Skip to main content

Design of Posynomial Models for Mosfets: Symbolic Regression Using Genetic Algorithms

  • Chapter
Genetic Programming Theory and Practice IV

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

  • 926 Accesses

Abstract

We discuss the difficulties of circuit sizing and describe manual and automatic approaches to it. These approaches make use of blackbox optimization techniques such as evolutionary algorithms or convex optimization techniques such as geometric programming. Geometric programming requires posynomial expressions for a circuit’s performance measurements. We show how a genetic algorithm can be exploited to evolve a posynomial expression (i.e. model) of transistor (i.e. mosfet) behavior more accurately than statistical techniques in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Botelho, J., Leonardo, B., Vieira, P., and Mesquita, A. (2003). An experiment on nonlinear synthesis using evolutionary techniques based only on CMOS transistors. In Lohn, J., Zebulum, R., Steincamp, J., Keymeulen, D., Stoica, A., and Ferguson, M.I., editors, 2003 NASA/DoD Conference on Evolvable Hardware, pages 50–58. IEEE Computer Society.

    Google Scholar 

  • Boyd, S., Kim, S.-J., Vaudenberghe, L., and Hassibi, A. (2004). A tutorial on geometric programming. In Technical report, EE Department, Stanford University.

    Google Scholar 

  • Colleran, D.M., Portmann, C., Hassibi, A., Crusius, C., Mohan, S.S., Boyd, S.P., Lee, T. H., and Hershenson, M. (2003). Optimization of phase-locked loop circuits via geometric programming. In IEEE Custom Integrated Circuits Conference, pages 377–380.

    Google Scholar 

  • Daems, W. and Gielen, G.C.E. (2003). Simulation-based generation of posynomial performance models for the sizing of analog integrated circuits. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions, 22(5):517–534.

    Article  Google Scholar 

  • De Smedt, B. and Gielen, G.C.E. (2003). WATSON: Design space boundary exploration and model generation for analog and rf ic design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22(2):213–224.

    Article  Google Scholar 

  • Gielen, G.C.E., Swings, K., and Sansen, W. (1990). An intelligent design system for analogue integrated circuits. In EURO-DAC’ 90: Proceedings of the conference on European design automation, pages 169–173, Los Alamitos, CA, USA. IEEE Computer Society Press.

    Chapter  Google Scholar 

  • Grimbleby, J.B. (2000). Automatic analogue circuit synthesis using genetic algorithms. IEE Proceedings Circuits, Devices and Systems, 147(6):319–323.

    Article  Google Scholar 

  • Hershenson, M., Boyd, S. P., and Lee, T. (November 1998). GPCAD: A tool for CMOS op-amp synthesis. In Proc. International Conference on Computer Aided Design, pages 296–303. IEEE/ACM.

    Google Scholar 

  • Hershenson, M., Mohan, S. S., Boyd, S. P., and Lee, T. H. (1999). Optimization of inductor circuits via geometric programming. In DAC’ 99: Proceedings of the 36th ACM/IEEE conference on Design automation, pages 994–998, New York, NY, USA. ACM Press.

    Chapter  Google Scholar 

  • Kelton, W..D. (2000). Design of experiments: experimental design for simulation. In WSC’ 00: Proceedings of the 32nd conference on Winter simulation, pages 32–38, San Diego, CA, USA. Society for Computer Simulation International.

    Google Scholar 

  • Koza, John R., Bennett III, Forrest H, Andre, David, Keane, Martin A., and Dunlap, Frank (1997). Automated synthesis of analog electrical circuits by means of genetic programming. IEEE Transactions on Evolutionary Computation, 1(2): 109–128.

    Article  Google Scholar 

  • Li, X., Gopalakrishnan, P., Xu, Y., and Pileggi, T. (2004). Robust analog/RF circuit design with projection-based posynomial modeling. In ICCAD’ 04: Proceedings of the 2004 IEEE/ACM International conference on Computer-aided design, pages 855–862, Washington, DC, USA. IEEE Computer Society.

    Google Scholar 

  • Mead, C. (1990). Neuromorphic electronic systems. 78(10): 1629–1636.

    Google Scholar 

  • Pookaiyaudom, S. and Jantarang, S. (1996). Automatic circuit simplification for meaningful symbolic analysis using the genetic algorithm. In 1996 IEEE International Symposium on Circuits and Systems, volume 1, pages 109–112.

    Google Scholar 

  • Quarles, T., Newton, A.R., Pederson, D.O., and Sangiovanni-Vincentelli, A. (1994). SPICE 3, version sf5 user’s manual.

    Google Scholar 

  • Shibata, H., Mori, S., and Fujii, N. (2002). Automated design of analog circuits using cell-based structure. In Evolvable Hardware, pages 85–92. IEEE Computer Society.

    Google Scholar 

  • Siarry, P., Berthiau, G., Durdin, F., and Haussy, J. (1997). Enhanced simulated annealing for globally minimizing functions of many-continuous variables. ACM Trans. Math. Softw., 23(2):209–228.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Aggarwal, V., O’Reilly, UM. (2007). Design of Posynomial Models for Mosfets: Symbolic Regression Using Genetic Algorithms. In: Riolo, R., Soule, T., Worzel, B. (eds) Genetic Programming Theory and Practice IV. Genetic and Evolutionary Computation. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49650-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49650-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-33375-5

  • Online ISBN: 978-0-387-49650-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics