Skip to main content

Fundamental Electromagnetic Field Equations

  • Chapter
The Essence of Dielectric Waveguides
  • 3054 Accesses

All large-scale electromagnetic wave phenomena are governed by the Maxwell equations and the appropriate boundary conditions. In this chapter we shall discuss the fundamental equations and relations dealing with electromagnetic waves [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Maxwell, “A Treatise on Electricity and Magnetism,” Dover, New York (1954)

    MATH  Google Scholar 

  2. J. A. Stratton, “Electromagnetic Theory,” McGraw-Hill, New York (1941)

    MATH  Google Scholar 

  3. A. Sommerfeld, “Electromagnetics,” Academic, New York (1949)

    Google Scholar 

  4. R. P. Feynman, R. B. Leighton, and M. Sands, “Feynman Lectures on Physics, The Definitive and Extended Edition, 2/E,” Addison-Wesley, Reading, MA (2006)

    Google Scholar 

  5. J. F. Nye, “Physical Properties of Crystals,” Oxford Science Publications, Oxford (1985)

    Google Scholar 

  6. B. Lax and K. J. Button, “Microwave Ferrites and Ferromagnetics,” McGraw-Hill, New York (1962)

    Google Scholar 

  7. L. Spitzer, “Physics of Fully Ionized Gases,” 2nd edn., Interscience Publications, Wiley, New York (1962)

    Google Scholar 

  8. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Uspekhi 10, 509 (1968)

    Article  Google Scholar 

  9. J. B. Pendry, “Negative refraction makes a perfect lens” Phys. Rev. Lett. 85, 3966 (2000)

    Article  Google Scholar 

  10. P. W. Milonni, “Fast Light, Slow Light and Left-Handed Light,” Institute of Physics Publishing (IOP), London (2005)

    Google Scholar 

  11. A. R. von Hippel, “Dielectric Materials and Applications,” MIT Press, Cambridge, MA (1954)

    Google Scholar 

  12. H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer Tracts in Modern Physics, Vol. III, Springer Berlin Heidelberg New York (1988); P. Stoller, V. Jacobsen, and V. Sandoghdar, “Measurement of the complex dielectric constant of a single gold nanoparticle,” Opt. Lett. 31, 247402476 (2006)

    Google Scholar 

  13. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon wavelength optics,” Nature 424, 824 (2003)

    Article  Google Scholar 

  14. M. N. Afsar and K. J. Button, “Millimeter-wave dielectric measurement of materials,” Proc. IEEE 73, 131 (1985); J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared MM Waves 17, 1997 (1996)

    Google Scholar 

  15. J. R. Birch, J. D. Dromey, and J Lisurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21, 225 (1981); M. N. Afsar, “Precision dielectric measurements of non-polar polymers in millimeter wavelength range,” IEEE Trans. Microw. Theory Tech. MTT-33, 1410 (1985)

    Google Scholar 

  16. J. R. Birch and T. J. Parker, “Infrared and Millimeter Waves,” Vol. 2, K. J. Button, ed., Academic, New York (1979); W. B. Bridges, M. B. Kline, and E. Schwarz, “Low loss flexible dielectric waveguides for millimeter wave transmission and its application to devices,” IEEE Trans. Microw. Theory Tech. MTT-30, 286 (1982)

    Google Scholar 

  17. N. Bloembergen, “Non-Linear Optics,” W. A. Benjamin, New York (1965)

    Google Scholar 

  18. I. Brodie and J. J. Murray, “The Physics of Micro/Nano Fabrication,” Plenum, New York (1992)

    Google Scholar 

  19. J. A. Schwarz, C. I. Contescu, and K. Putyera, eds., “Dekker Encyclopedia of Nanoscience and Nanotechnology,” Marcel Dekker, New York (2004)

    Google Scholar 

  20. C. Yeh, “Boundary conditions in electromagnetics,” Phys. Rev. E 48, 1426 (1993)

    Article  Google Scholar 

  21. M. A. Leontovich, “Investigation of Propagation of Radio Waves, Part II,” Printing House of the Academy of Sciences, Moscow (1948)

    Google Scholar 

  22. T. B. A. Senior, “Impedance boundary condition for imperfectly conducting surface,” Appl. Sci. Res. B 8, 418 (1960)

    Article  MathSciNet  Google Scholar 

  23. C. J. Bouwkamp, “A note on singularities at sharp edges in electromagnetic theory,” Physica 12, 467 (1960)

    Article  MathSciNet  Google Scholar 

  24. J. Meixner, “The edge condition in the theory of electromagnetic waves at perfectly conducting plane screens,” Ann. Physik 6, 2 (1949)

    MATH  MathSciNet  Google Scholar 

  25. J. A. Kong, “Electromagnetic Wave Theory,” Wiley, New York (1986)

    Google Scholar 

  26. C. Yeh, “Dynamic fields,” American Institute of Physics Handbook, 3rd edn., 5b-9 (1972)

    Google Scholar 

  27. J. Mathews and R. L. Walker, “Mathematical Methods of Physics,” 3rd edn., W. A. Benjamin, New York (1970)

    Google Scholar 

  28. G. N. Watson, “A treatise on the theory of Bessel functions,” Cambridge University Press (1944)

    Google Scholar 

  29. N. W. McLachlan, “Theory and Application of Mathieu Functions,” Oxford Press, Oxford, England (1947)

    MATH  Google Scholar 

  30. E. T. Whittaker and G. N. Watson, “A Course of Modern Analysis,” Cambridge University Press (1927)

    Google Scholar 

  31. S. A. Schelkunoff, “Electromagnetic Waves,” Van Nostrand, New York (1943)

    Google Scholar 

  32. C. Yeh and G. Lindgren, “Computing the propagation characteristics of radially stratified fibers-An efficient method,” Appl. Opt. 16, 483 (1977)

    Article  Google Scholar 

  33. J. G. Dil and H. Blok, “Propagation of electromagnetic surface waves in a radially inhomogeneous optical waveguide,” Opto-Electron. 5, 415 (1973)

    Article  Google Scholar 

  34. C. Yeh, L. Casperson, and W. P. Brown, “Scalar-wave approach for single-mode inhomogeneous fiber problems,” Appl. Phys. Lett. 34, 460 (1979)

    Article  Google Scholar 

  35. L. Casperson, “Gaussian light beams in inhomogeneous media,” Appl. Opt. 12, 2434 (1973)

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Fundamental Electromagnetic Field Equations. In: The Essence of Dielectric Waveguides. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49799-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49799-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-30929-3

  • Online ISBN: 978-0-387-49799-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics