Skip to main content

Automated Three-Dimensional Image Analysis Methods for Confocal Microscopy

  • Chapter
Handbook Of Biological Confocal Microscopy

Abstract

Image analysis is the process of making quantitative structural and functional measurements from an image. With the widespread availability of three-dimensional (3D) microscopy, coupled with a growing trend towards quantitative studies, there is an increasing need for 3D image analysis. The goal of this chapter is to describe 3D image analysis techniques, with an emphasis on highly automated methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdul-Karim, M.-A., Al-Kofahi, K., Brown, E.B., Jain, R.K., and Roysam, B., 2003, Automated tracing and change analysis of angiogenic vasculature from in vivo multiphoton confocal image time series, Microvasc. Res. 66:113–125.

    Google Scholar 

  • Abdul-Karim, M.-A., Roysam, N.M., Dowell-Mesfin, A., Jeromin, M., Yuksel, M., and Kalyanaraman, S., 2005, Automatic selection of parameters for vessel/neurite segmentation algorithms. Image Processing, IEEE Trans. 14(9):1338–1350.

    Google Scholar 

  • Abu-Tarif, and Ahmad A., 2002, Volumetric registration based on intensity and geometry features, PhD Thesis, Rensselaer Polytechnic Institute, Troy, New York.

    Google Scholar 

  • Adams, R., and Bischof, L., 1994, Seeded region growing, IEEE Trans. Pattern Anal. Machine Intell. 16:641–647.

    Google Scholar 

  • Adiga, U., and Chaudhuri, B., 2001a, An efficient method based on watershed and rule-based merging for segmentation of 3D histo-pathological images, Pattern Recognition 34:1449–1458.

    Google Scholar 

  • Adiga, U., and Chaudhuri, B., 2001b, Some efficient methods to correct confocal images for easy interpretation, Micron 32:363–370.

    Google Scholar 

  • Al-Kofahi, K.A., Lasek, S., Szarowski, D.H., Pace, J., Nagy, G., Turner, J.N., and Roysam, B., 2002, Rapid automated three-dimensional tracing of neurons from confocal image stacks, IEEE Trans. Inform. Technol. Biomed. 6:171–187.

    Google Scholar 

  • Al-Kofahi, O., Can, A., Lasek, S., Szarowski, D.H., Turner, J.N., and Roysam, B., 2003, Algorithms for accurate 3D registration of neuronal images acquired by confocal scanning laser microscopy, J. Microsc. 211:8–18.

    CAS  Google Scholar 

  • Ancin, H., Roysam, B., Dufresne, T.E., Chestnut, M.M., Ridder, G.M., Szarowski, D.H., and Turner, J.N., 1996, Advances in automated 3-D image analyses of cell populations imaged by confocal microscopy, Cytometry 25:221–234.

    CAS  PubMed  Google Scholar 

  • Ballard, D.H., and Brown, C.M., 1982, Computer Vision, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Beck, J.C., Murray, J.A., Willows, A.O., and Cooper, M.S., 2000, Computerassisted visualizations of neural networks: Expanding the field of view using seamless confocal montaging, J. Neurosci. Methods 98:155–163.

    CAS  PubMed  Google Scholar 

  • Becker, D.E., Ancin, H., Szarowski, D.H., Turner, J.N., and Roysam, B., 1996, Automated 3-D montage synthesis from laser-scanning confocal images: application to quantitative tissue-level cytological analysis, Cytometry 25:235–245.

    CAS  PubMed  Google Scholar 

  • Besl, P.J., and Jain, R.C., 1988, Segmentation through variable-order surface fitting, IEEE Trans. Pattern Anal. Machine Intell. 10:167–192.

    Google Scholar 

  • Beucher, S., 1982, Watersheds of functions and picture segmentation, IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 1928–1931.

    Google Scholar 

  • Beucher, S., 1991, The watershed transformation applied to image segmentation, Conference on Signal and Image Processing in Microscopy and Microanalysis, Cambridge, UK, pp. 299–314.

    Google Scholar 

  • Bhanu, B., 1982, Shape matching and image segmentation using stochastic labeling, Los Angeles Image Processing Institute.

    Google Scholar 

  • Bhanu, B., and Lee, S., 1994, Genetic Learning for Adaptive Image Segmentation, Kluwer Academic Publishers, Boston.

    Google Scholar 

  • Bhattacharjya, A., and Roysam, B., 1994, Joint solution of low, intermediate and high-level vision tasks by evolutionary optimization: Application to computer vision at low SNR, IEEE Trans. Neural Networks 5:83–95.

    CAS  PubMed  Google Scholar 

  • Black, M., and Rangarajan, A., 1996, On the unification of line processes, outlier rejection, and robust statistics with applications in early vision, Int. J. Comput. Vis. 19(1).

    Google Scholar 

  • Blake, A., and Zisserman, A., 1987, Visual Reconstruction, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Borgefors, G., 1986, Distance transformations in digital images, Comput. Vis. Graphics Im. Pract. 34:344–371.

    Google Scholar 

  • Bovik, A.C., Aggarwal, S.J., Merchant, F., Kim, N.H., and Diller, K.R., 2001, Automatic area and volume measurements from digital biomedical images. In: Image Analysis: Methods and Applications (D.-P. Häder, ed.), CRC Press, Boca Raton, Florida, pp. 23–64.

    Google Scholar 

  • Brown, E.B., Campbell, R.B., Tsuzuki, Y., Xu, L., Carmeliet, P., Fukumura, D., and Jain, R.K., 2001, In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multi-photon laser scanning microscopy, Nat. Med. 7:864–868.

    CAS  Google Scholar 

  • Can, A., Al-Kofahi, O., Lasek, S., Szarowski, D.H., Turner, J.N., and Roysam, B., 2003, Attenuation correction in confocal laser microscopes: A novel two-view approach, J. Microsc. 211:67–79.

    CAS  Google Scholar 

  • Can, A., Shen, H., Turner, J.N., Tanenbaum, H.L., and Raysam, B., 1999, Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms, IEEE Trans. Inform. Technol. Biomed. 3:125–138.

    CAS  Google Scholar 

  • Can, A., Stewart, C.V., Roysam, B., and Tanenbaum, H.L., 2002, A featurebased, robust, hierarchical algorithm for registering pairs of images of the curved human retina, IEEE Trans. Pattern Anal. Machine Intell. 24:347–364.

    Google Scholar 

  • Capek, M., and Krekule, I., 1999, Alignment of adjacent picture frames captured by a CLSM, IEEE Trans. Inform. Technol. Biomed. 3:119–124.

    CAS  Google Scholar 

  • Capowski, J.J., 1989, Computer Techniques in Neuroanatomy, Plenum Press, New York.

    Google Scholar 

  • Castleman, K., 1996, Digital Image Processing, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Chang, Y.-L., and Li, X., 1994, Adaptive image region-growing, IEEE Trans. Image Processing 3:868–872.

    CAS  Google Scholar 

  • Chawla, M.K., Lin, G., Olson, K., Vazdarjanova, A., Burke, S.N., McNaughton, B.L., Worley, P.F., Guzowski, J.F., Roysam, B., and Barnes, C.A., 2004, 3D-catFISH: A system for automated quantitative three-dimensional compartmental analysis of temporal gene transcription activity imaged by fluorescence in situ hybridization, J. Neurosci. Methods 139:13– 24.

    CAS  PubMed  Google Scholar 

  • Cogswell, C.J., Larkin, K.G., and Klemn H.U., 1996, Fluorescence microtomography: Multiangle image acquisition and 3D digital reconstruction. In: Three-Dimensional Microscopy: Image Acquisition and Processing III, SPIE, San Jose, California.

    Google Scholar 

  • Cohen, A.R., Roysam, B., and Turner, J.N., 1994, Automated tracing and volume measurements of neurons from 3-D confocal fluorescence microscopy data, J. Microsc. 173:103–114.

    CAS  Google Scholar 

  • Cooper, M., 1998, The tractability of segmentation and scene analysis, Image and Vision Computing 30(1):27–42.

    Google Scholar 

  • Cootes, T.F., Taylor, C., Cooper, D., and Graham, J., 1995, Active shape models — Their training and application, Comput. Vis. Image Understanding 61:38–59.

    Google Scholar 

  • Davis, L., 1975, A survey of edge detection techniques, Comput. Graphics Image Process. 4(3):248–270.

    Google Scholar 

  • di Zenzo, S., 1983, Advances in image segmentation, Image and Vision Computing 1:196–210.

    Google Scholar 

  • Digabel, H., and Lantuejoul, C., 1978, Iterative algorithms, Pract. Methods 8:85–99.

    Google Scholar 

  • Dillencourt, M., Samet, H., and Tamminen, M., 1992, A general approach to connected-components labeling for arbitrary image representations, J. ACM 39:253–280.

    Google Scholar 

  • Dougherty, E.R., 1993, Mathematical Morphology in Image Processing, Marcel Dekker, New York.

    Google Scholar 

  • Fu, K., and Mui, J., 1981, A survey of image segmentation, Pattern Recognition 13:3–16.

    Google Scholar 

  • Ghanei, A., and Soltanian-Zadeh, H., 2002, A discrete curvature-based deformable surface model with application to segmentation of volumetric images, IEEE Trans. Inform. Technol. Biomed. 6:285–295.

    Google Scholar 

  • Glaser, J.R., and Glaser, E.M., 1990, Neuron imaging with Neurolucida — A PC-based system for image combining microscopy, Comput. Med. Imaging Graphics 14:307–317.

    CAS  Google Scholar 

  • Gong, W., and Bertrand, G., 1990, Anote on thinning of 3-D images using sage point thinning algorithm, Pattern Recogn. Lett. 11:499–500.

    Google Scholar 

  • Guigues, L., Le Men, H., and Cocquerez, J.-P., 2003, The hierarchy of the cocoons of a graph and its application to image segmentation, Pattern Recogn. Lett. 24:1059–1066.

    Google Scholar 

  • Guzowski, J., and Worley, P., 2001, Cellular Compartment Analysis of Temporal Activity by Fluorescence In Situ Hybridization (catFISH), John Wiley and Sons, New York.

    Google Scholar 

  • Guzowski, J.F., McNaughton, B.L., Barnes, C.A., and Worley, P.F., 1999, Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles, Nat. Neurosci. 2:1120–1124.

    CAS  Google Scholar 

  • Haddon, J.F., and Boyce, J.F., 1993, Co-occurrence matrices for image analysis, Electron Commun. Eng. J. 5:71–83.

    Google Scholar 

  • Haralick, R., and Shapiro, L., 1985, Image segmentation techniques, Computer Vision Graphics and Image Processing 29:100–132.

    Google Scholar 

  • Hartley, R., and Zisserman, A., 2000, Multiple View Geometry in Computer Vision, Cambridge University Press, New York.

    Google Scholar 

  • He, W., Hamilton, T.A., Cohen, A.R., Holmes, T.J., Pace, C., Szarowski, D.H.

    Google Scholar 

  • Turner, J.N., and Roysam, B., 2003, Automated three-dimensional tracing of neurons in confocal and brightfield images, Microsc. Microanal. 9:296–310.

    Google Scholar 

  • Heintzmann, R., Kreth, G., Cremer, C., 2000, Reconstruction of axial tomographic high resolution data from confocal fluorescence microscopy: A method for improving 3D FISH images, Anal. Cell. Pathol. 20:7–15.

    CAS  PubMed  Google Scholar 

  • Higgins, W., and Ojard, E., 1993, Interactive morphological watershed analysis for 3D medial images, Comput. Med. Imaging Graphics 17:387–395.

    CAS  Google Scholar 

  • Hojjatoleslami, S.A., and Kittler, J., 1998, Region growing: A new approach, IEEE Trans. Image Processing 7:1079–1084.

    CAS  Google Scholar 

  • Horowitz, S., and Pavlidis, T., 1974, Picture segmentation by a directed split and merge procedure. International Conference on Pattern Recognition, Copenhagen, Denmark, pp. 424–433.

    Google Scholar 

  • Howard, V., and Reed, M.G., 1998, Unbiased Stereology: Three-Dimensional Measurement in Microscopy, Springer-Verlag, New York.

    Google Scholar 

  • Howard, V., Reid, S., Baddeley, A., and Boyde, A., 1985, Unbiased estimation of particle density in the tandem scanning reflected light microscope, J. Microsc. 138:203–212.

    Google Scholar 

  • ITK, 2001, NLM Insight Segmentation and Registration Toolkit, available at: http://www.itk.org.

    Google Scholar 

  • Jaeger, D., 2000, Accurate reconstruction of neuronal morphology, In: Computational Neuroscience: Realistic Modeling for Experimentalists (E.D. Schutter, ed.), CRC Press, Boca Raton, Florida, pp. 159–178.

    Google Scholar 

  • Jain, R.K., Munn, L.L., and Fukumura, D., 2002, Dissecting tumour pathophysiology using intravital microscopy, Nat. Rev. Cancer 2:266– 276.

    CAS  PubMed  Google Scholar 

  • Kanade, T., 1978, Region segmentation: signal vs. semantics, International Conference on Pattern Recognition.

    Google Scholar 

  • Kerfoot, I., and Bresler, Y., 1999, Theoretical analysis of multispectral image segmentation criteria, IEEE Trans. Image Process. 8(6):798.

    CAS  Google Scholar 

  • Kim, B., Kim, D., and Park, D., 2001, Novel precision target detection with adaptive thresholding for dynamic image segmentation, Machine Vis. Appl. 12:259–270.

    Google Scholar 

  • Koh, I.Y., Lindquist, W.B., Zito, K., Nimchinsky, E.A., and Svoboda, K., 2002, An image analysis algorithm for dendritic spines, Neural Comput.

    Google Scholar 

  • 14:128–1310.

    Google Scholar 

  • Lee, T.C., Kashyap, R.L., and Chu C.N., 1994, Building skeleton models via 3-D medial surface axis thinning algorithms, Graphic. Models Image Process. 56:462–478.

    Google Scholar 

  • Lin, G., Adiga, U., Olson, K., Guzowski, J., Barnes, C., and Roysam, B., 2003, A hybrid 3-D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks, Cytometry 56A:23–36.

    Google Scholar 

  • Lin, G., Bjornsson C.S., Smith, K.L., Abdul-Karim, M.A., Turner, J.N., Shain, W., and Roysam, B., 2005, Automated image analysis methods for 3D quantification of the neurovascular unit from multi-channel confocal microscope images. Cytometry 66(1):9–23.

    PubMed  Google Scholar 

  • Lin, G., Chawla, M.K., Olson, K., Guzowski, J.F., Barnes, C.A., and Roysam, B., 2004, Hierarchial, model-based merging of multiple fragments for 3- D segmentation of nuclei, Cytometry DOI: 10.1002/cyto.a.20099.

    Google Scholar 

  • Lorigo, L.M., Faugeras, O.D., Grimson, W.E., Keriven, R., Kikinis, A., Nabavi, A., and Westin, C.F., 2001, CURVES: Curve evolution for vessel segmentation, Med. Image Anal. 5:195–206.

    CAS  Google Scholar 

  • Mackin, R., Roysam, B., Holmes, T., and Turner, J., 1993, Automated image analysis of thick cytological preparations using 3-D microscopy and 3-D image analysis: Applications of pap smears, Anal. Quant. Cytol. Histol. 15:405–417.

    CAS  PubMed  Google Scholar 

  • Maddah, M., Afzali-Kusha, A., and Soltanian-Zedeh, H., 2003, Efficient centerline extraction for quantification of vessels in confocal microscopy images, Med. Phys. 30:204–211.

    Google Scholar 

  • Maisonneuve, F., 1982, Sue le partage des eaux, Technical report School of Mines.

    Google Scholar 

  • Malpica, N., de Solorzano, C.O., Vaquero, J.J., Santos, A., Vallcorba, I., Garcia- Sagredo, J.M., and del Pozo, F., 1997, Applying watershed algorithms to the segmentation of clustered nuclei, Cytometry 28:289–297.

    CAS  PubMed  Google Scholar 

  • Marko, M., and Leith, A., 1992, Contour based 3-D surface reconstruction using stereoscopic contouring and digitized images, In: Visualization in Biomedical Microscopics: 3-D Imaging and Computer Applications (A. Kriete, ed.), VCH, Weinheim, Germany, pp. 45–74.

    Google Scholar 

  • McInerney, T., and Terzopoulos, D., 1996, Deformable models in medical image analysis: A survey, Med. Image Anal. 1:91–108.

    CAS  Google Scholar 

  • Mitiche, A., and Aggarwal, J., 1985, Image segmentation by conventional and information-integrating techniques: A synopsis, International Conference on Pattern Recognition 3:50–62.

    Google Scholar 

  • Morel, J.-M., and Solimini, S., 1995, Variational Methods in Image Segmentation: With Seven Image Processing Experiments, Birkhèauser, Boston.

    Google Scholar 

  • Mouton, P.R., 2002, Principles and Practices of Unbiased Stereology: An Introduction for Bioscientists, Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Neumann, A., 2003, Graphical Gaussian shape models and their application to image segmentation, IEEE Trans. Pattern Anal. Machine Intell. 25:316–329.

    Google Scholar 

  • Nevatia, R., 1986, Image segmentation, Handbook of Pattern Recognition and Image Processing 86.

    Google Scholar 

  • Pavlidis, T., 1977, Structural Pattern Recognition, Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Pavlidis, T., and Liow, Y.-T., 1990, Integrating region growing and edge detection, IEEE Trans. Pattern Anal. Machine Intell. 12:225–233.

    Google Scholar 

  • Pawley, J., 2000, The 39 steps: A cautionary tale of quantitative 3-D fluorescence microscopy, Bioimaging Biotechn. 28:884–888.

    CAS  Google Scholar 

  • Pham, D.L., Xu, C., and Prince, J.L., 2000, Current methods in medical image segmentation, Annu. Rev. Biomed. Eng. 2:315–337.

    CAS  PubMed  Google Scholar 

  • Ranade, S., and Prewitt, J., 1980, A comparison of some segmentation algorithms for cytology, ICPR 80.

    Google Scholar 

  • Raya, S.P., and Udupa, J.K., 1990, Shape-based interpolation of multidimensional objects, IEEE Trans. Med. Imaging 9:32–42.

    CAS  PubMed  Google Scholar 

  • Rezaee, M.R., 1998, Application of fuzzy techniques in image segmentation, PhD thesis, University of Leiden, Leiden, The Netherlands.

    Google Scholar 

  • Rosenfeld, A., and Davis, L., 1979, Image segmentation and image models, Proc. IEEE 67:764–772.

    Google Scholar 

  • Roysam, B., Ancin, H., Bhattacharjya, A., Chisti, M., Seegal, R., and Turner, J., 1994, Algorithms for automated cell population analysis in thick specimens from 3-D confocal fluorescence microscopy data, J. Microsc. 173:115–126.

    CAS  Google Scholar 

  • Roysam, B., Bhattacharjya, A., Srinivas, C., and Turner, J., 1993, Unsupervised noise removal algorithms for 3-D confocal fluorescence microscopy, Micron Microscopica Acta 23:447–461.

    Google Scholar 

  • Roysam, B., and Miller, M., 1992, Combining stochastic and syntactic processing with analog computation methods, Digital Signal Process. 2:48–64.

    Google Scholar 

  • Russ, J.C., 1994, The Image Processing Handbook, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Russ, J.C., and DeHoff, R.T., 2000, Practical Stereology, Kluwer Academic/ Plenum, New York.

    Google Scholar 

  • Sahoo, P., Soltani, S., Wong, A., and Chen, Y., 1988, A survey of thresholding techniques, Comput. Vis. Graphics Image Process. 41:233–260.

    Google Scholar 

  • Sarti, A., Ortiz de Solorzano, C., Lockett, S., and Malladi, R., 2000, A geometric model for 3-D confocal image analysis, IEEE Trans. Biomed. Eng. 47:1600–1609.

    CAS  Google Scholar 

  • Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig, G., and Kikinis, R., 1998, Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images, Med. Image Anal. 2:143–168.

    CAS  Google Scholar 

  • Serra, J.P., and Soille, P., 1994, Mathematical Morphology and Its Applications to Image Processing, Kluwer Academic Publishers, Boston.

    Google Scholar 

  • Shafarenko, L., Petrou, M., and Kittler, J., 1997, Automatic watershed segmentation of randomly textured color images, IEEE Trans. Image Processing 6:1530–1544.

    CAS  Google Scholar 

  • Shain, W., Turner, J., Szarowski, D., Davis-Cox, M., Ancin, H., and Roysam, B., 1999, Application and quantitative validation of computer-automated 3-D counting of cell nuclei in brain tissue, Microsc. Microanal. 5:106– 119.

    CAS  Google Scholar 

  • Shapiro, L.G., and Stockman, G.C., 2001, Computer Vision, Prentice Hall, Upper Saddle River, New Jersey.

    Google Scholar 

  • Sijbers, J., Scheunders, P., Verhoye, M., van der, L.A., van Dyck, D., and Raman, E., 1997, Watershed-based segmentation of 3D MR data for volume quantization, Magn. Reson. Imaging 15:679–688.

    CAS  PubMed  Google Scholar 

  • Sklansky, J., 1978, Image segmentation and feature extraction, IEEE Transactions on Systems, Man, and Cybernetics 8:237–247.

    Google Scholar 

  • So, P.T., Dong, C.Y., Masters, B.R., and Berland, K.M., 2000, Two-photon excitation fluorescence microscopy, Annu. Rev. Biomed. Eng. 2:399–429.

    CAS  PubMed  Google Scholar 

  • Solorzano, C., and Rodriguez, E., 1999, Segmentation of confocal microscope images of cell nuclei in thick tissue sections, J. Microsc. 193:212–226.

    Google Scholar 

  • Staib, L.H., and Duncan, J.S., 1996, Model-based deformable surface finding for medical images, IEEE Trans. Medical Imaging 15:720–731.

    CAS  PubMed  Google Scholar 

  • Streekstra, G.J., and van Pelt, J., 2002, Analysis of tubular structures in threedimensional confocal images, Network 13:381–395.

    PubMed  Google Scholar 

  • Sun, Y., Lucariello, R.J., and Chiaramida, S.A., 1995, Directional low-pass filtering for improved accuracy and reproducibility of stenosis quantification in coronary arteriograms, IEEE Trans. Medical Imaging, 14:242–248.

    CAS  PubMed  Google Scholar 

  • Sunil Kumar, K., and Desai, U., 1999, Joint segmentation and image interpretation, Pattern Recognition 32:577–589.

    Google Scholar 

  • Suri, J.S., Setarehdan, S.K., and Singh, S., 2002, Advanced algorithmic approaches to medical image segmentation: state-of-the-art applications in cardiology, neurology, mammography, and pathology, Springer-Verlag, New York.

    Google Scholar 

  • Theodoridis, S., and Koutroumbas, K., 1999, Pattern Recognition, Academic Press, New York.

    Google Scholar 

  • Trucco, E., and Fisher, R.B., 1995, Experiments in curvature-based segmentation of range data, IEEE Trans. Pattern Anal. Machine Intell. 17:177–182.

    Google Scholar 

  • Tsao, Y., and Fu, K., 1981, A parallel thinning algorithm for 3-D pictures, Comput. Graphics Image Process. 17:315–331.

    Google Scholar 

  • Valeur, B., 2002, Molecular Fluorescence: Principles and Applications, Wiley- VCH, Weinheim, Germany.

    Google Scholar 

  • Vazdarjanova, A., McNaughton, B.L., Barnes, C.A., Worley, P.F., and Guzowski, J.F., 2002, Experience-dependent coincident expression of the effector immediate-early genes arc and Homer 1a in hippocampal and neocortical neuronal networks, J. Neurosci. 22:10067–10071.

    CAS  Google Scholar 

  • Vemuri, B., and Radisavljevic, A., 1994, Multiresolution stochastic hybrid shape models with fractal priors, ACM Trans. Graphics 13:177–207.

    Google Scholar 

  • Vincent, L., 1993, Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms, IEEE Trans. Image Processing 2:176–201.

    CAS  Google Scholar 

  • Vincent, L., and Soille, P., 1991, Watersheds in digital spaces: An efficient algorithm based on immersion simulations, IEEE Trans. on Pattern Analysis and Machine Intelligence, 13(6):583–598.

    Google Scholar 

  • Weast, R.C., 1974, Handbook of Chemistry and Physics; A Ready-Reference Book of Chemical and Physical Data, Chemical Rubber Company, Cleveland, Ohio.

    Google Scholar 

  • Weichert, F., Müller, H., Quast, U., Kraushaar, A., Spilles, P., Heintz, M., Wilke, C., van Birgelen, C., Erbel, R., and Wegener, D., 2003, Virtual 3D IVUS vessel model for intravascular brachytherapy planning. I. 3D segmentation, reconstruction, and visualization of coronary artery architecture and orientation, Med. Phys. 30:2530–2536.

    PubMed  Google Scholar 

  • Williams, J., Tek, H., Comaniciu, D., and Avants, B., 2003, Three-dimensional interactive vascular postprocessing techniques: Industrial perspective. In: Angiography and Plaque Imaging: Advanced Segmentation Techniques (J.S. Suri and S. Laxminarayan, eds.), CRC Press, Boca Raton, Florida, pp. 99–142.

    Google Scholar 

  • Wilson, R., and Spann, M., 1988, Image Segmentation and Uncertainty, John Wiley and Sons, New York.

    Google Scholar 

  • Ying, X., and Uberbacher, E.C., 1997, 2D image segmentation using minimum spanning trees, Image Vis. Comput. 15:47–57.

    Google Scholar 

  • Zhu, S.C., and Yuille, A., 1996, Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation, IEEE Trans. Pattern Anal. Machine Intell. 18:884–900.

    Google Scholar 

  • Zucker, S., 1977, Algorithms for image segmentation, Digital Image Processing and Analysis, 77:169–183.

    Google Scholar 

  • Zucker, S.W., 1976, Region growing: Childhood and adolescence, Comput. Vis. Graphics Image Process. 5:382–399.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roysam, B. et al. (2006). Automated Three-Dimensional Image Analysis Methods for Confocal Microscopy. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_15

Download citation

Publish with us

Policies and ethics