Skip to main content

Cell Death and Transcription

  • Chapter
Gene Expression and Regulation
  • 1262 Accesses

Abstract

Cell death is required for development and tissue homeostasis of all multicellular organisms. Cell death regulation is highly dependent on cell types and the physiological, pharmacological and pathological stimuli and can take distinctive forms. One mechanism that is conserved from C. elegans to humans to ensure desired cell death and to avoid unwanted cell death is through transcriptional regulation of cell death genes. Transcription regulation may be conferred by specific transcription factors or at a global level by chromatin remodeling activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.M., and Cory, S. (2001). Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26, 61–66.

    Article  PubMed  CAS  Google Scholar 

  • Ahn, S.H., Cheung, W.L., Hsu, J.Y., Diaz, R.L., Smith, M.M., and Allis, C.D. (2005). Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Cell 120, 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Baehrecke, E. H. (2000). Steroid regulation of programmed cell death during Drosophila development. Cell Death Differ 7, 1057–1062.

    Article  PubMed  CAS  Google Scholar 

  • Baehrecke, E.H. (2003). Autophagic programmed cell death in Drosophila. Cell Death Differ 10, 940–945.

    Article  PubMed  CAS  Google Scholar 

  • Banerjee, S., Kumar, B.R., and Kundu, T.K. (2004). General transcriptional coactivator PC4 activates p53 function. Mol Cell Biol 24, 2052–2062.

    Article  PubMed  CAS  Google Scholar 

  • Baud, V., and Karin, M. (2001). Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11, 372–327.

    Article  PubMed  CAS  Google Scholar 

  • Bell, H.S., and Ryan, K.M. (2005). Intracellular signalling and cancer: complex pathways lead to multiple targets. Eur J Cancer 41, 206–215.

    Article  PubMed  CAS  Google Scholar 

  • Bello, B.C., Hirth, F., and Gould, A.P. (2003). A pulse of the Drosophila Hox protein Abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron 37, 209–219.

    Article  PubMed  CAS  Google Scholar 

  • Berger, N.A. (1985). Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res 101, 4–15.

    Article  PubMed  CAS  Google Scholar 

  • Bergmann, A., Agapite, J., McCall, K.A., and Steller, H. (1998). The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95, 331–341.

    Article  PubMed  CAS  Google Scholar 

  • Bergmann, A., Tugentman, M., Shilo, B.Z., and Steller, H. (2002). Regulation of cell number by MAPK-dependent control of apoptosis: a mechanism for trophic survival signaling. Dev Cell 2, 159–170.

    Article  PubMed  CAS  Google Scholar 

  • Brodsky, M.H., Weinert, B.T., Tsang, G., Rong, Y.S., McGinnis, N.M., Golic, K.G., Rio, D.C., and Rubin, G.M. (2004). Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol Cell Biol 24, 1219–1231.

    Article  PubMed  CAS  Google Scholar 

  • Bruick, R.K. (2000). Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. PNAs 97, 9082–9087.

    Article  PubMed  CAS  Google Scholar 

  • Cakouros, D., Daish, T., Martin, D., Baehrecke, E.H., and Kumar, S. (2002). Ecdysone-induced expression of the caspase DRONC during hormone-dependent programmed cell death in Drosophila is regulated by Broad-Complex. J Cell Biol 157, 985–995.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, S., Clark, S.G., McDermott, J.B., Aamodt, E., and Horvitz, H.R. (2002). PAG-3, a Zn-finger transcription factor, determines neuroblast fate in C. elegans. Development 129, 1763–1774.

    PubMed  CAS  Google Scholar 

  • Cardenas, M.E., Cutler, N.S., Lorenz, M.C., Di Como, C.J., and Heitman, J. (1999). The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13, 3271–3279.

    Article  PubMed  CAS  Google Scholar 

  • Chan, T.F., Bertram, P.G., Ai, W., and Zheng, X.F. (2001). Regulation of APG14 expression by the GATA-type transcription factor Gln3p. J Biol Chem 276, 6463–6467.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C., Edelstein, L.C., and Gelinas, C. (2000). The Rel/NF-kappa B family directly activates expression of the apoptosis inhibitor Bcl-xL. Mol Cell Biol 20, 2687–2695.

    Article  PubMed  Google Scholar 

  • Chiarugi, A. (2002). Poly(ADP-ribose) polymerase: killer or conspirator? The’ suicide hypothesis’ revisited. Trends Pharmacol Sci 23, 122–129.

    Article  PubMed  CAS  Google Scholar 

  • Chipuk, J.E., Kuwana, T., Bouchier-Hayes, L., Droin, N.M., Newmeyer, D.D., Schuler, M., and Green, D.R. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010–1014.

    Article  PubMed  CAS  Google Scholar 

  • Chu, Z.L., McKinsey, T.A., Liu, L., Gentry, J.J., Malim, M.H., and Ballard, D.W. (1997). Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappa B control. PNAs 94, 10057–10062.

    Article  PubMed  CAS  Google Scholar 

  • Clemens, M.J., Bushell, M., Jeffrey, I.W., Pain, V.M., and Morley, S.J. (2000). Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells. Cell Death Differ 7, 603–615.

    Article  PubMed  CAS  Google Scholar 

  • Conradt, B., and Horvitz, H.R. (1999). The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. Cell 98, 317–327.

    Article  PubMed  CAS  Google Scholar 

  • Coultas, L., and Strasser, A. (2003). The role of the Bcl-2 protein family in cancer. Semin Cancer Biol 13, 115–123.

    Article  PubMed  CAS  Google Scholar 

  • Croxton, R., Ma, Y., Song, L., Haura, E.B., and Cress, W.D. (2002). Direct repression of the Mcl-1 promoter by E2F1. Oncogene 21, 1359–1369.

    Article  PubMed  CAS  Google Scholar 

  • D’Amours, D., Desnoyers, S., D’Silva, I., and Poirier, G.G. (1999). Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342, 249–268.

    Article  PubMed  CAS  Google Scholar 

  • Danial, N.N., and Korsmeyer, S.J. (2004). Cell Death: Critical Control Points. Cell 116, 205–219.

    Article  PubMed  CAS  Google Scholar 

  • Datta, S.R., Brunet, A., and Greenberg, M.E. (1999). Cellular survival: a play in three Akts. Genes Dev 13, 2905–2927.

    Article  PubMed  CAS  Google Scholar 

  • de la Cova, C., Abril, M., Bellosta, P., Gallant, P., and Johnston, L. (2004). Drosophila myc regulates organ size by inducing cell competition. Cell 117, 107–116.

    Article  PubMed  Google Scholar 

  • Decary, S., Decesse, J.T., Ogryzko, V., Reed, J.C., Naguibneva, I., Harel-Bellan, A., and Cremisi, C.E. (2002). The retinoblastoma protein binds the promoter of the survival gene bcl-2 and regulates its transcription in epithelial cells through transcription factor AP-2. Mol Cell Biol 22, 7877–7888.

    Article  PubMed  CAS  Google Scholar 

  • Deng, Y., Ren, X., Yang, L., Lin, Y., and Wu, X. (2003). A JNK-dependent pathway is required for TNFα-induced apoptosis. Cell 115, 61–70.

    Article  PubMed  CAS  Google Scholar 

  • Duan, H., Heckman, C.A., and Boxer, L.M. (2005). Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas. Mol Cell Biol 25, 1608–1619.

    Article  PubMed  CAS  Google Scholar 

  • Erler, J.T., Cawthorne, C.J., Williams, K.J., Koritzinsky, M., Wouters, B.G., Wilson, C., Miller, C., Demonacos, C., Stratford, I.J., and Dive, C. (2004). Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via Hypoxia-Inducible Factor 1-dependent and-independent mechanisms and contributes to drug resistance. Mol Cell Biol 24, 2875–2889.

    Article  PubMed  CAS  Google Scholar 

  • Erster, S., Mihara, M., Kim, R.H., Petrenko, O., and Moll, U.M. (2004). In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol 24, 6728–6741.

    Article  PubMed  CAS  Google Scholar 

  • Evan, G.I., and Vousden, K.H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348.

    Article  PubMed  CAS  Google Scholar 

  • Fang, B., and Roth, J.A. (2003). Tumor-suppressing gene therapy. Cancer Biol Ther (4Suppl 1), S115–121.

    Google Scholar 

  • Fernandez-Capetillo, O., Allis, C.D., and Nussenzweig, A. (2004). Phosphorylation of histone H2B at DNA double-strand breaks. J Exp Med 199, 1671–1677.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari, D., Stepczynska, A., Los, M., Wesselborg, S., and Schulze-Osthoff, K. (1998). Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95-and anticancer drug-induced apoptosis. J Exp Med 188, 979–984.

    Article  PubMed  CAS  Google Scholar 

  • Ferri, K.F., and Kroemer, G. (2001). Organelle-specific initiation of cell death pathways. Nat Cell Biol 3, E255–263.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, U., Janicke, R.U., and Schulze-Osthoff, K. (2003). Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 10, 76–100.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, U., and Schulze-Osthoff, K. (2005). Apoptosis-based therapies and drug targets. In press.

    Google Scholar 

  • Fridman, J.S., and Lowe, S.W. (2003). Control of apoptosis by p53. Oncogene 22, 9030–9040.

    Article  PubMed  CAS  Google Scholar 

  • Gerondakis, S., and Strasser, A. (2003). The role of Rel/NF-kappaB transcription factors in B lymphocyte survival. Semin Immunol 15, 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, P.D., Wagner, K., and W. Horz. (2001). Histone acetylation and chromatin remodeling. Exp Cell Res 265, 195–202.

    Article  PubMed  CAS  Google Scholar 

  • Gross, A., McDonnell, J.M., and Korsmeyer, S.J. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13, 1899–1911.

    PubMed  CAS  Google Scholar 

  • Grumont, R.J., Rourke, I.J., and Gerondakis, S. (1999). Rel-dependent induction of A1 transcription is required to protect B cells from antigen receptor ligation-induced apoptosis. Genes Dev 13, 400–411.

    PubMed  CAS  Google Scholar 

  • Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature 389, 349–352.

    Article  PubMed  CAS  Google Scholar 

  • Gu, J., Zhang, L., Swisher, S.G., Liu, J., Roth, J.A., and Fang, B. (2004). Induction of p53-regulated genes in lung cancer cells: implications of the mechanism for adenoviral p53-mediated apoptosis. Oncogene 23, 1300–1307.

    Article  PubMed  CAS  Google Scholar 

  • Guicciardi, M.E., Deussing, J., Miyoshi, H., Bronk, S.F., Svingen, P.A., Peters, C., Kaufmann, S.H., and Gores, G.J. (2000). Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106, 1127–3117.

    Article  PubMed  CAS  Google Scholar 

  • Guicciardi, M.E., Leist, M., and Gores, G.J. (2004). Lysosomes in cell death. Oncogene 23, 2881–2890.

    Article  PubMed  CAS  Google Scholar 

  • Ha, H.C., and Snyder, S.H. (1999). Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci 96, 13978–13982.

    Article  PubMed  CAS  Google Scholar 

  • Ha, S.H., Lee, S.R., Lee, T.H., Kim, Y.M., Baik, M.G., and Choi, Y.J. (2001). The expression of Bok is regulated by serum in HC11 mammary epithelial cells. Mol Cells 12, 368–371.

    PubMed  CAS  Google Scholar 

  • Hall, B.L., and Thummel, C.S. (1998). The RXR homolog ultraspiracle is an essential component of the Drosophila ecdysone receptor. Development 125, 4709–4717.

    PubMed  CAS  Google Scholar 

  • Haupt, S., Berger, M., Goldberg, Z., and Haupt, Y. (2003). Apoptosis-the p53 network. J Cell Sci 116, 4077–4085.

    Article  PubMed  CAS  Google Scholar 

  • Hay, B.A., Huh, J.R., and Guo, M. (2004). The genetics of cell death: approaches, insights and opportunities in Drosophila. Nat Rev Genet 5, 911–922.

    Article  PubMed  CAS  Google Scholar 

  • Hay, N., and Sonenberg, N. (2004). Upstream and downstream of mTOR. Genes Dev 18, 1926–1945.

    Article  PubMed  CAS  Google Scholar 

  • Heckman, C.A., Wheeler, M.A., and Boxer, L.M. (2003). Regulation of Bcl-2 expression by C/EBP in t(14;18) lymphoma cells. Oncogene 22, 7891–7899.

    Article  PubMed  CAS  Google Scholar 

  • Henson, P.M., Bratton, D.L., and Fadok, V.A. (2001). Apoptotic cell removal. Curr Biol 11, R795–805.

    Article  PubMed  CAS  Google Scholar 

  • Hershko, T., and Ginsberg, D. (2004). Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J Biol Chem 279, 8627–8634.

    Article  PubMed  CAS  Google Scholar 

  • Hoberg, J.E., Yeung, F., and Mayo, M.W. (2004). SMRT derepression by the IkappaB kinase alpha: a prerequisite to NF-kappaB transcription and survival. Mol Cell 16, 245–255.

    Article  PubMed  CAS  Google Scholar 

  • Hoeppner, D.J., Spector, M.S., Ratliff, T.M., Kinchen, J.M., Granat, S., Lin, S.C., Bhusri, S.S., Conrad, t B., Herman, M.A., and Hengartner, M.O. (2004). eor-1 and eor-2 are required for cell-specific apoptotic death in C. elegans. Dev Biol 274, 125–138.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, W.H., Biade, S., Zilfou, J.T., Chen, J., and Murphy, M. (2002). Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 277, 3247–3257.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, E.R., Milstein, S., Boulton, S.J., Ye, M., Hofmann, J.J., Stergiou, L., Gartner, A., Vidal, M., and Hengartner, M.O. (2002). Caenorhabditis elegans HUS-1 is a DNA damage checkpoint protein required for genome stability and EGL-1-mediated apoptosis. Curr Biol 19, 1908–1918.

    Article  Google Scholar 

  • Holcik, M., and Sonenberg, N. (2005). Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6, 318–327.

    Article  PubMed  CAS  Google Scholar 

  • Horvitz, H.R. (1999). Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res 59, 1701s–1706s.

    PubMed  CAS  Google Scholar 

  • Ivanov, V.N., Bhoumik, A., Krasilnikov, M., Raz, R., Owen-Schaub, L.B., Levy, D., Horvath, C.M., and Ronai, Z. (2001). Cooperation between STAT3 and c-Jun suppresses Fas transcription. Molecular Cell 7, 517–528.

    Article  PubMed  CAS  Google Scholar 

  • Jaattela, M., and Tschopp, J. (2003). Caspase-independent cell death in T lymphocytes. Nat Immunol 4, 416–423.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, C., Lamblin, A.-F.J., Steller, H., and Thummel, C.S. (2000). A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol Cell 5, 445–455.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, J.F.R., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implication in tissue kinetics. Br J Cancer 26, 239–257.

    PubMed  CAS  Google Scholar 

  • Kilpatrick, Z.E., Cakouros, D., and Kumar, S. (2005). Ecdysonemediated up-regulation of the effector caspase DRICE is required for hormone-dependent apoptosis in Drosophila cells. J Biol Chem 280, 11981–11986.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.Y., Ahn, H.J., Ryu, J.H., Suk, K., and Park, J.H. (2004). BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1α. J Exp Med 199, 113–124.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M.Y., Mauro, S., Gevry, N., Lis, J.T., and Kraus, W.L. (2004). NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 119, 803–814.

    Article  PubMed  CAS  Google Scholar 

  • Klionsky, D.J. (2005). The molecular machinery of autophagy: unanswered questions. J Cell Sci 118, 7–18.

    Article  PubMed  CAS  Google Scholar 

  • Konishi, A., Shimizu, S., Hirota, J., Takao, T., Fan, Y., Matsuoka, Y., Zhang, L., Yoneda, Y., Fujii, Y., Skoultchi, A.I., and Tsujimoto, Y. (2003). Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks. Cell 114, 673–688.

    Article  PubMed  CAS  Google Scholar 

  • Koutsodontis, G., and Kardassis, D. (2004). Inhibition of p53-mediated transcriptional responses by mithramycin A. Oncogene 23, 9190–9200.

    PubMed  CAS  Google Scholar 

  • Kuan, C.Y., Roth, K.A., Flavell, R.A., and Rackic, P. (2000). Mechanisms of programmed cell death in the developing brain. Trends Neurosci 23, 291–297.

    Article  PubMed  CAS  Google Scholar 

  • Kucharczak, J., Simmons, M.J., Fan, Y., and Gelinas, C. (2003). To be, or not to be: NF-kappaB is the answer-role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene 22, 8961–8982.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., and Cakouros, D. (2004). Transcriptional control of the core cell-death machinery. Trends Biochem Sci 29, 193–199.

    Article  PubMed  CAS  Google Scholar 

  • Kurada, P., and White, K. (1998). Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 95, 319–329.

    Article  PubMed  CAS  Google Scholar 

  • Kurland, J.F., Kodym, R., Story, M.D., Spurgers, K.B., McDonnell, T.J., and Meyn, R.E. (2001). NF-kappaB1 (p50) homodimers contribute to transcription of the bcl-2 oncogene. J Biol Chem 276, 45380–45386.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C.Y., Wendel, D.P., Reid, P., Lam, G., Thummel, C.S., and Baehrecke, E.H. (2000). E93 directs steroid-triggered programmed cell death in Drosophila. Mol Cell 6, 433–443.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C.Y., Simon, C.R., Woodard, C.T., and Baehrecke, E.H. (2002). Genetic mechanism for the stage-and tissue-specific regulation of steroid-triggered programmed cell death in Drosophila. Dev Biol 252, 138–148.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.H., Dadgostar, H., Cheng, Q., Shu, J. and Cheng, G. (1999). NF-B-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc Natl Acad Sci 96, 9136–9141.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, M., Jiang, C., Ip, Y.T., and Thummel, C.S. (2002). AP-1, but not NF-kappa B, is required for efficient steroid-triggered cell death in Drosophila. Cell Death Differ 9, 581–590.

    Article  PubMed  CAS  Google Scholar 

  • Leu, J.I.J., Dumont, P., Hafey, M., Murphy, M.E., and George, D.L. (2004). Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcll complex. Nat Cell Biol 6, 443–450.

    Article  PubMed  CAS  Google Scholar 

  • Levine, B. (2005). Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120, 159–162.

    PubMed  CAS  Google Scholar 

  • Levine, B., and Klionsky, D.J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophay. Dev Cell 6, 463–477.

    Article  PubMed  CAS  Google Scholar 

  • Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., and Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., Zhu, H., Xu, C.J. and Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501.

    Article  PubMed  CAS  Google Scholar 

  • Lill, N.L., Grossman, S.R., Ginsberg, D., DeCaprio, J., and Livingston, D.M. (1997). Binding and modulation of p53 by p300/CBP coactivators. Nature 387, 823–827.

    Article  PubMed  CAS  Google Scholar 

  • Lin, A., and Karin, M. (2003). NF-κ B in cancer: a marked target. Semin Cancer Biol 13, 107–114.

    Article  PubMed  CAS  Google Scholar 

  • Lin, A.W., and Lowe, S.W. (2001). Oncogenic ras activates the ARF-p53 pathway to suppress epithelial cell transformation. Proc Natl Acad Sci USA 98, 5025–5030.

    Article  PubMed  CAS  Google Scholar 

  • Lindsten, T., Ross, A.J., King, A., Zong, W.X., Rathmell, J.C., Shiels, H.A., Ulrich, E., Waymire, K.G., Mahar, P., Frauwirth, K. et al., (2000). The combined functions of pro-apoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6, 1389–1399.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Kim, C.N., Yang, J., Jemmerson, R., and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Li-Weber, M., and Krammer, P.H. (2003). Function and regulation of the CD95 (APO-1/Fas) ligand in the immune system. Semin Immunol 15, 145–157.

    Article  PubMed  CAS  Google Scholar 

  • Ljungman, M., and Lane, D.P. (2004). Transcription-guarding the genome by sensing DNA damage. Nat Rev Cancer 4, 727–737.

    Article  PubMed  CAS  Google Scholar 

  • Lohmann, I., McGinnis, N., Bodmer, M., and McGinnis, W. (2002). The Drosophila Hox gene deformed sculpts head morphology via direct regulation of the apoptosis activator reaper. Cell 110, 457–466.

    Article  PubMed  CAS  Google Scholar 

  • Los, M., Mozoluk, M., Ferrari, D., Stepczynska, A., Stroh, C., Renz, A., Herceg, Z., Wang, Z.Q., and Schulze-Osthoff, K. (2002). Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol Biol Cell 13, 978–988.

    Article  PubMed  CAS  Google Scholar 

  • Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490.

    Article  PubMed  CAS  Google Scholar 

  • MacLachlan, T.K., and El Deiry, W.S. (2002). Apoptotic threshold is lowered by p53 transactivation of caspase-6. PNAs 99, 9492–9497.

    Article  PubMed  CAS  Google Scholar 

  • Marchenko, N.D., Zaika, A., and Moll, U.M. (2000). Death signal-induced localization of p53 protein to mitochondria. a potential role in apoptotic signaling. J Biol Chem 275, 16202–16212.

    Article  PubMed  CAS  Google Scholar 

  • Margue, C.M., Bernasconi, M., Barr, F.G., and Schafer, B.W. (2000). Transcriptional modulation of the anti-apoptotic protein BCL-XL by the paired box transcription factors PAX3 and PAX3/FKHR. Oncogene 19, 2921–2929.

    Article  PubMed  CAS  Google Scholar 

  • Marks, P.A., Richon, V.M., Miller, T., Kelly, W.K. (2004). Histone deacetylase inhibitors. Adv Cancer Res 91, 137–168.

    PubMed  CAS  Google Scholar 

  • Mayo, M.W., Wang, C.Y., Drouin, S.S., Madrid, L.V., Marshall, A.F., Reed, J.C., Weissman, B.E., and Baldwin, A.S. (1999). WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene. EMBO J 18, 3990–4003.

    Article  PubMed  CAS  Google Scholar 

  • Meller, R., Minami, M., Cameron, J.A., Impey, S., Chen, D., Lan, J.Q., Henshall, D.C., and Simon, R.P. (2005). CREB-mediated Bcl-2 protein expression after ischemic preconditioning. J Cereb Blood Flow Metab 25, 234–246.

    Article  PubMed  CAS  Google Scholar 

  • Micheau, O., Lens, S., Gaide, O., Alevizopoulos, K., and Tschopp, J. (2001). NF-B signals induce the expression of c-FLIP. Mol Cell Biol 21, 5299–5305.

    Article  PubMed  CAS  Google Scholar 

  • Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., and Moll, U.M. (2003). p53 has a direct apoptogenic role at the mitochondria. Molecular Cell 11, 577–590.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, E., and Basler, K. (2004). dMyc transforms cells into super-competitors. Cell 117, 117–129.

    Article  PubMed  CAS  Google Scholar 

  • Moroni, M.C., Hickman, E.S., Denchi, E.L., Caprara, G., Colli, E., Cecconi, F., Muller, H., and Helin, K. (2001). Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol 3, 552–558.

    Article  PubMed  CAS  Google Scholar 

  • Miguel-Aliaga, I., and Thor, S. (2004). Segment-specific prevention of pioneer neuron apoptosis by cell-autonomous, postmitotic Hox gene activity. Development 131, 6093–6105.

    Article  PubMed  CAS  Google Scholar 

  • Mujtaba, S., He, Y., Zeng, L., Yan, S., Plotnikova, O., Sachchidanand, Sanchez, R., Zeleznik-Le, N.J., Ronai, Z., and Zhou, M.M. (2004). Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell 13, 251–263.

    Article  PubMed  CAS  Google Scholar 

  • Muzio, M., Chinnaiyan, A.M., Kischkel, F.C., O’Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J.D., Zhang, M., Gentz, R. et al. (1996). FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827.

    Article  PubMed  CAS  Google Scholar 

  • Nagata, S. (2000). Apoptotic DNA fragmentation. Exp. Cell Res. 256, 12–18.

    Article  PubMed  CAS  Google Scholar 

  • Nahle, Z., Polakoff, J., Davuluri, R.V., McCurrach, M.E., Jacobson, M.D., Narita, M., Zhang, M.Q., Lazebnik, Y., Bar-Sagi, D., and Lowe, S.W. (2002). Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol 4, 859–864.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D.A., and White, E. (2004). Exploiting different ways to die. Genes Dev 18, 1223–1226.

    Article  PubMed  CAS  Google Scholar 

  • Nijhawan, D., Fang, M., Traer, E., Zhong, Q., Gao, W., Du, F., and Wang, X. (2003). Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev 17, 1475–1486.

    Article  PubMed  CAS  Google Scholar 

  • Okada, H., and Mak, T.W. (2004). Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4, 592–603.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, F.J., Menissier-de Murcia, J., Nacci, C., Decker, P., Andriantsitohaina, R., Muller, S., de la Rubia, G., Stoclet, J.C., and de Murcia, G. (1999). Resistance to endotoxic shock as a consequence of defective NF-kappa B activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J. 18, 4446–4454.

    Article  PubMed  CAS  Google Scholar 

  • Opferman, J.T., and Korsmeyer, S.J. (2003). Apoptosis in the development and maintenance of the immune system. Nat Immunol 4, 410–415.

    Article  PubMed  CAS  Google Scholar 

  • Owen-Schaub, L.B., Zhang, W., Cusack, J.C., Angelo, L.S., Santee, S.M., Fujiwara, T., Roth, J.A., Deisseroth, A.B., Zhang, W.W., and Kruzel, E. (1995). Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 15, 3032–3040.

    PubMed  CAS  Google Scholar 

  • Peart, M.J., Smyth, G.K., van Laar, R.K., Bowtell, D.D., Richon, V.M., Marks, P.A., Holloway, A.J., and Johnstone, R.W. (2005). Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci 102, 3697–3702.

    Article  PubMed  CAS  Google Scholar 

  • Pompeia, C., Hodge, D.R., Plass, C., Wu, Y.Z., Marquez, V.E., Kelley, J.A., and Farrar, W.L. (2004). Microarray analysis of epigenetic silencing of gene expression in the KAS-6/1 multiple myeloma cell line. Cancer Res 64, 3465–3473.

    Article  PubMed  CAS  Google Scholar 

  • Poppelmann, B., Klimmek, K., Strozyk, E., Voss, R., Schwarz, T., and Kulms, D. (2005). NF κ B-dependent down-regulation of Tumor Necrosis Factor Receptor-associated proteins contributes to Interleukin-1-mediated enhancement of ultraviolet B-induced apoptosis. J Biol Chem 280, 15635–15643.

    Article  PubMed  CAS  Google Scholar 

  • Proskuryakov, S.Y., Konoplyannikov, A.G., and Gabai, V.L. (2003). Necrosis: a specific form of programmed cell death? Exp Cell Res 283, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Puthalakath, H., and Strasser, A. (2002). Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 9, 505–512.

    Article  PubMed  CAS  Google Scholar 

  • Ranger, A.M., Malynn, B.A., and Korsmeyer, S.J. (2001). Mouse models of cell death. Nat Genet 28, 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Ricci, M.S., Jin, Z., Dews, M., Yu, D., Thomas-Tikhonenko, A., Dicker, D.T., and El Deiry, W.S. (2004). Direct repression of FLIP expression by c-myc is a major determinant of TRAIL sensitivity. Mol Cell Biol 24, 8541–8555.

    Article  PubMed  CAS  Google Scholar 

  • Rohde, J.R., Campbell, S., Zurita-Martinez, S.A., Cutler, N.S., Ashe, M., and Cardenas, M.E. (2004). TOR controls transcriptional and translational programs via Sap-Sit4 protein phosphatase signaling effectors. Mol Cell Biol 24, 8332–8341.

    Article  PubMed  CAS  Google Scholar 

  • Rohde, J.R., and Cardenas, M.E. (2003). The for pathway regulates gene expression by linking nutrient sensing to histone acetylation. Mol Cell Biol 23, 629–635.

    Article  PubMed  CAS  Google Scholar 

  • Russell, H.R., Lee, Y., Miller, H.L., Zhao, J., and McKinnon, P.J. (2002). Murine ovarian development is not affected by inactivation of the bcl-2 family member diva. Mol Cell Biol 22, 6866–6870.

    Article  PubMed  CAS  Google Scholar 

  • Salvesen, G.S., and Duckett, C.S. (2002). IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3, 401–410.

    Article  PubMed  CAS  Google Scholar 

  • Schuler, M., and Green, D.R. (2005). Transcription, apoptosis and p53: catch-22. Trends Genet 21, 182–187.

    Article  PubMed  CAS  Google Scholar 

  • Schwab, B.L., Guerini, D., Didszun, C., Bano, D., Ferrando-May, E., Fava, E., Tam, J., Xu, D., Xanthoudakis, S., Nicholson, D.W., et al. (2002). Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ 9, 818–831

    Article  PubMed  CAS  Google Scholar 

  • Scorrano, L., Oakes, S.A., Opferman, J.T., Cheng, E.H., Sorcinelli, M.D., Pozzan, T., and Korsmeyer, S.J. (2003). BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300, 135–139.

    Article  PubMed  CAS  Google Scholar 

  • Sevilla, L., Zaldumbide, A., Pognonec, P., and Boulukos, K.E. (2001). Transcriptional regulation of the bcl-x gene encoding the anti-apoptotic Bcl-xL protein by Ets, Rel/NFkappaB, STAT and AP1 transcription factor families. Histol Histopathol 16, 595–601.

    PubMed  CAS  Google Scholar 

  • Shacka, J.J., and Roth, K.A. (2005). Regulation of neuronal cell death and neurodegeneration by members of the Bcl-2 family: therapeutic implications. Curr Drug Targets CNS Neurol Disord 4, 25–39.

    Article  PubMed  CAS  Google Scholar 

  • Shikama, N., Lee, C.W., France, S., Delavaine, L., Lyon, J., Krstic-Demonacos, M., and La Thangue, N.B. (1999). A novel cofactor for p300 that regulates the p53 response. Mol Cell 4, 365–76.

    Article  PubMed  CAS  Google Scholar 

  • Shishodia, S., and Aggarwal, B.B. (2004). Guggulsterone inhibits NF-κB and IκBα kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. J Biol Chem 279, 47148–47158.

    Article  PubMed  CAS  Google Scholar 

  • Shintani, T., and Klionsky, D.J. (2004). Autophagy in health and disease: a double-edged sword. Science 306, 990–995.

    Article  PubMed  CAS  Google Scholar 

  • Skurk, C., Maatz, H., Kim, H.S., Yang, J., Abid, M.R., Aird, W.C., and Walsh, K. (2004). The Akt-regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase-8 inhibitor FLIP. J Biol Chem 279, 1513–1525.

    Article  PubMed  CAS  Google Scholar 

  • Slattery, E., Dignam, J.D., Matsui, T., and Roeder, R.G. (1983). Purification and analysis of a factor which suppresses nick-induced transcription by RNA polymerase II and its identity with poly(ADP-ribose) polymerase. J Biol Chem 258, 5955–5959.

    PubMed  CAS  Google Scholar 

  • Sogame, N., Kim, M., and Abrams, J.M. (2003). Drosophila p53 preserves genomic stability by regulating cell death. Proc Natl Acad Sci 100, 4696–4701.

    Article  PubMed  CAS  Google Scholar 

  • Soleymanlou, N., Wu, Y., Wang, J.X., Todros, T., Ietta, F., Jurisicova, A., Post, M., and Caniggia, I. (2005). A novel Mtd splice isoform is responsible for trophoblast cell death in pre-eclampsia. Cell Death Differ 1–12.

    Google Scholar 

  • Sowter, H.M., Ratcliffe, P.J., Watson, P., Greenberg, A.H., and Harris, A.L. (2001). HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61, 6669–6673.

    PubMed  CAS  Google Scholar 

  • Stevens, C., Smith, L., and La Thangue, N.B. (2003). Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol 5, 401–409.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, H., Yokota, H., Jover, T., Cappuccio, I., Calderone, A., Simionescu, M., Bennett, M.V., and Zukin, R.S. (2004). Ischemic preconditioning: neuronal survival in the face of caspase-3 activation. J Neurosci 24, 2750–2759.

    Article  PubMed  CAS  Google Scholar 

  • Thellmann, M., Hatholz, J., and Conradt, B. (2003). The Snail-like Ces-1 protein of C. elegans can block the expression of the BH3-only cell-death activator gene egl-1 by antagonizing the function of basic HLH proteins. Development 130, 4057–4071.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, A., and White, E. (1998). Suppression of the p300-dependent mdm2 negative-feedback loop induces the p53 apoptotic function. Genes Dev 12, 1975–1985.

    PubMed  CAS  Google Scholar 

  • Thompson, C.B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Thummel, C.S. (1996). Flies on steroids-Drosophila metamorphosis and the mechanisms of steroid hormone action. Trends Genet 12, 306–310.

    Article  PubMed  CAS  Google Scholar 

  • Tran, N.L., McDonough, W.S., Savitch, B.A., Sawyer, T.F., Winkles, J.A., and Berens, M.E. (2005). The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)-fibroblast growth factor-inducible 14 (Fn14) signaling system regulates glioma cell survival via NFkappaB pathway activation and BCL-XL/BCL-W expression. J Biol Chem 280, 3483–3492.

    Article  PubMed  CAS  Google Scholar 

  • Tran, S.E., Meinander, A., and Eriksson, J.E. (2004). Instant decisions: transcription-independent control of death-receptor-mediated apoptosis. Trends Biochem Sci 29, 601–608.

    Article  PubMed  CAS  Google Scholar 

  • Tsang, C.K., Bertram, P.G., Ai, W., Drenan, R., and Zheng, X.F. (2003). Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR. EMBO J 22, 6045–6056.

    Article  PubMed  CAS  Google Scholar 

  • Varfolomeev, E.E., and Ashkenazi, A. (2004). Tumor necrosis factor: an apoptosis JuNKie? Cell 116, 491–497.

    Article  PubMed  CAS  Google Scholar 

  • Vaux, D.L., and Korsmeyer, S.J. (1999). Cell death in development. Cell 96, 245–254.

    Article  PubMed  CAS  Google Scholar 

  • Vaux, D.L., and Silke, J. (2005). IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol 6, 287–297.

    Article  PubMed  CAS  Google Scholar 

  • Vickers, E.R., Kasza, A., Aksan-Kurnaz, I., Seifert, A., Zeef, L., O’Donnell, A., Hayes, A., and Sharrocks, A.D. (2004). Ternary complex factor-serum response factor complex-regulated gene activity is required for cellular proliferation and inhibition of apoptotic cell death. Mol Cell Biol 24, 10340–10351.

    Article  PubMed  CAS  Google Scholar 

  • Virag, L., and Szabo, C. (2002). The Therapeutic Potential of Poly(ADP-Ribose) Polymerase Inhibitors. Pharmacol Rev 54, 375–429.

    Article  PubMed  CAS  Google Scholar 

  • Vivanco, I., and Sawyers, C.L. (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2, 489–501.

    Article  PubMed  CAS  Google Scholar 

  • Walisser, J.A., and Thies, R.L. (1999). Poly(ADP-ribose) polymerase inhibition in oxidant-stressed endothelial cells prevents oncosis and permits caspase activation and apoptosis. Exp Cell Res 251, 401–413.

    Article  PubMed  CAS  Google Scholar 

  • Walmsley, S.R., Print, C., Farahi, N., Peyssonnaux, C., Johnson, R.S., Cramer, T., Sobolewski, A., Condliffe, A.M., Cowburn, A.S., Johnson, N. et al., (2005). Hypoxia-induced neutrophil survival is mediated by HIF-1α-dependent NF-κB activity. J Exp Med 201, 105–115.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C.Y., Mayo, M.W., Korneluk, R.G., Goeddel, D.V., and Baldwin, A.S. Jr. (1998). NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680–1683.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., Rastinejad, F., and El-Deiry, W.S. (2003). Restoring p53-dependent tumor suppression. Cancer Biol Ther 2(4 Suppl 1), S55–63.

    PubMed  CAS  Google Scholar 

  • Wang, X. (2001). The expanding role of mitochondria in apoptosis. Genes Dev 15, 2922–2933.

    PubMed  CAS  Google Scholar 

  • Wang, Z.Q., Stingl, L., Morrison, C., Jantsch, M., Los, M., Schulze-Osthoff, K., and Wagner, E.F. (1997). PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 11, 2347–2358.

    PubMed  CAS  Google Scholar 

  • Wei, M.C., Zong, W.X., Cheng, E.H., Lindsten, T., Panoutsakopoulou, V., Ross, A.J., Roth, K.A., MacGregor, G.R., Thompson, C.B., and Korsmeyer, S.J. (2001). Pro-apoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730.

    Article  PubMed  CAS  Google Scholar 

  • Wu, G.S., Burns, T.F., McDonald, E.R., Jiang, W., Meng, R., Krantz, I.D., Kao, G., Gan, D.D., Zhou, J.Y., Muschel, R. et al. (1997). KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 17, 141–143.

    Article  PubMed  CAS  Google Scholar 

  • Wyllie, A.H. (1980). Glucocorticoid induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555–556.

    Article  PubMed  CAS  Google Scholar 

  • Yamit-Hezi, A., and Dikstein, R. (1998). TAFII105 mediates activation of anti-apoptotic genes by NF-kappa B. EMBO J 17, 5161–5169.

    Article  PubMed  CAS  Google Scholar 

  • Yamit-Hezi, A., Nir, S., Wolstein, O., and Dikstein, R. (2000). Interaction of TAFII105 with selected p65/RelA dimers is associated with activation of subset of NF-kappa B genes. J Biol Chem 275, 18180–18187.

    Article  PubMed  CAS  Google Scholar 

  • Yin, X.M., Wang, K., Gross, A., Zhao, Y., Zinkel, S., Klocke, B., Roth, K.A., and Korsmeyer, S.J. (1999). Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886–891.

    Article  PubMed  CAS  Google Scholar 

  • Yu, S.W., Wang, H., Poitras, M.F., Coombs, C., Bowers, W.J., Federoff, H.J., Poirier, G.G., Dawson, T.M., and Dawson, V.L. (2002). Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297, 259–263.

    Article  PubMed  CAS  Google Scholar 

  • Zeiss, C.J. (2003). The apoptosis-necrosis continuum: insights from genetically altered mice. Vet Pathol 40, 481–495.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J, and Xu, M. (2002). Apoptotic DNA degradation and tissue homeostasis. Trends Cell Biol 12, 84–89.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, L., and Steller, H. (2003). Distinct pathways mediate UV-induced apoptosis in Drosophila embryos. Dev Cell 4, 599–605.

    Article  PubMed  CAS  Google Scholar 

  • Zong, W.X., Ditswo doplasmic reticulum to initiate apoptosis. J Cell Biol 162, 59–69. rth, D., Bauer, D.E., Wang, Z.Q., and Thompson, C.B. (2004). Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18, 1272–1282.

    Google Scholar 

  • Zong, W. X., Edelstein, L.C., Chen, C., Bash, J., and Gélinas, C. (1999). The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-κB that blocks TNFα-induced apoptosis. Genes Dev 13, 382–387.

    PubMed  CAS  Google Scholar 

  • Zong, W. X., Li, C., Hatzivassiliou, G., Lindsten, T., Yu, Q.C., Yuan, J., and Thompson, C.B. (2003). Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162, 59–69.

    Article  PubMed  CAS  Google Scholar 

  • Zou, H., Henzel, W.J., Liu, X., Lutschg, A., and Wang, X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Higher Education Press

About this chapter

Cite this chapter

Zhang, J., Zong, WX. (2006). Cell Death and Transcription. In: Ma, J. (eds) Gene Expression and Regulation. Springer, New York, NY. https://doi.org/10.1007/978-0-387-40049-5_26

Download citation

Publish with us

Policies and ethics