonia-induced cerebral energy depletion. Neurosci Lett 1997; 224:83–86.

    CAS  PubMed  Google Scholar 

  88. Carta A, Calvani M, Bravi D et al. Acetyl-L-carnitine and Alzheimer’s disease: Pharmacological considerations beyond the cholinergic sphere. Ann NY Acad Sci 1993; 695:324–326.

    CAS  PubMed  Google Scholar 

  89. Ando S, Kobayashi S, Waki H et al. Animal model of dementia induced by entorhinal synaptic damage and partial restoration of cognitive deficits by BDNF and carnitine. J Neurosci Res 2002; 70:519–527.

    CAS  PubMed  Google Scholar 

  90. Chiechio S, Caricasole A, Barletta E et al. L-Acetylcarnitine induces analgesia by selectively up-regulating mGlu2 metabotropic glutamate receptors. Mol Pharmacol 2002; 61:989–996.

    CAS  PubMed  Google Scholar 

  91. Spagnoli A, Lucca U, Menasce G et al. Long-term acetyl-L-carnitine treatment in Alzheimer’s disease. Neurology 1991; 41:1726.

    CAS  PubMed  Google Scholar 

  92. Caprioli A, Markowska AL, Olton DS. Acetyl-L-Carnitine: Chronic treatment improves spatial acquisition in a new environment in aged rats. J Gerontol 1995; 50:232–236.

    Google Scholar 

  93. Chauhan NB, Siegel GJ. Effect of PPF and ALCAR on the induction of NGF-and p75-mRNA and on APP processing in Tg2576 brain. Neurochem Int 2003; 43:225–233.

    CAS  PubMed  Google Scholar 

  94. Calabrese V, Scapagnini G, Latteri S et al. Long-term ethanol administration enhances age-dependent modulation of redox state in different brain regions in the rat: Protection by acetyl carnitine. Int J Tissue React 2002d; 24:97–104.

    CAS  PubMed  Google Scholar 

  95. Hagen TM, Ingersoll RT, Wehr CM et al. Acetyl-L-carnitine fed to old rats partially restores mitochondrial function and ambulatory activity. Proc Natl Acad Sci USA 1998; 95:9562–9566.

    CAS  PubMed  Google Scholar 

  96. Wolff RL, Combe NA, Entressangles B. Positional distribution of fatty acids in cardiolipin of mitochondria from 21-day-old rats. Lipids 1985; 20:908–914.

    CAS  PubMed  Google Scholar 

  97. Armeni T, Principato G, Quiles JL et al. Mitochondrial dysfunctions during aging: Vitamin E deficiency or caloric restriction—two different ways of modulating stress. J Bioenerg Biomembr 2003; 35:181–191.

    CAS  PubMed  Google Scholar 

  98. Poon HF, Shepherd HM, Reed T et al. Proteomics analysis provides insight into caloric restriction-mediated reduced oxidation and altered expression of brain proteins associated with age-related impaired cellular processes: Mitochondrial dysfunction, glutamate dysregulation and impaired protein systhesis. Neurobiol Aging 2005; in press.

    Google Scholar 

  99. Wheeler DS, Dunsmore KE, Wong HR. Intracellular delivery of HSP70 using HIV-1 Tat protein transduction domain. Biochem Biophys Res Commun 2003; 301:54–59.

    CAS  PubMed  Google Scholar 

  100. Pocernich CB, Sultana R, Hone E et al. Effects of apolipoprotein E on the human immunodeficiency virus protein tat in neuronal cultures and synaptosomes. J Neurosci Res 2004; 77:532–539.

    CAS  PubMed  Google Scholar 

  101. Weng YH, Yang G, Weis S et al. Interaction between heme oxygenase-1 and 2 proteins. J Biol Chem 2003; 278:50999–51005.

    CAS  PubMed  Google Scholar 

  102. Sultana R, Ravagna A, Mohmmad-Abdul H et al. Ferulic acid ethyl ester protects neurons against amyloid beta-peptide(1-42)-induced oxidative stress and neurotoxicity: Relationship to antioxidant activity. J Neurochem 2005; 92:749–758.

    CAS  PubMed  Google Scholar 

  103. Otterbein LE, Zuckerbraun BS, Haga M et al. Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 2003; 9:183–190.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Calabrese .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Calabrese, V., Pennisi, G., Calvani, M., Butterfield, D.A., Mancuso, C., Giufrrida Stella, A.M. (2009). Heme Oxygenase as a Therapeutic Funnel in Nutritional Redox Homeostasis and Cellular Stress Response. In: Heat Shock Proteins in Neural Cells. Neuroscience Intelligence Unit. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39954-6_4

Download citation

Publish with us

Policies and ethics