Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 593))

Abstract

Genetic variation and SNP analysis starts with generation of sequence-specific signal, followed by the collection of that signal. The final step is extensive data analysis, which starts with conversion of quantifiable raw data and ends up with identified SNPs, frequencies, and sometimes tissue-specific expression patterns (levels). In this chapter we describe and compare the mechanisms of signal generation of several representative SNP analysis platforms. DNA microarray no doubt has its advantage in applications involving the classification and identification of tumor classes, gene discovery, drug dependent transcription mechanisms, as well as prediction of drug response. PCR, xMAP, invader assay, mass spectrometry, and pyrosequencing, on the other hand, are alternative methods of genotyping employed following the large scale screening and discovery of genetic variations. In addition, they offer higher specificity and sensitivity in analysis of both genomic DNA, as well as RNA. By exploiting these technologies, correlative study of the effects of putative genetic variations on cells, tissue-specific and developmentally specific expression is possible. Of extreme value are the many forms of Mass Spectrometry in the areas of sensitive, early cancer diagnosis. Finally, microarray and xMAP are suitable for protein analysis. While protein array offers higher throughput, xMAP is more amendable to the native 3D structure of protein molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang DG, Fan JB, Siao CJ et al. Large-scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. Science 1998; 280:1077–1082.

    Article  PubMed  CAS  Google Scholar 

  2. Cooper DN, Ball EV, Krawczak M. The human gene mutation database. Nucleic Acids Res 1998; 26:285–287.

    Article  PubMed  CAS  Google Scholar 

  3. Ng PC, Henikoff S. Accounting for human polymorphisms predicted to affect protein function. Genome Res 2002; 12:436–446.

    Article  PubMed  CAS  Google Scholar 

  4. Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 1998; 8:1229–1231.

    PubMed  CAS  Google Scholar 

  5. The International SNP Map Working Group: A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409:928–933.

    Article  Google Scholar 

  6. Lander ES, Botstein D. Strategies for studying heterogeneous genetic traits in humans by using a linkage map of restriction fragment length polymorphisms. Proc Natl Acad Sci 1986; 83(19):7353–7357.

    Article  PubMed  CAS  Google Scholar 

  7. Quan F, Korneluk RG, MacLeod HL et al. An RFLP associated with the human catalase gene. Nucleic Acids Res 1985; 13(22):8288.

    Article  PubMed  CAS  Google Scholar 

  8. Sander, Olson TS, Hall J et al. Comparison of detection platforms and post-polymerase chain reaction DNA purification methods for use in conjunction with Cleavase fragment length polymorphism analysis. Electrophoresis 1999; 20:1131–1140.

    Article  PubMed  CAS  Google Scholar 

  9. Gross E, Arnold N, Goette J et al. A comparison of BRCA1 mutation analysis by direct sequencing, SSCP and DHPLC. Hum Genet 1999; 105(1–2):72–78.

    Article  PubMed  CAS  Google Scholar 

  10. Arguello JR, Little AM, Pay AL et al. Mutation detection and typing of polymorphic loci through double-strand conformation analysis. Nat Genet 1998; 18(2):192–194.

    Article  PubMed  CAS  Google Scholar 

  11. Arguello JR, Little AM, Bohan E et al. High resolution HLA class I typing by reference strand mediated conformation analysis (RSCA). Tissue Antigens 1998; 52(1):57–66.

    Article  PubMed  CAS  Google Scholar 

  12. Panaro NJ, Yuen PK, Sakazume T et al. Evaluation of DNA fragment sizing and quantification by the agilent 2100 bioanalyzer. Clin Chem 2000; 46(11):1851–1853.

    PubMed  CAS  Google Scholar 

  13. Shi C, Eshleman SH, Jones D et al. LigAmp for sensitive detection of single-nucleotide differences. Nat Methods 2004; 1(2):141–147.

    Article  PubMed  CAS  Google Scholar 

  14. Hu N, Flaig MJ, Su H et al. Comprehensive characterization of annexin I alterations in esophageal squamous cell carcinoma. Clin Cancer Res 2004; 10(18Pt 1):6013–6022.

    Article  PubMed  CAS  Google Scholar 

  15. Holland PM, Abramson RD, Watson R et al. Detection of specific polymerase chain reaction product by utilizing the 5′—3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci 1991; 88(16):7276–7280.

    Article  PubMed  CAS  Google Scholar 

  16. Livak KJ. Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet Anal 1999; 14(5–6):143–149.

    PubMed  CAS  Google Scholar 

  17. Chee M, Yang R, Hubbell E et al. Accessing genetic information with high-density DNA arrays. Science 1996; 274:610–614.

    Article  PubMed  CAS  Google Scholar 

  18. Mocellin S, Wang E, Panelli M et al. DNA array-based gene profiling in tumor immunology. Clin Cancer Res 2004; 10(14):4597–606.

    Article  PubMed  CAS  Google Scholar 

  19. Wang E, Adams S, Zhao YD et al. A strategy for detection of known and unknown SNP using a minimum number of oligonucleotides applicable in the clinical settings. J Transl Med 2003; 1:4.

    Article  PubMed  Google Scholar 

  20. Gordon RF, McDade RL. Multiplexed quantification of human IgG, IgA, and IgM with the Flowmetrix system. Clin Chem 1997; 43:1799–1801.

    PubMed  CAS  Google Scholar 

  21. Smith PL, Walker Peach CR, Fulton RJ et al. A rapid, sensitive, multiplexed assay for detection of viral nucleic acids using the FlowMetrix system. Clin Chem 1998; 44:2054–2060.

    PubMed  CAS  Google Scholar 

  22. Aston CE, Ralph DA, Lalo DP et al. Oligogenic combinations associated with breast cancer risk in women under 53 years of age. Hum Genet 2005; 116(3):208–221.

    Article  PubMed  CAS  Google Scholar 

  23. Kwiatkowski RW, Lyamichev V, de Arruda M et al. Clinical, genetic, and pharmacogenetic applications of the Invader assay. Mol Diagn 1999; 4(4):353–364.

    Article  PubMed  CAS  Google Scholar 

  24. Lyamichev V, Neri B. Invader assay for SNP genotyping. Methods Mol Biol 2003; 212:229–240.

    PubMed  CAS  Google Scholar 

  25. Allawi HT, Dahlberg JE, Olson S et al. Quantitation of microRNAs using a modified Invader assay. RNA 2004; 10(7):1153–1161.

    Article  PubMed  CAS  Google Scholar 

  26. Petricon EF, Liotta LA. SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer. Curr Opin Biotechnol 2004; 15(1):24–30.

    Article  CAS  Google Scholar 

  27. Conrads TP, Hood, BL, Issaq HJ et al. Proteomic patterns as a diagnostic tool for early-stage cancer: A review of its progress to a clinically relevant tool. Mol Diag 2004; 8(2):77–85.

    Article  Google Scholar 

  28. Yang H, Yang K, Khafagi A et al. Sensitive detection of human papillomavirus in cervical, head/neck, and schistosomiasis-associated bladder malignancies. PNAS 2005; 102(21):7683–7688.

    Article  PubMed  CAS  Google Scholar 

  29. Sauer S, Gelfand DH, Boussicault F et al. Facile method for automated genotyping of single nucleotide polymorphisms by mass spectrometry. Nuclec Acids Res 2002; 30(5):e22.

    Article  Google Scholar 

  30. McCullough RM, Cantor CR, Ding C. High-throughput alternative splicing quantification by primer extension and matrix-assisted laser desorbtion/ionization time-of-flight mass spectrometry. Nucleic Acids Res 2005; 33:(11) e99.

    Article  PubMed  CAS  Google Scholar 

  31. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 1977; 74:5463–5467.

    Article  PubMed  CAS  Google Scholar 

  32. Adams SD, Krausa P, McGinnis M et al. Practicality of high-throughput HLA sequencing based typing. ASHI Quarterly 2001; 25:54–57.

    Google Scholar 

  33. Adams SD, Barracchini KC, Chen D et al. Ambiguous allele combinations in HLA Class I and Class II sequence-based typing: When precise nucleotide sequencing leads to imprecise allele identification. J Transl Med 2004; 2(1):30.

    Article  PubMed  CAS  Google Scholar 

  34. Ronaghi M, Uhlen M, Nyrén P. A sequencing method based on real-time pyrophosphate. Science 1998; 281:363–365.

    Article  PubMed  CAS  Google Scholar 

  35. Ronaghi M. Pyrosequencing sheds light on DNA sequencing. Genome Res 2001; 11:3–11.

    Article  PubMed  CAS  Google Scholar 

  36. Ramon D, Braden M, Adams S et al. Pyrosequencingâ„¢: A one-step method for high resolution HLA typing. J Transl Med 2003; 1:9.

    Article  PubMed  Google Scholar 

  37. Wang L, Marincola FM. Applying Pyrosequencing to HLA-typing. ASHI Quarterly 2003; 27:16–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Wang, L., Luhm, R., Lei, M. (2007). SNP and Mutation Analysis. In: Mocellin, S. (eds) Microarray Technology and Cancer Gene Profiling. Advances in Experimental Medicine and Biology, vol 593. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39978-2_11

Download citation

Publish with us

Policies and ethics