Skip to main content

MEMS Packaging Materials

  • Chapter
  • First Online:
MEMS Materials and Processes Handbook

Part of the book series: MEMS Reference Shelf ((MEMSRS,volume 1))

Abstract

This chapter discusses the differences between the heritage microcircuit packaging world and the still evolving MEMS packaging arena. Materials used in the packaging of MEMs are reviewed and their respective applications. The packaging schemes for these devices owe their infrastructure base to the body of knowledge surrounding semiconductors and microcircuits. MEMS devices yield new complexities which drive new packaging solutions. As opposed to traditional microcircuit chips, MEMS often include moving structures along with the need to have contact with the external environment, driving the requirements for packaging such components. Thus, some functions include interaction with the surrounding environment, such as pressure sensors. This imposes new requisites on packaging, since in regular microelectronics the chip must be protected completely from any impact from the environment. Packaging also provides mechanical support to the sensitive chip, facilitating the handling of the chip, and simplifying assembly. This chapter emphasizes the materials involved in packaging MEMS devices and the addresses the challenges involved. Included in this chapter are several case studies demonstrating novel packaging/material solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 319.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Persson: Fundamental requirements on MEMS packaging and reliability, advanced packaging materials, 2002 Proceedings, 8th International Symposium, Stone Mountain, GA, pp. 1–7 (2002)

    Google Scholar 

  2. Y.L. Low, R.E. Scotti, D.A. Ramsey, C.A. Bolle, S.P. O’Neill, K.C. Nguyen: Packaging of optical MEMS devices, J. Electron. Packaging 125(3), 325 (2003)

    Article  Google Scholar 

  3. N.S. Korivie: A Generic Chip-to-World Fluidic Interconnect System for Microfluidic Devices, System Theory, 2007, SSST’07 39th Southwestern Symposium, Macon, GA (2007)

    Google Scholar 

  4. D.D. Evans Jr: Advances in MEMS packaging design considerations, Adv. Packaging, April (2004)

    Google Scholar 

  5. http://www.spectrum-semi.com/resource/pdf/SO_Material_Properties.pdf (accessed August 11, 2009)

  6. http://global.kyocera.com/application/automotive/product/compo/sensor_p.html (accessed August 10, 2009)

  7. A. Schubring: Ceramic package solutions for MEMS sensors, Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium, 32nd IEEE, pp. 268–272 (IEEE, San Jose, CA, 2007)

    Google Scholar 

  8. A.F. Moor: The case for plastic encapsulated microcircuits in space flight applications, The Johns Hopkins University Applied Physics Lab Technical Digest, Vol. 20, No. 1 (JHUAPL, Laurel, MD, 1999)

    Google Scholar 

  9. K. Gilleo: Packaging Materials, Time to Consider Thermoplastic Materials for Electronic Packaging. (2005) http://www.thomasnet.com/white-papers/abstract/100965/time-to-consider-thermoplastic-materials-for-electronic-packaging.html#null (accessed August 11, 2009)

  10. K. Baert, P. De Moor, H. Tilmans, J. John, A. Witvrouw, C. Van Hoof, E. Beyne: Trends in Wafer Level Packaging of MEMS, MEMS Packaging Solutions, 29 June, Advanced Packaging (2009)

    Google Scholar 

  11. P. Lindner: http://ap.pennnet.com/display_article/334827/36/ARCHI/none/INDUS/1/Packaging-Requirements-Key-to-Advancing-Wafer-Bonding-Technology/

  12. A.A. Hamzah, J. Yunas, B.Y. Majlis, I. Ahmad: Sputtered encapsulation as wafer level packaging for isolatable MEMS devices: A technique demonstrated on a capacitive accelerometer, Sensors 8(11), 7438–7452 (2008)

    Article  Google Scholar 

  13. A. Partridge, A.E. Rice, T.W. Kenny, M. Lutz: New Thin Film Epitaxial Polysilicon Encapsulation for Piezoresistive Accelerometers, Proceedings of the 14th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2001), Interlaken, Switzerland pp. 54–59 (2001)

    Google Scholar 

  14. C. Rusu, S. Sedky, B. Parmentier, A. Verbist, O. Richard, B. Brijs, L. Geenen, A. Witvrouw, F. Lärmer, F. Fischer, S. Kronmuller, V. Leca, B. Otter: New low-stress PECVD poly-SiGe layers for MEMS, J. Microelectromech. Syst. 12(6), 816–825 (2003)

    Article  Google Scholar 

  15. K.S. Lebouitz, A. Mazaheri, R.T. Howe, A.P. Pisano: Vacuum encapsulation of resonant devices using permeable polysilicon, Proceedings of the 12th International Conference on Micro Electro Mechanical Systems (MEMS’99), Orlando, FL pp. 470–475 (1999)

    Google Scholar 

  16. A. Stehle, G. Georgiev, V. Ziegler, B. Schoenlinner, U. Prechtel, H. Seidel, U. Schmid: Glass cap packaged high isolating Ka-band RF-MEMS switch, Mikrosystemtechnik, Produktion von Leiterplatten und Systemen. 11(2009)

    Google Scholar 

  17. A. Schubring: Ceramic package solutions for MEMS sensors, Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium, 32nd IEEE, pp. 268–272 (IEEE, San Jose, CA, 2007)

    Google Scholar 

  18. M.J. Zasowski, G. Lovitz, J.J. Alfano: Visi-LidTM: Transparent Combo-Lids®Heiner Lichtenberger, Abstract http://www.williams-adv.com/documents/visilid.pdf (accessed November 1, 2010)

  19. H.L. Hvims: Conductive adhesives for SMT and potential applications, IEEE Trans. Compon. Packaging Manuf. Tech. B 18(2), 284–291 (1995)

    Article  Google Scholar 

  20. O. Rusanen, J. Lenkkeri: Reliability issues of replacing solder with conductive adhesives in power modules, IEEE Trans. Compon. Packaging Manuf. Tech. B 18(2), 320–325(1995)

    Article  Google Scholar 

  21. T. Tuhus, A. Bjomeklett: Thermal Cycling Reliability of Die Bonding Adhesives, 1993 IEEE Annual International Reliability Physics Symposium Digest, March 23–25, pp. 208 (1993)

    Google Scholar 

  22. K. Yalamanchili, A. Christou: Finite Element Analysis of Millimeter Wave MMIC Packages Subjected to Temperature Cycling and Constant Acceleration, 1993 GaAs REL Workshop Programs and Abstracts, October 10 San Jose, CA (1993)

    Google Scholar 

  23. R.D. Gerke, D.M. Wesolek: MEMS packaging for space applications in MEMS and microstructures in aerospace applications (R. Osiander, M.A. Darrin (Eds.) CRC Press/Taylor and Francis, Boca Raton, FL, pp. 269–288 2006)

    Google Scholar 

  24. R. Pelzer, D. Teomim, G. Perlberg, V. Dragoi: Technologies for Microdevice Packaging Requirements for MEMS and MOEMS, http://ap.pennnet.com/display_article/209837/36/ARTCL/none/none/1/Technologies-for-Microdevice-Packaging/ (accessed 31 Aug 2009)

  25. N. Maluf: An Introduction to Microelectromechanical Systems Engineering (Artech House, Boston, MA, 2000)

    Google Scholar 

  26. E. Weise: Tape Automated Bonding, a forgotten interconnect technology? Microbonding SA, 2103 Noiraigue Scopehttp://www.microbonding.com/tldpap.PDF

  27. N.P. Kim, M.J. Holland’, M.H. Tanielian, R. Poff: MEMS Sensor Multi-chip Module Assembly with TAB Carrier Pressure Belt for Aircraft Flight Testing, Boeing Phantom Works, Boeing Commercial Airplane Group, Flight Test, Seattle, WA (2002)

    Google Scholar 

  28. K. Gilleo: Flex-Based Packaging Solutions – From CSPs to MEMS ET-Trends, gilleo@ieee.org

    Google Scholar 

  29. http://www.williams-adv.com/packagingMaterials/bonding-wire-ribbon.php (accessed 8-10-2009)

  30. M.G. Pecht, R. Agarwal, P. McCluskey, T. Dishough, S. Javadpour, R. Mahajan: Electronic Packaging Materials and Their Properties (CRC Press, Boca Raton, FL, 1998)

    Google Scholar 

  31. http://www.williams-adv.com/packagingMaterials/bonding-wire-ribbon.php (accessed 8-10-2009)

  32. Michael P. Larsson, Richard R.A. Syms: Self-aligning MEMS in-line separable electrical connector, J. Microelectromech. Syst. 13(2), 365 (2004)

    Article  Google Scholar 

  33. http://www.packaginggraphics.net/plastic-resins.htm (accessed 8-10-2009)

  34. K. Gilleo, G. Pham Van Diep: Step 10: Encapsulation Materials, Processes and http://ap.pennnet.com/Articles/Article_Display.cfm?Section=Articles&Subsection=Display&ARTICLE_ID=213896 advanced packaging (accessed August 11, 2009)

  35. V. Danelle, M. Tanner, R. Ramesham (Eds.): Infrared Laser Deposition of Teflon Coatings on Microstructures, Proceedings, Vol. 6111, Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS 611104(2006)

    Google Scholar 

  36. F.F. Faheem, K.C. Gupta, Y. Lee: Flip-chip assembly and liquid crystal polymer encapsulation for variable MEMS capacitors, IEEE Trans. Microwave Theory Techn. 51(12), 2562–2568 (2003)

    Google Scholar 

  37. R.D. Gerke, D.M. Wesolek: MEMS Packaging for Space Applications in MEMS and Microstructures in Aerospace Applications (R. Osiander, M.A. Darrin (Eds.) CRC Press Taylor and Francis Group, Boca Raton, FL, 2006)

    Google Scholar 

  38. T. Hsu: Reliability in MEMS packaging microsystems design and packaging laboratory, Department of Mechanical and Aerospace Engineering San Jose State University, San Jose, CA 95192-0087

    Google Scholar 

  39. S.S. Walwadkar, P.W. Farrell, L.E. Felton, J. Cho: Effect of die-attach adhesives on the stress evolution in MEMS packaging, Proc. SPIE – Int. Soc. Opt. Eng. 5288, 847 (2003); L. Starman Jr, J. Busbee, J. Reber, J. Lott, W. Cowan, N. Vandelli: Stress Measurement in MEMS Devices, 2001 International Conference on Modeling and Simulation of Microsystems – MSM 2001, p. 398 (2001); X. Zhang, K.-S. Chen, S.M. Spearing: Residual Stress and Fracture of Thick Dielectric Films for Power MEMS Applications, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 164 (2002); S.S. Walwadkar, J. Cho, L.E. Felton, P.W. Farrell: Tailoring of stress development in MEMS packaging systems, Mater. Res. Soc. Symp. Proc. 741, 139 (2002)

    Google Scholar 

  40. J.A. Walraven: Failure Mechanisms in MEMS, IEEE International Test Conference (TC), Charlotte, NC p. 828 (2003)

    Google Scholar 

  41. S.B. Brown, W. Van Arsdell, C.L. Muhlstein: Materials reliability in MEMS devices, Int. Conf. Solid-State Sens. Actuators Proc. 1, 591 (1997)

    Article  Google Scholar 

  42. J.A. Chiou, S. Chen, J. Jiao: Humidity-induced voltage shift on MEMS pressure sensors, J. Electron. Packaging, Trans. ASME 125(4), 470 (2003)

    Article  Google Scholar 

  43. M.P. de Boer, J.A. Knapp, J.M. Redmond, T.A. Michalske, R. Maboudian: Adhesion, Adhesion Hysteresis and Friction in MEMS Under Controlled Humidity Ambients, American Society of Mechanical Engineers, Materials Division (Publication), MD 84, Anaheim, CA, p. 127 (1998)

    Book  Google Scholar 

  44. N. Gunda, S.K. Jha, S.A. Sastri: Anti-stiction coatings for MEMS devices, Adv. Mater. Process. 162(9), 27 (2004)

    Google Scholar 

  45. K.M. Delak et al.: Analysis of manufacturing scale MEMS reliability testing, Proceedings of SPIE MEMS Reliability for Critical and Space Applications, vol. 3880, p. 165 (Sep 21–22, Cambridge, MA 1999)

    Google Scholar 

  46. K.P. Harney: Standard semiconductor packaging for high reliability low cost MEMS applications, Proceedings of SPIE 571, 1–8 Reliability, Packaging, Testing and Characterization of MEMS/Moems IV (2005)

    Google Scholar 

  47. F. Goodenough: Airbag Boom When IC Accelerometer sees 50G, Electronic Design August 8, 45–56(1991)

    Google Scholar 

  48. Gary Li, Ampere A. Tseng: Low stress packaging of a micromachined accelerometer, IEEE Trans. Electron. Packaging Manufact. 24(1), 104–108 (2001)

    Google Scholar 

  49. S.A. Audet, K.M. Edenfeld, P.L. Bergstrom: Motorola wafer-level packaging for integrated sensors, Micromach. Dev. 2, 1–3 (1997)

    Google Scholar 

  50. L.E. Felton, M. Duffy, N. Hablutzel, P.W. Farrel, W.A. Webster: Low Cost Packaging of Inertial MEMS Devices, Proceedings of the 36th International Symposium on Microelectronics, Boston, MA, pp. 402–406 (2003)

    Google Scholar 

  51. L.E. Felton, N. Hablutzel, W.A. Webster, K.P. Harney: Chip scale packaging of a MEMS accelerometer, Proceedings of the 54th Electronic Component and Technology Conference, vol. 1, pp. 869–873 (2004)

    Google Scholar 

  52. E.S. Lacsamana, R.M. Navarro, M.G. Mena, L.E. Felton, W.A. Webster: Very thin packaging of capped MEMS accelerometer device, Proceedings of the 7th Electronic Packaging Technology Conference, vol. 1, pp. 5, 7–9 (2005)

    Google Scholar 

  53. P.F. Van Kessel, L.J. Hornbeck, R.E. Meier, M.R. Douglass: MEMS-based projection display, Proc. IEEE, 86(8), 1687–1704 (1998)

    Article  Google Scholar 

  54. M.R. Douglass: DMD reliability: A MEMS success story, Proc. SPIE – Int. Soc. Opt. Eng. 4980, 1–11 (2003)

    Article  Google Scholar 

  55. Y.L. Low, R.E. Scotti, D.A. Ramsey, C.A. Bolle, S.P. O’Neill, K.C. Nguyen: Packaging of optical MEMS devices, J. Electron. Packaging, Trans. ASME 125(3), 325–328 (2003)

    Google Scholar 

  56. T.F. Marinis, J.W. Soucy, J.G. Lawrence, R.T Marinis, R.J. Pryputniewicz: Vacuum sealed MEMS package with an optical window, Proceedings – Electronic Components and Technology Conference (ECTC) D, pp. 804–810 (2008)

    Google Scholar 

  57. C. Yang, A. Xu, Y. Wang: Wafer level hermetic packaging of MOEMS devices, Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium, San Jose, CA, pp. 294–297 (2007)

    Google Scholar 

  58. Peter V. Loeppert, Sung B. Lee: SiSonicTM – The First Commercialized MEMS Microphone, Technical Digest of the 2008 Solid-State Sensors, Actuators, and Microsystems Workshop, Lyon, FR, pp. 27–30 (2008)

    Google Scholar 

  59. R. Osiander, J.L. Champion, M.A. Darrin: MEMS in aerospace applications – Thermal control shutters, Proc. SPIE – Int. Soc. Opt. Eng. 4587, 7–13 (2001)

    Google Scholar 

  60. R. Osiander, S.L. Firebaugh, J.L. Champion, D. Farrar, M.A. Darrin: Microelectromechanical devices for satellite thermal control, IEEE Sens. J. 4(4), 525–531 (2004)

    Article  Google Scholar 

  61. M.J. Li, I.S. Aslam, A. Ewin, R.K. Fettig, D. Franz, A.S. Kutyrev, S.H. Mosley, C. Monroy, D.B. Mott, Y. Zheng: Fabrication of microshutter arrays for space application, Proc. SPIE – Int. Soc. Opt. Eng. 4407, 295–303 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Garrison Darrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Darrin, A.G., Osiander, R. (2011). MEMS Packaging Materials. In: Ghodssi, R., Lin, P. (eds) MEMS Materials and Processes Handbook. MEMS Reference Shelf, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47318-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-47318-5_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-47316-1

  • Online ISBN: 978-0-387-47318-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics