Skip to main content

Pediatric Cancers

  • Chapter
  • First Online:
Nuclear Oncology

Abstract

Pediatric cancers are defined as cancers occurring before the age of 15 years and account for only 2% of all cancers. Intracranial tumors are the most common solid neoplasms in children. Although [18F]FDG uptake is associated with more malignant and aggressive tumor types, [18F]FDG-PET is not routinely used for the clinical management of pediatric brain tumors. PET/MR coregistration/image fusion improves localization of the lesion. [18F]FDG-PET is also helpful to differentiate indolent and active components of the lesion, to improve the diagnostic yield of stereotactic biopsies and the accuracy of the radiosurgical dosimetry planning.

Lymphomas account for 10–15% of all childhood malignancies and are the third most common cause of cancer. Non-Hodgkin’s lymphoma is more frequent.

Staging of Hodgkin’s lymphoma is performed according to the Cotswold revision of the Ann Arbor classification. Non-Hodgkin’s lymphoma in childhood is significantly different from adults. The predominant subtypes are Burkitt’s lymphoma, large B-cell lymphoma, and primary mediastinal B-cell lymphomas, followed by lymphoblastic lymphoma and anaplastic large-cell lymphoma. Most cases are extensive at diagnosis corresponding to stages 3 or 4 of the St. Jude Children’s Research Hospital classification (Murphy staging). Contrast-enhanced diagnostic CT (ce-CT) remains mandatory at least at diagnosis (performed either simultaneously with [18F]FDG PET by using hybrid PET/CT scanners or separately). Diagnostic CT reliably detects enlarged lymph nodes, and contrast media are required to accurately distinguish lymphadenopathy. Diagnostic CT also allows detailed evaluation of pulmonary parenchyma, pleura, and pericardium. Ultrasonography has a definite role in both initial evaluation and follow-up of superficial lymph nodes and is an effective method to detect testicular infiltration and to explore liver and spleen. Chest radiography remains useful in HL to classify disease as “bulky” or “nonbulky.” MRI is superior to ce-CT for evaluation of bone marrow and central nervous system.

67Ga-citrate scintigraphy and bone scintigraphy have been replaced by [18F]FDG-PET/CT, which

depicts nodal and extranodal disease as well as focal bone marrow disease. Early response assessment can be evaluated by interim PET. When interim PET is negative, no other examination needs to be performed at the end of therapy in the absence of clinical signs. Systematic [18F]FDG-PET is not indicated during follow-up.

In non-Hodgkin’s lymphoma, [18F]FDG avidity is high for Burkitt’s lymphoma, large B-cell lymphoma, lymphoblastic lymphoma, and anaplastic large-cell lymphoma.

The main indications for [18F]FDG-PET in children with non-Hodgkin’s lymphoma are inconclusive. However, [18F]FDG-PET appears to be a useful tool for characterization of residual masses, as no reliable CT or MRI criteria are available for distinguishing residual disease from fibrosis or necrosis.

Wilms’ tumor is the most common renal malignancy in childhood. The diagnostic workup includes a CT or MRI scan of the abdomen and pelvis, lymph nodes, and intra-abdominal or pelvic tumor deposits. A Doppler ultrasound is recommended to evaluate if there is a tumor thrombus in the renal vein and inferior vena cava. For detection of bilateral disease and the assessment of nephroblastomatosis representing premalignant lesions, MRI is the imaging modality of choice. 123I-MIBG scintigraphy can be very helpful for the differentiation of neuroblastoma from Wilms’ tumor. There is no major role for [18F]FDG-PET/CT in these patients.

Neuroblastoma accounts about 8% of pediatric malignancies and is responsible for 15% of cancer deaths in children. It arises from the neural crest cells, and the tumor is usually situated in the adrenal gland or anywhere else along the sympathetic nervous system chain. Staging is crucial in order to choose the appropriate treatment. Imaging of neuroblastoma consists of sonography, computed tomography (CT), magnetic resonance imaging (MRI), and 123I-MIBG scintigraphy.123I-MIBG is sensitive and specific for the detection of bone involvement. [18F]FDG-PET is less sensitive than 123I-MIBG scintigraphy in neuroblastoma patients.

Sarcomas are a heterogeneous group of neoplasms with different tumor biology, malignancy, and therapeutic options. The two major groups of primary bone tumors in children and adolescents are osteosarcomas and the Ewing family of tumors.

As regards soft-tissue sarcomas, the most common histologic entities in children and adolescents are rhabdomyosarcoma, extraosseous Ewing sarcoma and peripheral neuroectodermal tumor, synovial sarcoma, neurofibrosarcoma, fibrosarcoma, and leiomyosarcoma. Langerhans cell histiocytosis (LCH) is a proliferation of Langerhans-type histiocytes. Despite its clonal origin, there is no definitive proof of malignancy. Primary bone tumors are best classified using a conventional planar x-ray. CT and MRI supply further information on tumor localization and extension. Bone scintigraphy is very sensitive in the detection of osseous metastases of osteosarcoma, and even soft-tissue metastases are often visible on the bone scan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1.Tricyclic antidepressants and related drugs—should be avoided for 6 weeks prior to the study:

    (a) Amitriptyline and derivatives (Elavil, Endep, Etrafon, Triavil, Amitril, Emitrip, Enovil)

    (b) Amoxapine (Asendin)

    (c) Loxapin

    (d) Doxepin (Adapin, Sinequan)

    (e) Imipramine and derivatives (Tofranil, Imavate, Janimine, Presamine, SK-Pramine, Tipramine).

    2.Antihypertensives—should avoid for 2 weeks prior to the study:

    (a) Labetalol (Normodyne, Trandate)

    (b) Calcium channel blockers

    (c) Reserpine (Serpasil, Sandril).

    3.Sympathetic amines—should be avoided for 2 weeks prior to the study:

    (a) Pseudoephedrine (Halofed, Sudafed, Sudrin, others)

    (b) Phenylpropalamine HCL (Propagest, Sucrets Cold Decongestant, Entex, others)

    (c) Phenylephrine HCL (Neo-Synephrine, Alconefrin, Rhinail, others)

    (d) Ephedrine

    4.Cocaine—should be avoided at all times and for 2 weeks prior to the study.

References

  1. Connolly LP, Drubach LA, Ted Treves S. Applications of nuclear medicine in pediatric oncology. Clin Nucl Med. 2002;27:117–25.

    Article  PubMed  Google Scholar 

  2. Kaatsch P. Epidemiology of childhood cancer. Cancer Treat Rev. 2010;36:277–85.

    Article  PubMed  Google Scholar 

  3. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to ­treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

    Article  PubMed  CAS  Google Scholar 

  4. McCarville MB. PET-CT imaging in pediatric oncology. Cancer Imag. 2009;9:35–43.

    Article  Google Scholar 

  5. Jadvar H, Connolly LP, Fahey FH, Shulkin BL. PET and PET/CT in pediatric oncology. Semin Nucl Med. 2007;37:316–31.

    Article  PubMed  Google Scholar 

  6. Packer RJ. Childhood brain tumors: accomplishments and ­ongoing challenges. J Child Neurol. 2008;23:1122–7.

    Article  PubMed  Google Scholar 

  7. Stauss J, Franzius C, Pfluger T, et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imag. 2008;35:1581–8.

    Article  CAS  Google Scholar 

  8. Hoffman JM, Hanson MW, Friedman HS, et al. FDG-PET in pediatric posterior fossa brain tumors. J Comput Assist Tomogr. 1992;16:62–8.

    Article  PubMed  CAS  Google Scholar 

  9. Pirotte BJ, Lubansu A, Massager N, Wikler D, Goldman S, Levivier M. Results of positron emission tomography guidance and reassessment of the utility of and indications for stereotactic biopsy in children with infiltrative brainstem tumors. J Neurosurg. 2007;107:392–9.

    Article  PubMed  CAS  Google Scholar 

  10. Borgwardt L, Hojgaard L, Carstensen H, et al. Increased fluorine-18 2-fluoro-2-deoxy-d-glucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade: a study with FDG positron emission tomography/magnetic resonance imaging coregistration and image fusion. J Clin Oncol. 2005;23:3030–7.

    Article  PubMed  Google Scholar 

  11. Pirotte B, Acerbi F, Lubansu A, Goldman S, Brotchi J, Levivier M. PET imaging in the surgical management of pediatric brain tumors. Childs Nerv Syst. 2007;23:739–51.

    Article  PubMed  Google Scholar 

  12. Utriainen M, Metsahonkala L, Salmi TT, et al. Metabolic characterization of childhood brain tumors: comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer. 2002;95:1376–86.

    Article  PubMed  Google Scholar 

  13. Pastore G, Magnani C, Verdecchia A, Pession A, Viscomi S, Coebergh JW. Survival of childhood lymphomas in Europe, 1978–1992: a report from the EUROCARE study. Eur J Cancer. 2001;37:703–10.

    Article  PubMed  CAS  Google Scholar 

  14. Weihrauch MR, Re D, Scheidhauer K, et al. Thoracic positron emission tomography using 18F-fluorodeoxyglucose for the ­evaluation of residual mediastinal Hodgkin disease. Blood. 2001;98:2930–4.

    Article  PubMed  CAS  Google Scholar 

  15. Brisse H, Pacquement H, Burdairon E, Plancher C, Neuenschwander S. Outcome of residual mediastinal masses of thoracic lymphomas in children: impact on management and radiological follow-up strategy. Pediatr Radiol. 1998;28:444–50.

    Article  PubMed  CAS  Google Scholar 

  16. Oberlin O. Present and future strategies of treatment in childhood Hodgkin’s lymphomas. Ann Oncol. 1996;7 Suppl 4:73–8.

    Article  PubMed  Google Scholar 

  17. Schwartz CL. The management of Hodgkin disease in the young child. Curr Opin Pediatr. 2003;15:10–6.

    Article  PubMed  Google Scholar 

  18. Landman-Parker J, Pacquement H, Leblanc T, et al. Localized childhood Hodgkin’s disease: response-adapted chemotherapy with etoposide, bleomycin, vinblastine, and prednisone before low-dose radiation therapy-results of the French Society of Pediatric Oncology Study MDH90. J Clin Oncol. 2000;18:1500–7.

    PubMed  CAS  Google Scholar 

  19. Mann G, Attarbaschi A, Burkhardt B, et al. Clinical characteristics and treatment outcome of infants with non-Hodgkin lymphoma. Br J Haematol. 2007;139:443–9.

    PubMed  CAS  Google Scholar 

  20. Reiter A. Diagnosis and treatment of childhood non-Hodgkin lymphoma. Hematology Am Soc Hematol Educ Prog. 2007:285–96.

    Google Scholar 

  21. Murphy SB, Fairclough DL, Hutchison RE, Berard CW. Non-Hodgkin’s lymphomas of childhood: an analysis of the histology, staging, and response to treatment of 338 cases at a single institution. J Clin Oncol. 1989;7:186–93.

    PubMed  CAS  Google Scholar 

  22. Patte C. Non-Hodgkin’s lymphoma. Eur J Cancer. 1998;34:359–62. discussion 62–3.

    Article  PubMed  CAS  Google Scholar 

  23. Patte C, Auperin A, Gerrard M, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109:2773–80.

    PubMed  CAS  Google Scholar 

  24. Cairo MS, Gerrard M, Sposto R, et al. Results of a randomized international study of high-risk central nervous system B non-Hodgkin lymphoma and B acute lymphoblastic leukemia in children and adolescents. Blood. 2007;109:2736–43.

    PubMed  CAS  Google Scholar 

  25. Grenzebach J, Schrappe M, Ludwig WD, et al. Favorable outcome for children and adolescents with T-cell lymphoblastic lymphoma with an intensive ALL-type therapy without local radiotherapy. Ann Hematol. 2001;80 Suppl 3:B73–6.

    PubMed  CAS  Google Scholar 

  26. Brugieres L, Le Deley MC, Rosolen A, et al. Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: results of a randomized trial of the EICNHL Group. J Clin Oncol. 2009;27:897–903.

    Article  PubMed  CAS  Google Scholar 

  27. Mody RJ, Bui C, Hutchinson RJ, Frey KA, Shulkin BL. Comparison of 18F Flurodeoxyglucose PET with Ga-67 scintigraphy and conventional imaging modalities in pediatric lymphoma. Leuk Lymphoma. 2007;48:699–707.

    Article  PubMed  CAS  Google Scholar 

  28. Shankar A, Fiumara F, Pinkerton R. Role of FDG PET in the management of childhood lymphomas-case proven or is the jury still out? Eur J Cancer. 2008;44:663–73.

    Article  PubMed  Google Scholar 

  29. Shulkin BL, Goodin GS, McCarville MB, et al. Bone and [18F]fluorodeoxyglucose positron-emission tomography/computed tomography scanning for the assessment of osseous involvement in Hodgkin lymphoma in children and young adults. Leuk Lymphoma. 2009;50:1794–802.

    Article  PubMed  Google Scholar 

  30. Allen-Auerbach M, Quon A, Weber WA, et al. Comparison between 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography and positron emission tomography/computed tomography hardware fusion for staging of patients with lymphoma. Mol Imaging Biol. 2004;6:411–6.

    Article  PubMed  Google Scholar 

  31. Toma P, Granata C, Rossi A, Garaventa A. Multimodality imaging of Hodgkin disease and non-Hodgkin lymphomas in children. Radiographics. 2007;27:1335–54.

    Article  PubMed  Google Scholar 

  32. Rahmouni A, Montazel JL, Divine M, et al. Bone marrow with diffuse tumor infiltration in patients with lymphoproliferative diseases: dynamic gadolinium-enhanced MR imaging. Radiology. 2003;229:710–7.

    Article  PubMed  Google Scholar 

  33. Haque S, Law M, Abrey LE, Young RJ. Imaging of lymphoma of the central nervous system, spine, and orbit. Radiol Clin North Am. 2008;46:339–61. ix.

    Article  PubMed  Google Scholar 

  34. Punwani S, Taylor SA, Bainbridge A, et al. Pediatric and adolescent lymphoma: comparison of whole-body STIR half-Fourier RARE MR imaging with an enhanced PET/CT reference for ­initial staging. Radiology. 2010;255:182–90.

    Article  PubMed  Google Scholar 

  35. Moog F, Bangerter M, Diederichs CG, et al. Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology. 1998;206:475–81.

    PubMed  CAS  Google Scholar 

  36. Carr R, Barrington SF, Madan B, et al. Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood. 1998;91:3340–6.

    PubMed  CAS  Google Scholar 

  37. Montravers F, McNamara D, Landman-Parker J, et al. [18F]FDG in childhood lymphoma: clinical utility and impact on management. Eur J Nucl Med Mol Imag. 2002;29:1155–65.

    Article  CAS  Google Scholar 

  38. Hermann S, Wormanns D, Pixberg M, et al. Staging in childhood lymphoma: differences between FDG-PET and CT. Nuklearmedizin. 2005;44:1–7.

    PubMed  CAS  Google Scholar 

  39. Furth C, Denecke T, Steffen I, et al. Correlative imaging strategies implementing CT, MRI, and PET for staging of childhood Hodgkin disease. J Pediatr Hematol Oncol. 2006;28:501–12.

    Article  PubMed  Google Scholar 

  40. Kabickova E, Sumerauer D, Cumlivska E, et al. Comparison of 18F-FDG-PET and standard procedures for the pretreatment ­staging of children and adolescents with Hodgkin’s disease. Eur J Nucl Med Mol Imag. 2006;33:1025–31.

    Article  Google Scholar 

  41. Wickmann L, Luders H, Dorffel W. 18-FDG-PET-findings in children and adolescents with Hodgkin’s disease: retrospective evaluation of the correlation to other imaging procedures in initial staging and to the predictive value of follow up examinations. Klin Padiatr. 2003;215:146–50.

    Article  PubMed  CAS  Google Scholar 

  42. Furth C, Steffen IG, Amthauer H, et al. Early and late therapy response assessment with [18F]fluorodeoxyglucose positron emission tomography in pediatric Hodgkin’s lymphoma: analysis of a prospective multicenter trial. J Clin Oncol. 2009;27:4385–91.

    Article  PubMed  Google Scholar 

  43. Lopci E, Burnelli R, Ambrosini V, et al. 18F-FDG PET in pediatric lymphomas: a comparison with conventional imaging. Cancer Biother Radiopharm. 2008;23:681–90.

    Article  PubMed  CAS  Google Scholar 

  44. Miller E, Metser U, Avrahami G, et al. Role of 18F-FDG PET/CT in staging and follow-up of lymphoma in pediatric and young adult patients. J Comput Assist Tomogr. 2006;30:689–94.

    Article  PubMed  Google Scholar 

  45. Riad R, Omar W, Kotb M, et al. Role of PET/CT in malignant pediatric lymphoma. Eur J Nucl Med Mol Imag. 2010;37:319–29.

    Article  Google Scholar 

  46. Depas G, De Barsy C, Jerusalem G, et al. 18F-FDG PET in ­children with lymphomas. Eur J Nucl Med Mol Imag. 2005;32:31–8.

    Article  Google Scholar 

  47. Kleis M, Daldrup-Link H, Matthay K, et al. Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imag. 2009;36:23–36.

    Article  Google Scholar 

  48. Hernandez-Pampaloni M, Takalkar A, Yu JQ, Zhuang H, Alavi A. F-18 FDG-PET imaging and correlation with CT in staging and follow-up of pediatric lymphomas. Pediatr Radiol. 2006;36:524–31.

    Article  PubMed  Google Scholar 

  49. Amthauer H, Furth C, Denecke T, et al. FDG-PET in 10 children with non-Hodgkin’s lymphoma: initial experience in staging and follow-up. Klin Padiatr. 2005;217:327–33.

    Article  PubMed  CAS  Google Scholar 

  50. Rhodes MM, Delbeke D, Whitlock JA, et al. Utility of FDG-PET/CT in follow-up of children treated for Hodgkin and non-Hodgkin lymphoma. J Pediatr Hematol Oncol. 2006;28:300–6.

    Article  PubMed  Google Scholar 

  51. Korholz D, Kluge R, Wickmann L, et al. Importance of F18-fluorodeoxy-d-2-glucose positron emission tomography (FDG-PET) for staging and therapy control of Hodgkin’s lymphoma in childhood and adolescence—consequences for the GPOH-HD 2003 protocol. Onkologie. 2003;26:489–93.

    Article  PubMed  CAS  Google Scholar 

  52. Hudson MM, Krasin MJ, Kaste SC. PET imaging in pediatric Hodgkin’s lymphoma. Pediatr Radiol. 2004;34:190–8.

    Article  PubMed  Google Scholar 

  53. Weiler-Sagie M, Bushelev O, Epelbaum R, et al. 18F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med. 2010;51:25–30.

    Article  PubMed  Google Scholar 

  54. Tsukamoto N, Kojima M, Hasegawa M, et al. The usefulness of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and a comparison of 18F-FDG-PET with 67gallium scintigraphy in the evaluation of lymphoma: relation to histologic subtypes based on the World Health Organization classification. Cancer. 2007;110:652–9.

    Article  PubMed  Google Scholar 

  55. Elstrom R, Guan L, Baker G, et al. Utility of FDG-PET scanning in lymphoma by WHO classification. Blood. 2003;101:3875–6.

    Article  PubMed  CAS  Google Scholar 

  56. Rigacci L, Vitolo U, Nassi L, et al. Positron emission tomography in the staging of patients with Hodgkin’s lymphoma. A prospective multicentric study by the Intergruppo Italiano Linfomi. Ann Hematol. 2007;86:897–903.

    Article  PubMed  Google Scholar 

  57. Dobert N, Menzel C, Berner U, et al. Positron emission ­tomography in patients with Hodgkin’s disease: correlation to histopathologic subtypes. Cancer Biother Radiopharm. 2003;18:565–71.

    Article  PubMed  Google Scholar 

  58. Kasamon YL, Jones RJ, Wahl RL. Integrating PET and PET/CT into the risk-adapted therapy of lymphoma. J Nucl Med. 2007;48 Suppl 1:19S–27.

    PubMed  CAS  Google Scholar 

  59. Montravers F, Landman-Parker J, Grahek D, et al. FDG PET in childhood Hodgkin’s lymphoma. Reports on the false-negative, false-positive and unexpected results during a five-year experience. J Nucl Med. 2006;47:144P.

    Google Scholar 

  60. Juweid ME. Utility of positron emission tomography (PET) scanning in managing patients with Hodgkin lymphoma. Hematol Am Soc Hematol Educ Prog. 2006;259–65:510–1.

    Google Scholar 

  61. van Quarles Ufford H, Hoekstra O, de Haas M, et al. On the added value of baseline FDG-PET in malignant lymphoma. Mol Imaging Biol. 2010;12:225–32.

    Article  Google Scholar 

  62. Hutchings M, Barrington SF. PET/CT for therapy response assessment in lymphoma. J Nucl Med. 2009;50 Suppl 1:21S–30.

    Article  PubMed  CAS  Google Scholar 

  63. Strobel K, Schaefer NG, Renner C, et al. Cost-effective therapy remission assessment in lymphoma patients using 2-[fluorine-18]fluoro-2-deoxy-d-glucose-positron emission tomography/computed tomography: is an end of treatment exam necessary in all patients? Ann Oncol. 2007;18:658–64.

    Article  PubMed  CAS  Google Scholar 

  64. Meany HJ, Gidvani VK, Minniti CP. Utility of PET scans to predict disease relapse in pediatric patients with Hodgkin lymphoma. Pediatr Blood Cancer. 2007;48:399–402.

    Article  PubMed  Google Scholar 

  65. Moog F, Bangerter M, Diederichs CG, et al. Lymphoma: role of whole-body 2-deoxy-2-[F-18]fluoro-d-glucose (FDG) PET in nodal staging. Radiology. 1997;203:795–800.

    PubMed  CAS  Google Scholar 

  66. Montravers F, Landman-Parker J, Kerrou K, et al. Impact of FDG PET on the management of childhood non-Hodgkin lymphoma: a five-year experience. J Nucl Med. 2006;47:87P.

    Google Scholar 

  67. Riad R, Omar W, Sidhom I, et al. False-positive F-18 FDG uptake in PET/CT studies in pediatric patients with abdominal Burkitt’s lymphoma. Nucl Med Commun. 2010;31:232–8.

    Article  PubMed  Google Scholar 

  68. Palestro CJ, Rini JN, Tomas MB. Lymphoma. In: Charron M, ­editor. Practical pediatric PET imaging. New York: Springer Science, 2006:220–42.

    Google Scholar 

  69. Kaste SC, Howard SC, McCarville EB, Krasin MJ, Kogos PG, Hudson MM. 18F-FDG-avid sites mimicking active disease in pediatric Hodgkin’s. Pediatr Radiol. 2005;35:141–54.

    Article  PubMed  Google Scholar 

  70. Shammas A, Lim R, Charron M. Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics. 2009;29:1467–86.

    Article  PubMed  Google Scholar 

  71. Kamoto Y, Sadato N, Yonekura Y, et al. Visualization of the cervical spinal cord with FDG and high-resolution PET. J Comput Assist Tomogr. 1998;22:487–91.

    Article  PubMed  CAS  Google Scholar 

  72. Saggese D, Ceroni Compadretti G, Cartaroni C. Cervical ectopic thymus: a case report and review of the literature. Int J Pediatr Otorhinolaryngol. 2002;66:77–80.

    Article  PubMed  Google Scholar 

  73. Soderlund V, Larsson SA, Jacobsson H. Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imag. 2007;34:1018–22.

    Article  CAS  Google Scholar 

  74. Lustberg MB, Aras O, Meisenberg BR. FDG PET/CT findings in acute adult mononucleosis mimicking malignant lymphoma. Eur J Haematol. 2008;81:154–6.

    Article  PubMed  Google Scholar 

  75. Panagiotidis E, Exarhos D, Housianakou I, Bournazos A, Datseris I. FDG uptake in axillary lymph nodes after vaccination against pandemic (H1N1). Eur Radiol. 2010;20:1251–3.

    Article  PubMed  Google Scholar 

  76. Moinul Hossain AK, Shulkin BL, et al. FDG positron emission tomography/computed tomography studies of Wilms’ tumor. Eur J Nucl Med Mol Imag. 2010;37:1300–8.

    Article  CAS  Google Scholar 

  77. Smith MA, Seibel NL, Altekruse SF, Ries LA, Melbert DL, O’Leary M, et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol. 2010;28:2625–34.

    Article  PubMed  Google Scholar 

  78. Pfluger T, Leinsinger G, Sander A, Schmid I, Fuhrer M, Dietz HG, et al. Magnetic resonance imaging of benign and premalignant tumors in childhood. Radiologe. 1999;39:685–94.

    Article  PubMed  CAS  Google Scholar 

  79. Misch D, Steffen IG, Schonberger S, et al. Use of positron emission tomography for staging, preoperative response assessment and posttherapeutic evaluation in ­children with Wilms tumour. Eur J Nucl Med Mol Imag. 2008;35:1642–50.

    Article  Google Scholar 

  80. Shulkin BL, Chang E, Strouse PJ, Bloom DA, Hutchinson RJ. PET FDG studies of Wilms tumors. J Pediatr Hematol Oncol. 1997;19:334–8.

    Article  PubMed  CAS  Google Scholar 

  81. Belgaumi AF, Kauffman WM, Jenkins JJ, Cordoba J, Bowman LC, Santana VM, et al. Blindness in children with neuroblastoma. Cancer. 1997;80:1997–2004.

    Article  PubMed  CAS  Google Scholar 

  82. Kropp J, Hofmann M, Bihl H. Comparison of MIBG and pentetreotide scintigraphy in children with neuroblastoma. Is the expression of somatostatin receptors a prognostic factor? Anticancer Res. 1997;17:1583–8.

    PubMed  CAS  Google Scholar 

  83. Schmidt M, Simon T, Hero B, Schicha H, Berthold F. The prognostic impact of functional imaging with 123I-mIBG in patients with stage 4 neuroblastoma >1 year of age on a high-risk treatment protocol: results of the German Neuroblastoma Trial NB97. Eur J Cancer. 2008;44:1552–8.

    Article  PubMed  Google Scholar 

  84. Taggart D, Dubois S, Matthay KK. Radiolabeled metaiodobenzylguanidine for imaging and therapy of neuroblastoma. Q J Nucl Med Mol Imag. 2008;52:403–18.

    CAS  Google Scholar 

  85. Custodio CM, Semelka RC, Balci NC, Mitchell KM, Freeman JA. Adrenal neuroblastoma in an adult with tumor thrombus in the inferior vena cava. J Magn Reson Imag. 1999;9:621–3.

    Article  CAS  Google Scholar 

  86. DuBois SG, Matthay KK. Radiolabeled metaiodobenzylguanidine for the treatment of neuroblastoma. Nucl Med Biol. 2008;35 Suppl 1:S35–48.

    Article  PubMed  CAS  Google Scholar 

  87. Boubaker A, Bischof Delaloye A, Bischof Delaloye A. Nuclear medicine procedures and neuroblastoma in childhood. Their value in the diagnosis, staging and assessment of response to therapy. Q J Nucl Med. 2003;47:31–40.

    PubMed  CAS  Google Scholar 

  88. Parisi MT, Greene MK, Dykes TM, Moraldo TV, Sandler ED, Hattner RS. Efficacy of metaiodobenzylguanidine as a scintigraphic agent for the detection of neuroblastoma. Invest Radiol. 1992;27:768–73.

    Article  PubMed  CAS  Google Scholar 

  89. de Kraker J, Hoefnagel KA, Verschuur AC, van Eck B, van Santen HM, Caron HN. Iodine-131-metaiodobenzylguanidine as initial induction therapy in stage 4 neuroblastoma patients over 1 year of age. Eur J Cancer. 2008;44:551–6.

    Article  PubMed  CAS  Google Scholar 

  90. Hugosson C, Nyman R, Jorulf H, et al. Imaging of abdominal neuroblastoma in children. Acta Radiol. 1999;40:534–42.

    Article  PubMed  CAS  Google Scholar 

  91. Sofka CM, Semelka RC, Kelekis NL, et al. Magnetic resonance imaging of neuroblastoma using current techniques. Magn Reson Imag. 1999;17:193–8.

    Article  CAS  Google Scholar 

  92. Taggart DR, Han MM, Quach A, et al. Comparison of iodine-123 metaiodobenzylguanidine (MIBG) scan and [18F]fluorodeoxy­glucose positron emission tomography to evaluate response after iodine-131 MIBG therapy for relapsed neuroblastoma. J Clin Oncol. 2009;27:5343–9.

    Article  PubMed  CAS  Google Scholar 

  93. Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med. 2009;50:1237–43.

    Article  PubMed  Google Scholar 

  94. Mc Dowell H, Losty P, Barnes N, Kokai G. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG-negative. Pediatr Blood Cancer. 2009;52:552.

    Article  PubMed  Google Scholar 

  95. Kleis M, Daldrup-Link H, Matthay K, et al. Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imag. 2009;36:23–36.

    Article  Google Scholar 

  96. Shore RM. Positron emission tomography/computed tomography (PET/CT) in children. Pediatr Ann. 2008;37:404–12.

    Article  PubMed  Google Scholar 

  97. Rozovsky K, Koplewitz BZ, Krausz Y, et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. AJR Am J Roentgenol. 2008;190:1085–90.

    Article  PubMed  Google Scholar 

  98. Murphy JJ, Tawfeeq M, Chang B, Nadel H. Early experience with PET/CT scan in the evaluation of pediatric abdominal neoplasms. J Pediatr Surg. 2008;43:2186–92.

    Article  PubMed  Google Scholar 

  99. Colavolpe C, Guedj E, Cammilleri S, Taieb D, Mundler O, Coze C. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG-negative. Pediatr Blood Cancer. 2008;51:828–31.

    Article  PubMed  Google Scholar 

  100. Roca I, Simo M, Sabado C, de Toledo JS. PET/CT in paediatrics: it is time to increase its use! Eur J Nucl Med Mol Imag. 2007;34:628–9.

    Article  Google Scholar 

  101. Franzius C, Riemann B, Vormoor J, et al. Metastatic neuroblastoma demonstrated by whole-body PET-CT using 11C-HED. Nuklearmedizin. 2005;44:N4–5.

    PubMed  CAS  Google Scholar 

  102. Valk TW, Frager MS, Gross MD, et al. Spectrum of pheochromocytoma in multiple endocrine neoplasia. A scintigraphic portrayal using 131I-metaiodobenzylguanidine. Ann Intern Med. 1981;94:762–7.

    PubMed  CAS  Google Scholar 

  103. Wieland DM, Brown LE, Tobes MC, et al. Imaging the primate adrenal medulla with [123I] and [131I] meta-iodobenzylguanidine: concise communication. J Nucl Med. 1981;22:358–64.

    PubMed  CAS  Google Scholar 

  104. Sisson JC, Wieland DM. Radiolabeled meta-iodobenzylguanidine: pharmacology and clinical studies. Am J Physiol Imag. 1986;1:96–103.

    CAS  Google Scholar 

  105. Guilloteau D, Chalon S, Baulieu JL, et al. Comparison of MIBG and monoamines uptake mechanisms: pharmacological animal and blood platelets studies. Eur J Nucl Med. 1988;14:341–4.

    PubMed  CAS  Google Scholar 

  106. Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med. 2006;36:228–47.

    Article  PubMed  Google Scholar 

  107. Howman-Giles R, Shaw PJ, Uren RF, Chung DK. Neuroblastoma and other neuroendocrine tumors. Semin Nucl Med. 2007;37:286–302.

    Article  PubMed  Google Scholar 

  108. Biasotti S, Garaventa A, Villavecchia GP, Cabria M, Nantron M, De Bernardi B. False-negative metaiodobenzylguanidine scintigraphy at diagnosis of neuroblastoma. Med Pediatr Oncol. 2000;35:153–5.

    Article  PubMed  CAS  Google Scholar 

  109. Troncone L, Rufini V, Montemaggi P, Danza FM, Lasorella A, Mastrangelo R. The diagnostic and therapeutic utility of radioiodinated metaiodobenzylguanidine (MIBG). 5 years of experience. Eur J Nucl Med. 1990;16:325–35.

    Article  PubMed  CAS  Google Scholar 

  110. Gelfand MJ. Meta-iodobenzylguanidine in children. Semin Nucl Med. 1993;23:231–42.

    Article  PubMed  CAS  Google Scholar 

  111. Shulkin BL, Shapiro B, Francis IR, Dorr R, Shen SW, Sisson JC. Primary extra-adrenal pheochromocytoma: positive I-123 MIBG imaging with negative I-131 MIBG imaging. Clin Nucl Med. 1986;11:851–4.

    Article  PubMed  CAS  Google Scholar 

  112. Boubaker A, Bischof Delaloye A. MIBG scintigraphy for the diagnosis and follow-up of children with neuroblastoma. Q J Nucl Med Mol Imag. 2008;52:388–402.

    CAS  Google Scholar 

  113. Hadj-Djilani NL, Lebtahi NE, Delaloye AB, Laurini R, Beck D. Diagnosis and follow-up of neuroblastoma by means of iodine-123 metaiodobenzylguanidine scintigraphy and bone scan, and the influence of histology. Eur J Nucl Med. 1995;22:322–9.

    Article  PubMed  CAS  Google Scholar 

  114. Khafagi FA, Shapiro B, Fig LM, Mallette S, Sisson JC. Labetalol reduces iodine-131 MIBG uptake by pheochromocytoma and normal tissues. J Nucl Med. 1989;30:481–9.

    PubMed  CAS  Google Scholar 

  115. Solanki KK, Bomanji J, Moyes J, Mather SJ, Trainer PJ, Britton KE. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun. 1992;13:513–21.

    Article  PubMed  CAS  Google Scholar 

  116. Gordon I, Peters AM, Gutman A, Morony S, Dicks-Mireaux C, Pritchard J. Skeletal assessment in neuroblastoma—the pitfalls of iodine-123-MIBG scans. J Nucl Med. 1990;31:129–34.

    PubMed  CAS  Google Scholar 

  117. Pfluger T, Schmied C, Porn U, et al. Integrated imaging using MRI and 123I metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatric neuroblastoma. AJR Am J Roentgenol. 2003;181:1115–24.

    PubMed  Google Scholar 

  118. Geatti O, Shapiro B, Shulkin B, Hutchinson R, Sisson JC. Gastrointestinal iodine-131-meta-iodobenzylguanidine activity. Am J Physiol Imag. 1988;3:188–91.

    CAS  Google Scholar 

  119. Granata C, Carlini C, Conte M, Claudiani F, Campus R, Rizzo A. False positive MIBG scan due to accessory spleen. Med Pediatr Oncol. 2001;37:138–9.

    Article  PubMed  CAS  Google Scholar 

  120. McGarvey CK, Applegate K, Lee ND, Sokol DK. False-positive metaiodobenzylguanidine scan for neuroblastoma in a child with opsoclonus-myoclonus syndrome treated with adrenocorticotropic hormone (ACTH). J Child Neurol. 2006;21:606–10.

    Article  PubMed  Google Scholar 

  121. Moralidis E, Arsos G, Papakonstantinou E, Badouraki M, Koliouskas D, Karakatsanis C. 123I-Metaiodobenzylguanidine accumulation in a urinoma and cortex of an obstructed kidney after surgical resection of an abdominal neuroblastoma. Pediatr Radiol. 2008;38:118–21.

    Article  PubMed  Google Scholar 

  122. Bahar RH, Mahmoud S, Ibrahim A, al-Gazzar AH. A false positive I-131 MIBG due to dilated renal pelvis: a case report. Clin Nucl Med. 1988;13:900–2.

    Article  PubMed  CAS  Google Scholar 

  123. Bonnin F, Lumbroso J, Tenenbaum F, Hartmann O, Parmentier C. Refining interpretation of MIBG scans in children. J Nucl Med. 1994;35:803–10.

    PubMed  CAS  Google Scholar 

  124. Pirson AS, Krug B, Tuerlinckx D, Lacrosse M, Luyx D, Borght TV. Additional value of I-123 MIBG SPECT in ­neuroblastoma. Clin Nucl Med. 2005;30:100–1.

    Article  PubMed  Google Scholar 

  125. Rufini V, Fisher GA, Shulkin BL, Sisson JC, Shapiro B. Iodine-123-MIBG imaging of neuroblastoma: utility of SPECT and delayed imaging. J Nucl Med. 1996;37:1464–8.

    PubMed  CAS  Google Scholar 

  126. Gelfand MJ, Elgazzar AH, Kriss VM, Masters PR, Golsch GJ. Iodine-123-MIBG SPECT versus planar imaging in children with neural crest tumors. J Nucl Med. 1994;35:1753–7.

    PubMed  CAS  Google Scholar 

  127. Shulkin BL, Shapiro B, Hutchinson RJ. Iodine-131-metaiodobenzylguanidine and bone scintigraphy for the detection of neuroblastoma. J Nucl Med. 1992;33:1735–40.

    PubMed  CAS  Google Scholar 

  128. Daldrup-Link HE, Franzius C, Link TM, et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol. 2001;177:229–36.

    PubMed  CAS  Google Scholar 

  129. Mentzel HJ, Kentouche K, Sauner D, et al. Comparison of whole-body STIR-MRI and 99mTc-methylene-diphosphonate scintigraphy in children with suspected multifocal bone lesions. Eur Radiol. 2004;14:2297–302.

    Article  PubMed  Google Scholar 

  130. Lebtahi N, Gudinchet F, Nenadov-Beck M, Beck D, Bischof Delaloye A. Evaluating bone marrow metastasis of neuroblastoma with iodine-123-MIBG scintigraphy and MRI. J Nucl Med. 1997;38:1389–92.

    PubMed  CAS  Google Scholar 

  131. Kushner BH, Yeung HW, Larson SM, Kramer K, Cheung NK. Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol. 2001;19:3397–405.

    PubMed  CAS  Google Scholar 

  132. Shulkin BL, Hutchinson RJ, Castle VP, Yanik GA, Shapiro B, Sisson JC. Neuroblastoma: positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-d-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology. 1996;199:743–50.

    PubMed  CAS  Google Scholar 

  133. Rosenspire KC, Haka MS, Van Dort ME, et al. Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: a false transmitter agent for heart neuronal imaging. J Nucl Med. 1990;31:1328–34.

    PubMed  CAS  Google Scholar 

  134. Shulkin BL, Wieland DM, Baro ME, et al. PET hydroxyephedrine imaging of neuroblastoma. J Nucl Med. 1996;37:16–21.

    PubMed  CAS  Google Scholar 

  135. Franzius C, Hermann K, Weckesser M, et al. Whole-body PET/CT with 11C-meta-hydroxyephedrine in tumors of the sympathetic nervous system: feasibility study and comparison with 123I-MIBG SPECT/CT. J Nucl Med. 2006;47:1635–42.

    PubMed  Google Scholar 

  136. Becherer A, Szabo M, Karanikas G, et al. Imaging of advanced neuroendocrine tumors with 18F-FDOPA PET. J Nucl Med. 2004;45:1161–7.

    PubMed  CAS  Google Scholar 

  137. Hoegerle S, Nitzsche E, Altehoefer C, et al. Pheochromocytomas: detection with 18F DOPA whole body PET–initial results. Radiology. 2002;222:507–12.

    Article  PubMed  Google Scholar 

  138. Mamede M, Carrasquillo JA, Chen CC, et al. Discordant ­localization of 2-[18F]-fluoro-2-deoxy-d-glucose in 6-[18F]-fluorodopamine- and [123I]-metaiodobenzylguanidine-negative metastatic pheochromocytoma sites. Nucl Med Commun. 2006;27:31–6.

    Article  PubMed  Google Scholar 

  139. Muller MF, Krestin GP, Willi UV. Abdominal tumors in children. A comparison between magnetic resonance tomography (MRT) and ultrasonography (US). Rofo. 1993;158:9–14.

    Article  PubMed  CAS  Google Scholar 

  140. Daldrup HE, Link TM, Wortler K, Reimer P, Rummeny EJ. MR imaging of thoracic tumors in pediatric patients. AJR Am J Roentgenol. 1998;170:1639–44.

    PubMed  CAS  Google Scholar 

  141. Kaste SC. Issues specific to implementing PET-CT for pediatric oncology: what we have learned along the way. Pediatr Radiol. 2004;34:205–13.

    Article  PubMed  Google Scholar 

  142. Bar-Sever Z, Keidar Z, Ben-Barak A, et al. The incremental value of 18F-FDG PET/CT in paediatric malignancies. Eur J Nucl Med Mol Imag. 2007;34:630–7.

    Article  Google Scholar 

  143. Olson PN, Everson LI, Griffiths HJ. Staging of musculoskeletal tumors. Radiol Clin North Am. 1994;32:151–62.

    PubMed  CAS  Google Scholar 

  144. Silberstein EB, Saenger EL, Tofe AJ, Alexander Jr GW, Park HM. Imaging of bone metastases with 99m Tc-Sn-EHDP (diphosphonate), 18 F, and skeletal radiography. A comparison of sensitivity. Radiology. 1973;107:551–5.

    PubMed  CAS  Google Scholar 

  145. Hahn K, Charron M, Shulkin BL. Role of MR imaging and iodine 123 MIBG scintigraphy in staging of pediatric neuroblastoma. Radiology. 2003;227:908. author reply 08-9.

    Article  PubMed  Google Scholar 

  146. Shah Syed GM, Naseer H, Usmani GN, Cheema MA. Role of iodine-131 MIBG scanning in the management of paediatric patients with neuroblastoma. Med Princ Pract. 2004;13:196–200.

    Article  PubMed  CAS  Google Scholar 

  147. Moon L, McHugh K. Advances in paediatric tumour imaging. Arch Dis Child. 2005;90:608–11.

    Article  PubMed  CAS  Google Scholar 

  148. Nanni C, Rubello D, Castellucci P, Silberstein EB, Saenger ELm Tofe AL, Alexander Jr. GW, Part HM, et al. 18F-FDG PET/CT fusion imaging in paediatric solid extracranial tumours. Biomed Pharmacother. 2006;60:593–606.

    Article  PubMed  CAS  Google Scholar 

  149. Yeung HW, Schoder H, Smith A, Gonen M, Larson SM. Clinical value of combined positron emission tomography/computed tomography imaging in the interpretation of 2-deoxy-2-[F-18]fluoro-d-glucose-positron emission tomography studies in cancer patients. Mol Imag Biol. 2005;7:229–35.

    Article  Google Scholar 

  150. Brodeur GM, Pritchard J, Berthold F, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11:1466–77.

    PubMed  CAS  Google Scholar 

  151. Erlemann R, Sciuk J, Bosse A, et al. Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy: Assessment with dynamic and static MR imaging and skeletal scintigraphy. Radiology. 1990;175:791–6.

    PubMed  CAS  Google Scholar 

  152. Knop J, Delling G, Heise U, Winkler K. Scintigraphic evaluation of tumor regression during preoperative chemotherapy of osteosarcoma. Skeletal Radiol. 1990;19:165–72.

    Article  PubMed  CAS  Google Scholar 

  153. O’Mara RE. Bone scanning in osseous metastatic disease. JAMA. 1988;229:1915–7.

    Article  Google Scholar 

  154. Algra PR, Bloem JL, Tissing H, Falke TH, Arndt JW, Verboom LJ. Detection of vertebral metastases: comparison between MR imaging and bone scintigraphy. Radiographics. 1991;11:219–32.

    PubMed  CAS  Google Scholar 

  155. Grant F, Fahey F, Packard A, Davis R, Alavi A, Treves S. Skeletal PET with F-18-fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49:68–78.

    Article  PubMed  Google Scholar 

  156. Petersen M. Radionuclide detection of primary pulmonary osteogenic sarcoma: a case report and review of the literature. J Nucl Med. 1990;31:1110–4.

    PubMed  CAS  Google Scholar 

  157. Othman S, El-Desouki M. Bone scan appearance in aggressive osteogenic sarcoma with pleural, lung, bone, and soft-tissue metastases. Clin Nucl Med. 2003;28:926.

    Article  PubMed  Google Scholar 

  158. Anderson PM. Sm-153-EDTMP therapy with stem cell support in patients. In: Bruland OS, editor. Towards the eradication of osteosarcoma metastases: The Norwegian Radium Hospital. Norway: Oslo; 1998. p. 87–8.

    Google Scholar 

  159. Binkovitz L, Olshefski R, Adler B. Coincidence FDG-PET in the evaluation of Langerhans’ cell histiocytosis: preliminary findings. Pediatr Radiol. 2003;33:598–602.

    Article  PubMed  Google Scholar 

  160. Daldrup-Link HE, Franzius C, Rummeney EJ, et al. Whole body MRI for detection of bone marrow metastases in pediatric patients: Comparison with skeletal scintigraphy and FDG-PET. Am J Roentgenol. 2001;177:229–36.

    CAS  Google Scholar 

  161. Calming U, Bemstrand C, Mosskin M, Elander S, Ingvar M, Henter J. Brain F-18-FDG PET scan in central nervous system Langerhans cell histiocytosis. J Pediatr. 2002;141:435–40.

    Article  PubMed  Google Scholar 

  162. Buchler T, Cervinek L, Belohlavek O, et al. Langerhans cell histiocytosis with central nervous system involvement: follow-up by FDG-PET during treatment with cladribine. Pediatr Blood Cancer. 2005;44:286–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Pfluger MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pfluger, T. et al. (2013). Pediatric Cancers. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48894-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48894-3_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48893-6

  • Online ISBN: 978-0-387-48894-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics