Skip to main content

Properties of 63Sn-37Pb and Sn-3.8Ag-0.7Cu Solders Reinforced With Single-Wall Carbon Nanotubes

  • Chapter
  • First Online:
Nanopackaging

Abstract

As integrated circuit (IC) technology continues to advance, there will be increasing demands on I/O counts and power requirements, leading to decreasing solder pitch and increasing current density for solder balls in high-density wafer-level packages [1]. As the electronics industry continues to push for miniaturization, reliability becomes a vital issue. The demand for more and smaller solder bumps, while increasing the current, has also resulted in a significant increase in current density [2], which can cause the failure of solder interconnects due to electromigration [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Technology Roadmap for Semiconductors – Assembly and Packaging, 2003, http://public.itrs.net/Files/2003 ITRS/Home 2003.html

    Google Scholar 

  2. Tummala R.R., Fundamentals of Microsystems Packaging, New York: McGraw Hill, 2001.

    Google Scholar 

  3. Yeth C.C., Choi W.J., Tu K.N., Appl. Phys. Lett. 2002; 80:580.

    Article  Google Scholar 

  4. Lau J.H., Flip Chip Technologies, New York: McGraw Hill, 1997.

    Google Scholar 

  5. Stam F.A., Davitt E., Microelectron. Reliab. 2001; 41:1815.

    Article  Google Scholar 

  6. Mavoori H., Jin S., J. Electron. Mater. 1998; 27:1216.

    Article  CAS  Google Scholar 

  7. Reno R.C., Panunto M.J., J. Electron. Mater. 1997; 26:11.

    Article  CAS  Google Scholar 

  8. Chen K.-I., Lin K.-L., J. Electron. Mater. 2002; 31:861.

    Article  CAS  Google Scholar 

  9. Nai S.M.L., Wei J., Gupta M., Mater. Sci. Eng. 2006; A423:166.

    CAS  Google Scholar 

  10. Ijama S., Nature 1991; 354:56.

    Article  Google Scholar 

  11. Lu J.P., Phys. Rev. Lett. 1997; 79:1297.

    Article  CAS  Google Scholar 

  12. Saether E., Frankland S.J., Pipes R.B., Compos. Sci. Technol. 2003; 63:1543.

    Article  CAS  Google Scholar 

  13. Despres J.F., Daguerre E., Lafdi K., Carbon 1995; 33:87.

    Article  CAS  Google Scholar 

  14. Iijima S., Brabec Ch., Maiti A., Bernholc J., J. Phys. Chem. 1996; 104:2089.

    Article  CAS  Google Scholar 

  15. Dai H., Wong E.W., Lieber C.M., Science 1996; 272:523.

    Article  CAS  Google Scholar 

  16. Ebbesen T.W., Lezec H.J., Hiura H., Benett J.W., Ghaemi H.F., Thio T., Nature 1996; 382:54.

    Article  CAS  Google Scholar 

  17. Yakobson B.I., Brabec C.J., Bernholc J., Phys. Rev. Lett. 1996; 76:2511.

    Article  CAS  Google Scholar 

  18. Salvetat-Delmotte J., Rubio A., Carbon 2002; 40:1729.

    Article  CAS  Google Scholar 

  19. Zhong R., Cong H., Hou P., Carbon 2003; 41:848.

    Article  CAS  Google Scholar 

  20. Dong S., Zhang X., Trans. Nonferrous Meter. Soc. China 1999; 9:457.

    CAS  Google Scholar 

  21. George R., Kashyap K.T., Rahul R., Yamdagni S., Scripta Mater. 2005; 53:1159.

    Article  CAS  Google Scholar 

  22. Peigney E., Laurent Ch., Flahaut A., Rousset A., Ceram. Int. 2000; 26:677.

    Article  CAS  Google Scholar 

  23. Xu C.L., Wei B.Q., Ma R.Z., Liang J., Ma X.K., Wu D.H., Carbon 1999; 37:855.

    Article  CAS  Google Scholar 

  24. Couchman P.R., Ryan C.K., Philos. Mag. A 1978; 37:327.

    Article  Google Scholar 

  25. Upadhya K., Proceedings of Symposium Sponsored by the Structural Materials Division of TMS Annual Meeting, Denver, CO, February 1993, p. 22.

    Google Scholar 

  26. Wu W.F., Lin Y.Y., Young H.T., Proceedings of Seventh Electronics Packaging Technology and Conference (EPTC2005), Singapore, 2005, p. 625.

    Google Scholar 

  27. NIST solder database, http://www.boulder.nist.gov/div853/lead%20free/solders.html.

  28. Kuo M.C., Tsai C.M., Huang J.C., Chen M., Mater Chem Phys 2005; 90:185.

    Article  CAS  Google Scholar 

  29. Lindemann F.A., Z. Phys. 1910; 11:609.

    CAS  Google Scholar 

  30. Couchman P.R., Ryan C.K., Philos. Mag. A 1978; 37:327.

    Article  Google Scholar 

  31. Ziman J.M., Principles of the Theory of Solids, London: Cambridge University Press, 1972.

    Google Scholar 

  32. Sandler J.K.W., Kirk J.E., Kinloch I.A., Shaffer M.S.P., WIndle A.H., Polymer 2003; 16:248.

    Google Scholar 

  33. Potschke P., Abdel-Goad M., Alig I., Dudkin S., Lellinger D., Polymer 2004; 45:8863.

    Article  Google Scholar 

  34. Loomans M.E., Vaynman S., Ghosh G., Fine M.E., J. Electron. Mater. 1994; 23:741.

    Article  CAS  Google Scholar 

  35. Werner E., A Guide to Lead-Free Solders Physical Metallurgy and Reliability, London: Springer, 2006.

    Google Scholar 

  36. Ruoff R.S., Lorents D.C., Carbon 1995; 33:925–930

    Article  CAS  Google Scholar 

  37. Zhigang Chen, Yaowu S, Xia Z, Yan Y, Journal of Electronic Materials 2003; 32:235.

    Article  CAS  Google Scholar 

  38. Lloyd DJ, Int Mater Rev 1994; 39:1–23.

    Article  CAS  Google Scholar 

  39. Lloyd DJ, Processing of Particle-Reinforced Metal Matrix Composites. In: Mallick PK, editor. Composite Engineering Handbook New York NY; Marcel Dekker: 1997, pp. 631–670.

    Google Scholar 

  40. Lloyd DJ, Lagace HP, McLeod AD. Interfacial Phenomena in Metal Matrix Composities. Proceedings of ICCI-III.: Cleveland, Ohio: USA; Elsevier; 1990:359–376

    Google Scholar 

  41. Ning J., Zhang J., Pan Y., Guo J., Mater. Sci. Eng. A 2003; 357:392.

    Article  Google Scholar 

  42. Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ, Appl Phys Lett 2002; 81(27):5123–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kumar, K.M., Kripesh, V., Tay, A.A.O. (2008). Properties of 63Sn-37Pb and Sn-3.8Ag-0.7Cu Solders Reinforced With Single-Wall Carbon Nanotubes. In: Morris, J. (eds) Nanopackaging. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47325-3_19

Download citation

Publish with us

Policies and ethics