Skip to main content

Microstructure

  • Chapter
Bulk Metallic Glasses
  • 2955 Accesses

Microstructural characterizations are performed to investigate both the atomic structure and the stability of bulk metallic glasses (BMGs). Many characterizations with a variety of instruments are performed to identify the phases produced during preparation (i.e., quenching), annealing, and devitrification of BMG. The typical parameters that are quantified are the size, morphology, composition, crystal structure, and volume fraction of the phases formed. These parameters may be used to improve the alloy design process. Some techniques provide continuous monitoring of time-dependent processes, such as crystallization, as a function of time and temperature. High-resolution techniques are used to investigate the atomic structure of the glass including short- and medium-range order. Specialized characterizations may be performed to investigate the quantity and type of free-volume in the glass. Microstructural characterizations may also be performed in conjunction with mechanical property tests to investigate the type of failure, the source of crack initiation, and the interaction of shear bands that are produced under stress with microstructural features.

In this chapter, many of the techniques that have been used to characterize the microstructures of BMGs are reviewed. The techniques are divided broadly into the routine techniques, such as differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy, that are used to evaluate parameters such as the glass-forming ability, the critical dimension, and examine the general microstructure, and the higher resolution, more specialized techniques, such as high-resolution and fluctuation electron microscopy, field ion microscopy, atom probe tomography, small angle scattering, and positron annihilation spectroscopy, that are used to characterize the nanometerscale structure, phase composition, open volume, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Leonhard, L. Q. Xing, M. Heilmaier, A. Gebert, J. Eckert, and L. Schutz, Effect of crystalline precipitation on the mechanical behavior of bulk glass forming Zr-based alloys, Nanostruct. Mater. 10, 805-817 (1998).

    CAS  Google Scholar 

  2. H. Choi-Yim, R. D. Conner, and W. L. Johnson, In situ composite formation in the Ni-(Cu)-Ti-Zr-Si system, Scripta Mater. 53, 1467-1470 (2005).

    CAS  Google Scholar 

  3. J. D. Bernal, Geometry of the structure of monatomic liquids, Nature 185, 68-70 (1960).

    ADS  Google Scholar 

  4. J. D. Bernal, The structure of liquids, Proc. R. Soc. Lond. A 280, 299-322 (1964).

    CAS  ADS  Google Scholar 

  5. D. B. Miracle, A structural model for metallic glasses, Nat. Mater. 3(10), 697-702 (2004).

    CAS  PubMed  ADS  Google Scholar 

  6. D. B. Miracle, W. S. Sanders, and O. N. Senkov, The influence of efficient atomic packing on the constitution of metallic glasses, Philos. Mag. A 83(20), 2409-2428 (2003).

    CAS  ADS  Google Scholar 

  7. H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, and E. Ma, Atomic packing and short-to-medium-range order in metallic glasses, Nature 439(7075), 419-425 (2006).

    CAS  PubMed  ADS  Google Scholar 

  8. P. M. Ossi, Disordered Materials: An Introduction (Springer, Berlin Heidelberg New York, 2003).

    Google Scholar 

  9. S. Venkataraman, H. Hermann, C. Mickel, L. Schultz, D. J. Sordelet, and J. Eckert, Calorimetric study of the crystallization kinetics of Cu47Ti33Zr11Ni8Si1 metallic glass, Phys. Rev. B 75, 104206 (2007).

    ADS  Google Scholar 

  10. . X. L. Fu, Y. Li, and C. A. Schuh, Temperature, strain rate and reinforcement volume fraction dependence on plastic deformation in metallic glass composites, Acta Mater. (2007). doi:10.1016/j.actamat.2007.01.009

    Google Scholar 

  11. Y. Waseda, The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids (McGraw-Hill, New York, 1980), p. 326.

    Google Scholar 

  12. T. Egami and S. J. L. Billinge, in Underneath the Bragg Peaks: Structural Analysis of Complex Materials, edited by R. W. Cahn, Pergamon Materials Series (Elsevier, Oxford, 2003).

    Google Scholar 

  13. T. Proffen, S. J. L. Billinge, T. Egami, and D. Louca, Structural analysis of complex materials using the atomic pair distribution function - A practical guide, Z. Kristallogr. 218 (2), 132-143 (2003).

    CAS  Google Scholar 

  14. L. Hennet, S. Krishnan, A. Bytchkov, T. Key, D. Thiaudiere, P. Melin, I. Pozdnyakova, M. L. Saboungi, and D. L. Price, X-ray diffraction on high-temperature liquids: Evolution towards time-resolved studies, Int. J. Thermophys. 26(4), 1127-1136 (2005).

    CAS  Google Scholar 

  15. L. Margulies, M. J. Kramer, R. W. McCallum, S. Kycia, D. R. Haeffner, J. C. Lang, and A. I. Goldman, New high temperature furnace for structure refinement by powder diffraction in controlled atmospheres using synchrotron radiation, Rev. Sci. Instrum. 70 (9), 3554-3561 (1999).

    CAS  ADS  Google Scholar 

  16. P. J. Chupas, X. Qiu, J. C. Hanson, P. L. Lee, C. P. Grey, and S. J. L. Billinge, Rapid acquisition pair distribution function (RA-PDF) analysis, J. Appl. Crystallogr. 36(6), 1342-1347 (2003).

    CAS  Google Scholar 

  17. A. K. Gangopadhyay, G. W. Lee, K. F. Kelton, J. R. Rogers, A. I. Goldman, D. S. Robinson, T. J. Rathz, and R. W. Hyers, Beamline electrostatic levitator for in situ high energy X-ray diffraction studies of levitated solids and liquids, Rev. Sci. Instrum. 76(7), 073901 (2005).

    ADS  Google Scholar 

  18. B. S. Murty, D. H. Ping, and K. Hono, Nanoquasicrystallization of binary Zr-Pd metallic glasses, Appl. Phys. Lett. 77(8), 1102-1104 (2000).

    CAS  ADS  Google Scholar 

  19. D. J. Sordelet, E. Rozhkova, M. F. Besser, and M. J. Kramer, Synthesis route-dependent formation of quasicrystals in Zr70Pd30 and Zr70Pd20Cu10 amorphous alloys, Appl. Phys. Lett. 80(25), 4735-4737 (2002).

    CAS  ADS  Google Scholar 

  20. M. J. Kramer, M. F. Besser, N. Yang, E. Rozhkova, D. J. Sordelet, Y. Zhang, and P. L. Lee, Devitrification studies of Zr-Pd and Zr-Pd-Cu metallic glasses, J. Non-Cryst. Solids 317(1-2), 62-70 (2003).

    CAS  ADS  Google Scholar 

  21. J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. C. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed. (Springer, Berlin Heidelberg New York, 2003).

    Google Scholar 

  22. L. A. Giannuzzi and F. A. Stevie, editors, Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice (Springer, Berlin Heidelberg New York, 2005).

    Google Scholar 

  23. J. J. Lewandowski and A. L. Greer, Temperature rise at shear bands in metallic glasses, Nat. Mater. 5(1), 15-18 (2006).

    CAS  ADS  Google Scholar 

  24. P. E. Donovan and W. M. Stobbs, The structure of shear bands in metallic glasses, Acta Metall. 29(8), 1419-1436 (1981).

    CAS  Google Scholar 

  25. E. Pekarskaya, C. P. Kim, and W. L. Johnson, In-situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite, J. Mater. Res. 16(9), 2513-2518 (2001).

    CAS  ADS  Google Scholar 

  26. H. Chen, Y. He, G. J. Shiflet, and S. J. Poon, Deformation-induced nanocrystal formation in shear bands of amorphous alloys, Nature 367, 541-543 (1994).

    CAS  ADS  Google Scholar 

  27. J.-J. Kim, Y. Choi, S. Suresh, and A. S. Argon, Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature, Science 295, 654-657 (2002).

    CAS  PubMed  ADS  Google Scholar 

  28. J. Li, Z. L. Wang, and T. C. Hufnagel, Characterization of nanometer-scale defects in metallic glasses by quantitative high-resolution transmission electron microscopy, Phys. Rev. B 65, 144201 (2002).

    ADS  Google Scholar 

  29. W. H. Jiang, F. E. Pinkerton, and M. Atzmon, Mechanical behavior of shear bands and the effect of their relaxation in a rolled amorphous Al-based alloy, Acta Mater. 53, 3469-3477 (2005).

    CAS  Google Scholar 

  30. T. Yano, Y. Yorikado, Y. Akeno, F. Hori, Y. Yokoyama, A. Iwase, A. Inoue, and T. J. Konno, Relaxation and crystallization behavior of the Zr50Cu40Al10 metallic glass, Mater. Trans. 46(12), 2886-2892 (2005).

    CAS  Google Scholar 

  31. J. C. H. Spence, High-Resolution Electron Microscopy, 3rd ed. (Oxford University Press, New York, 2003).

    Google Scholar 

  32. H. J. Chang, E. S. Park, Y. C. Kim, and D. H. Kim, Observation of artifact-free amorphous structure in Cu-Zn-based alloy using transmission electron microscopy, Mater. Sci. Eng. A 406, 1190124 (2005).

    Google Scholar 

  33. M. M. J. Treacy and J. M. Gibson, Variable coherence microscopy: A rich source of structural information from disordered materials, Acta Cryst. A 52, 212-220 (1996).

    Google Scholar 

  34. P. M. Voyles, J. M. Gibson, and M. M. J. Treacy, Fluctuation microscopy: A probe of atomic correlations in disordered materials, J. Electron Microsc. 49(2), 259-266 (2000).

    CAS  Google Scholar 

  35. M. M. J. Treacy, J. M. Gibson, L Fan, D. J. Paterson, and I. McNulty, Fluctuation microscopy: A probe of medium-range order, Rep. Prog. Phys. 68(12), 2899-2944 (2005).

    CAS  ADS  Google Scholar 

  36. J. Li, X. Gu and T. C. Hufnagel, Medium-range order in metallic glasses studied by fluctuation microscopy, Microsc. Microanal. 7(Suppl. 2), 1260-1261 (2001).

    Google Scholar 

  37. T. C. Hufnagel, C. Fana, R. T. Ott, J. Li, and S. Brennan, Controlling shear band behavior metallic glasses through microstructural design, Intermetallics 10(11-12), 1163-1166 (2002).

    CAS  Google Scholar 

  38. J. Li, X. Gu and T. C. Hufnagel, Using fluctuation microscopy to characterize structural order in metallic glasses, Microsc. Microanal. 9, 509 (2003).

    CAS  PubMed  ADS  Google Scholar 

  39. . W. G. Stratton, J. Hamann, J. H. Perepezko, and P. M. Voyles, Medium-range order in high Al-content amorphous alloys measured by fluctuation electron microscopy, in Amorphous and Nanocrystalline Metals, MRS Symposium Proceedings, Vol. 806, MM9.4.1 (2004).

    Google Scholar 

  40. W. G. Stratton, P. M. Voyles, J. Hamann, and J. H. Perepezko, Medium-range order in high Al-content amorphous alloys measured by fluctuation electron microscopy, Microsc. Microanal. 10(Suppl. 2), 788-789 (2004).

    Google Scholar 

  41. W. G. Stratton, J. Hamann, J. H. Perepezko, P. M. Voyles, S. V. Khare, and X. Mao, Aluminum nanoscale order in amorphous Al92Sm8 measured by fluctuation electron microscopy, Appl. Phys. Lett. 86(14), 141910 (2005).

    ADS  Google Scholar 

  42. E. W. Müller and T. T. Tsong, Field Ion Microscopy (Elsevier, New York, 1969).

    Google Scholar 

  43. K. M. Bowkett and D. A. Smith, Field Ion Microscopy (North Holland, Amsterdam, 1970).

    Google Scholar 

  44. L. A. Beavan, R. M. Scanlan, and D. N. Seidman, The defect structure of depleted zones in irradiated tungsten, Acta Metall. 19, 1339-1350 (1971).

    CAS  Google Scholar 

  45. D. N. Seidman, The direct observation of point defects in irradiated or quenched metals by quantitative field-ion microscopy, J. Phys. F: Met. Phys. 3, 393-421 (1973).

    CAS  ADS  Google Scholar 

  46. F. Vurpillot, M. Gilbert, and B. Deconihout, Towards the three-dimensional field ion microscope, Surf. Interface Anal. 39, 273-277 (2007). doi:10.1002/sia.2490

    CAS  Google Scholar 

  47. M. K. Miller, Atom Probe Tomography (Springer, Berlin Heidelberg New York, 2000).

    Google Scholar 

  48. R. Busch, S. Schneider, A. Peker, and W. L. Johnson, Decomposition and primary crystallization in undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 melts, Appl. Phys. Lett. 67, 1544-1546 (1995).

    CAS  ADS  Google Scholar 

  49. R. Busch, Y. J. Kim, S. Schneider, and W. L. Johnson, Atom probe field ion microscope and levitation studies of the decomposition and crystallization of undercooled Zr-Ti-CuNi-Be melts, Mater. Sci. Forum 225-227, 77-82 (1996).

    CAS  Google Scholar 

  50. R. Busch, E. Bakke, and W. L. Johnson, On the glass forming ability of bulk metallic glasses, Mater. Sci. Forum 235-238, 327-335 (1997).

    CAS  Google Scholar 

  51. M. K. Miller, K. F. Russell, P. M. Martin, R. Busch, and W. L. Johnson, Characterization of bulk metallic glasses with the atom probe, J. Phys. IV 6(C5), 217-222 (1996).

    Google Scholar 

  52. D. H. Ping, K. Hono, and A. Inoue, Oxygen distribution in Zr65Cu15Al10Pd10 nanocrystalline alloys, Mater. Sci. Forum 307, 31-38 (1999).

    CAS  Google Scholar 

  53. N. Wanderka, U. Czubayko, P. Schubert-Bischoff, and M.-P. Macht, Primary crystals in ZrTiCuNiBe bulk glasses, Mater. Sci. Eng. A 270, 44-47 (1999).

    Google Scholar 

  54. S. Scudino, U. Kuhn, L. Schultz, D. Nagahama, K. Hono, and J. Eckert, Microstructure evolution upon devitrification and crystallization kinetics of Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 melt-spun glassy ribbon, J. Appl. Phys. 95, 3397-3403 (2004).

    CAS  ADS  Google Scholar 

  55. M. K. Miller, D. J. Larson, R. B. Schwarz, and Y. He, Decomposition in Pd40Ni40P20 metallic glass, Mater. Sci. Eng. A 250, 141-145 (1998).

    CAS  Google Scholar 

  56. S. C. Glade, J. F. Loffler, S. Bossuyt, W. L. Johnson, and M. K. Miller, Crystallization of amorphous Cu47Ti34Zr11Ni8, J. Appl. Phys. 89, 1573-1579 (2001).

    CAS  ADS  Google Scholar 

  57. H. G. Read, K. Hono, A. P. Tsai, and A. Inoue, Preliminary atom probe studies of PdNi(Cu)P supercooled liquids, Mater. Sci. Eng. A 226-228, 453-457 (1997).

    Google Scholar 

  58. M. K. Miller, T. D. Shen, and R. B. Schwarz, Atom probe studies of metallic glasses, J. Non-Cryst. Solids 317, 10-16 (2003).

    CAS  ADS  Google Scholar 

  59. K. B. Kim, Y. Zhang, P. J. Warren, and B. Cantor, Crystallization behaviour in a new multicomponent Ti16.6Zr16.6Hf16.6Ni20Cu20Al10 metallic glass developed by the equiatomic substitution technique, Philos. Mag. 83, 2371-2381 (2003).

    CAS  ADS  Google Scholar 

  60. M. K. Miller, T. D. Shen, and R. B. Schwarz, Atom probe tomography study of the decomposition of a bulk metallic glass, Intermetallics 10, 1047-1052 (2002).

    CAS  Google Scholar 

  61. M. K. Miller, S. C. Glade, and W. L. Johnson, Phase separation in Cu47Ti33Zr11Ni8Si1, Surf. Interface Anal. 36, 598-600 (2004).

    CAS  Google Scholar 

  62. J. C. Oh, T. Ohkubo, Y. C. Kim, E. Fleury, and K. Hono, Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass, Scripta Mater. 53, 165-169 (2005).

    CAS  Google Scholar 

  63. E. S. Park, D. H. Kim, T. Ohkubo, and K. Hono, Enhancement of glass forming ability and plasticity by addition of Nb in Cu-Ti-Zr-Ni-Si bulk metallic glasses, J. Non-Cryst. Solids 351, 1232-1238 (2005).

    CAS  ADS  Google Scholar 

  64. Y. Hirotsu, T. G. Nieh, A. Hirata, T. Ohkubo, and N. Tanaka, Local atomic ordering and nanoscale phase separation in a Pd-Ni-P bulk metallic glass, Phys. Rev. B 73, 012205 (2006).

    ADS  Google Scholar 

  65. M. K. Miller, C. T. Liu, J. A. Wright, W. Tang, and K. Hildal, APT characterization of some iron-based bulk metallic glasses, Intermetallics 14, 1019-1026 (2006).

    CAS  Google Scholar 

  66. S. Schneider, P. Thiyagarajan, and W. L. Johnson, Formation of nanocrystals based on decomposition in the amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy, Appl. Phys. Lett. 68(4), 493-495 (1996).

    CAS  ADS  Google Scholar 

  67. A. Wiedenmann and J. M. Liu, Dynamic scaling phenomena in phase separation of amorphous Cu12.5Ni10Zr41Ti14Be22.5, as probed by small-angle neutron scattering, Solid State Commun. 100(5), 331-335 (1996).

    CAS  ADS  Google Scholar 

  68. S. Schneider, U. Geyer, P. Thiyagarajan, R. Busch, R. Schulz, K. Samwer, and W. L. Johnson, Phase separation and crystallization in the bulk amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy, Mater. Sci. Forum 225-227, 59-64 (1996).

    CAS  Google Scholar 

  69. A. Wiedenmann, U. Keiderling, M. P. Macht, and H. Wollenberger, Decomposition and crystallization of bulk amorphous Zr41Ti14Cu12.5Ni10Be22.5 alloys studied by small angle neutron scattering, Mater. Sci. Forum 225-227, 71-76 (1996).

    Google Scholar 

  70. P. Uebele, A. Wiedenmann, H. Hermann, and K. Wetzig, Decomposition kinetics of bulk amorphous Zr41Ti14Cu12.5Ni10Be22.5 alloys studied by computer simulation and smallangle neutron scattering, J. Appl. Crystallogr. 30, 613-617 (1997).

    CAS  Google Scholar 

  71. A. Wiedenmann, Small-angle neutron scattering investigations of nanoscaled microtructures, J. Appl. Crystallogr. 30, 580-585 (1997).

    CAS  Google Scholar 

  72. U. Gerold, A. Wiedenmann, U. Keiderling, and H. J. Fecht, Decomposition and crystalliation of the bulk amorphous Zr11Ti34Cu47Ni8 alloy studied by SANS, Physica B 234-236, 995-996 (1997).

    CAS  ADS  Google Scholar 

  73. H. Hermann, A. Wiedenmann, and P. Uebele, SANS study and a model for partially ordering during decomposition in bulk amorphous Zr41Ti14Cu12.5Ni10Be22.5 amorphous alloys, Physica B 241-243, 352-354 (1997).

    CAS  ADS  Google Scholar 

  74. S. Schneider, P. Thiyagarajan, U. Geyer, and W. L. Johnson, SANS of bulk metallic ZrTiCuNiBe glasses, Physica B 241-243, 918-920 (1997).

    CAS  ADS  Google Scholar 

  75. P. Uebele, H. Hermann, A. Wiedenmann, and K. Wetzig, Analysis of SANS-data with models of stochastic geometry, Physica B 234-236, 426-427 (1997).

    CAS  ADS  Google Scholar 

  76. K. Shibata, T. Higuchi, A. P. Tsai, M. Imai, and K. Suzuki, Isothermal evolution of longrange order in bulk metallic glass Ni15Pt60P25 near glass transition: In-situ SANS measurement, Prog. Theor. Phys. Suppl. 126, 75-78 (1997).

    CAS  ADS  Google Scholar 

  77. S. Schneider, U. Geyer, P. Thiyagarajan, and W. L. Johnson, Time and temperature dependence of decomposition and crystallization in a multicomponent bulk metallic glass forming alloy, Mater. Sci. Forum 235-238, 337-342 (1997).

    CAS  Google Scholar 

  78. J.-M. Liu, A. Wiedenmann, U. Gerold, and H. Wollenberger, Crystallization and phase separations in amorphous Cu12.5Ni10Zr41Ti14Be22.5 alloy, as investigated by SANS, Mater. Sci. Forum 235-238, 523-528 (1997).

    CAS  Google Scholar 

  79. J. M. Liu, Demonstration of spinodal decomposition in amorphous Cu12.5Ni10Zr41Ti14Be22.5 alloy, Solid State Commun. 105(1), 71-75 (1998).

    CAS  ADS  Google Scholar 

  80. N. Wanderka, Q. Wei, R. Doole, M. Jenkins, S. Friedrich, M.-P. Macht, and H. Wollenberger, Crystallization of the supercooled liquid Zr41Ti14Cu12.5Ni10Be22.5, Mater. Sci. Forum 269-272, 773-778 (1998).

    CAS  Google Scholar 

  81. J. F. Loffler, S. Bossuyt, S. C. Glade, W. L. Johnson, W. Wagner, and P. Thiyagarajan, Crystallization of bulk amorphous Zr-Ti(Nb)-Cu-Ni-Al, Appl. Phys. Lett. 77(4), 525- 527 (2000).

    CAS  ADS  Google Scholar 

  82. S. E. H. Abaidia and A. Wiedenmann, Thermal stability of the bulk metallic glass Zr46.75Ti8.25Cu7.5Ni10Be27.5 studied by SANS, Physica B 276-278, 454-455 (2000).

    CAS  ADS  Google Scholar 

  83. J. F. Loffler, W. L. Johnson, W. Wagner, and P. Thiyagarajan, Comparison of the decomposition and crystallization behavior of Zr and Pd based bulk amorphous alloys, Mater. Sci. Forum 343-346, 179-184 (2000).

    CAS  Google Scholar 

  84. J. F. Loffler and W. L. Johnson, Model for decomposition and crystallization of Zr-based bulk amorphous alloys near the glass transition, Mater. Sci. Eng. A 304-306, 670-673 (2001).

    Google Scholar 

  85. A. Hoell, F. Bley, A. Wiedenmann, J. P. Simon, A. Mazuelas, and P. Boesecke, Compo- ition fluctuations in the demixed supercooled liquid state of Zr41Ti14Cu12.5Ni10Be22.5: A combined ASAXS and SANS study, Scripta Mater. 44(8-9), 2335-2339 (2001).

    CAS  Google Scholar 

  86. E. Pekarskaya, J. F. Loffler, and W. L. Johnson, Microstructural studies of crystallization of a Zr-based bulk metallic glass, Acta Mater. 51(14), 4045-4057 (2003).

    CAS  Google Scholar 

  87. X. P. Tang, J. F. Loffler, W. L. Johnson, and Y. Wu, Devitrification of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass studied by XRD, SANS, and NMR, J. Non-Cryst. Solids 317(1-2), 118-122 (2003).

    CAS  ADS  Google Scholar 

  88. X.-L. Wang, APS Science 2003, The Annual Report of the Advanced Photon Source at Argonne National Laboratory, pp. 19-20, ANL-04/07, Argonne National Laboratory, USA.

    Google Scholar 

  89. I. Prochazka, Positron annihilation spectroscopy, Mater. Struct. 8, 55-60 (2001).

    Google Scholar 

  90. C. Nagel, K. Ratzke, E. Schmidtke, J. Wolff, U. Geyer, and F. Faupel, Free-volume changes in the bulk metallic glass Zr46.7Ti8.3Cu7.5Ni10Be27.5 and the undercooled liquid, Phys. Rev. B 57(17), 10224-10227 (1998).

    CAS  ADS  Google Scholar 

  91. C. Nagel, K. Ratzke, E. Schmidtke, F. Faupel, and W. Ulfert, Positron-annihilation studies of free-volume changes in the bulk metallic glass Zr65Al7.5Ni10Cu17.5 during structural relaxation and at the glass transition, Phys. Rev. B 60(13), 9212-9215 (1999).

    CAS  ADS  Google Scholar 

  92. P. Asoka-Kumar, J. Hartley, R. Howell, P. A. Sterne, and T. G. Nieh, Chemical ordering around open-volume regions in bulk metallic glass Zr52.5Ti5Al10Cu17.9Ni14.6, Appl. Phys. Lett. 77(13), 1973-1975 (2000).

    CAS  ADS  Google Scholar 

  93. K. M. Flores, D. Suh, R. Howell, P. Asoka-Kumar, P. A. Sterne, and R. H. Dauskardt, Flow and fracture of bulk metallic glass alloys and their composites, Mater. Trans. 42(4), 619-622 (2001).

    CAS  Google Scholar 

  94. K. M. Flores, D. Suh, R. H. Dauskardt, P. Asoka-Kumar, P. A. Sterne, and R. H. Howell, Characterization of free volume in a bulk metallic glass using positron annihilation spectroscopy, J. Mater. Res. 17(5), 1153-1161 (2002).

    CAS  ADS  Google Scholar 

  95. P. Asoka-Kumar, R. Howell, T. G. Nieh, P. A. Sterne, B. D. Wirth, R. H. Dauskardt, K. M. Flores, D. Suh, and G. R. Odette, Opportunities for materials characterization using high-energy positron beams, Appl. Surf. Sci. 194(1-4), 160-167 (2002).

    CAS  ADS  Google Scholar 

  96. D. Suh, R. H. Dauskardt, P. Asoka-Kumar, P. A. Sterne, and R. H. Howell, Temperature dependence of positron annihilation in a Zr-Ti-Ni-Cu-Be bulk metallic glass, J. Mater. Res. 18(9), 2021-2024 (2003).

    CAS  ADS  Google Scholar 

  97. D. Suh and R. H. Dauskardt, Effects of open-volume regions on relaxation time-scales and fracture behavior of a Zr-Ti-Ni-Cu-Be bulk metallic glass, J. Non-Cryst. Solids 317 (1-2), 181-186 (2003).

    CAS  ADS  Google Scholar 

  98. B. P. Kanungo, S. C. Glade, P. Asoka-Kumar, and K. M. Flores, Characterization of free volume changes associated with shear band formation in Zr- and Cu-based bulk metallic glasses, Intermetallics 12(10-11), 1073-1080 (2004).

    CAS  Google Scholar 

  99. L. C. Damonte, Nuclear techniques characterization of short-range order in Zr-TM-CuAl-Ni (TM = Hf, Ti, Fe) bulk metallic glasses, Ann. Chim. Sci. Mat. 27, 61-67 (2002).

    CAS  Google Scholar 

  100. A. Rehmet, K. Gunther-Schade, K. Ratzke, U. Geyer, and F. Faupel, Quenching rate dependence of free volume in a Zr-Cu-Ni-Ti-Be glass as probed by positron annihilation lifetime spectroscopy, Phys. Status Solidi A 201(3), 467-470 (2004).

    CAS  ADS  Google Scholar 

  101. K. M. Flores, Structural changes and stress state effects during inhomogeneous flow of metallic glasses, Scripta Mater. 54(3), 327-332 (2006).

    CAS  Google Scholar 

  102. Y. Shang, Study of structural free volumes in the supercooled liquid state of bulk amorphous ZrTiCuNiBe, Mater. Lett. 59(24-25), 3177-3180 (2005).

    CAS  Google Scholar 

  103. J. F. Wang, L. Liu, J. Z. Xiao, T. Zhang, B. Y. Wang, C. L. Zhou, and W. Long, Ageing behaviour of Pd40Cu30Ni10P20 bulk metallic glass during long-time isothermal annealing, J. Phys. D 38, 946-949 (2005).

    CAS  ADS  Google Scholar 

  104. D. Suh, P. Asoka-Kumar, and R. H. Dauskardt, The effects of hydrogen on viscoelastic relaxation in Zr-Ti-Ni-Cu-Be bulk metallic glasses: Implications for hydrogen embrittlement, Acta Mater. 50(3), 537-551 (2002).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Miller, M.K. (2008). Microstructure. In: Miller, M., Liaw, P. (eds) Bulk Metallic Glasses. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-48921-6_5

Download citation

Publish with us

Policies and ethics