Skip to main content

Epstein–Barr Virus Entry

  • Chapter
  • First Online:
DNA Tumor Viruses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baer, R., Bankier , A. T., Biggin, M. D., Deininger, P. L., Farrell, P. J., Gibson, T. J., Hatfull, G., Hudson, G. S., Satchwell, S. C., Seguin, C., Tuffnell, P. S. and Barrell, B. G. (1984) DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 310, 207–211.

    PubMed  CAS  Google Scholar 

  • Baghian, A., Huang, L., Newman, S., Jayachandra, S. and Kousoulas, K. G. (1993) Truncation of the carboxy-terminal 28 amino acids of glycoprotein B specified by herpes simplex virus type 1 mutant amb1511-7 causes extensive cell fusion. Journal of Virology. 67, 2396–2401.

    PubMed  CAS  Google Scholar 

  • Bayliss, G. J. and Wolf, H. (1980) Epstein-Barr virus induced cell fusion. Nature. 287, 164–165.

    PubMed  CAS  Google Scholar 

  • Beisel, C., Tanner, J., Matsuo, T., Thorley-Lawson, D., Kezdy, F. and Kieff, E. (1985) Two major outer envelope glycoproteins of Epstein-Barr virus are encoded by the same gene. Journal of Virology. 54, 665–674.

    PubMed  CAS  Google Scholar 

  • Birkenbach, M., Tong, X., Bradbury, L. E., Tedder, T. F. and Kieff, E. (1992) Characterization of an Epstein-Barr virus receptor on human epithelial cells. Journal of Experimental Medicine. 176, 1405–1414.

    PubMed  CAS  Google Scholar 

  • Borza, C. and Hutt-Fletcher, L. M. (1998) Epstein-Barr virus recombinant lacking expression of glycoprotein gp150 infects B cells normally but is enhanced for infection of the epithelial line SVKCR2. Journal of Virology. 72, 7577–7582.

    PubMed  CAS  Google Scholar 

  • Borza, C. M. and Hutt-Fletcher, L. M. (2002) Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nature Medicine. 8, 594–599.

    PubMed  CAS  Google Scholar 

  • Borza, C. M., Morgan, A. J., Turk, S. M. and Hutt-Fletcher, L. M. (2004) Use of gHgL for attachment of Epstein-Barr virus to epithelial cells compromises infection. Journal of Virology. 78, 5007–5014.

    PubMed  CAS  Google Scholar 

  • Bouillie, S., Barel, M., Drane, P., Cassinat, B., Balbo, M., Holers, V. M. and Frade, R. (1995) Epstein-Barr virus/C3d receptor (CR2, CD21) activated by its extracellular ligands regulates pp105 phosphorylation through two distinct pathways. European Journal of Immunology 25, 2661–2667.

    PubMed  CAS  Google Scholar 

  • Brack, A. R., Dijkstra, J. M., Granzow, H., Klupp, B. G. and Mettenleiter, T. C. (1999) Inhibition of virion maturation by simultaneous deletion of glycoproteins E, I, and M of pseudorabies virus. Journal of Virology. 73, 5364–5372.

    PubMed  CAS  Google Scholar 

  • Burkitt, D. (1962) A children's cancer dependent on climatic factors. Nature. 194, 232–234.

    PubMed  CAS  Google Scholar 

  • Bzik, D. J., Fox, B. A., DeLuca, N. A. and Person, S. (1984) Nucleotide sequence of a region of the herpes simplex virus type 1 gB glycoprotein gene: mutations affecting rate of virus entry and cell fusion. Virology. 137, 185–190.

    PubMed  CAS  Google Scholar 

  • Cai, W. H., Gu, B. and Person, S. (1988) Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion [published erratum appears in J Virol 1988 Nov;62 (11):4438]. Journal of Virology. 62, 2596–2604.

    PubMed  CAS  Google Scholar 

  • Cai, W. Z., Person, S., Warner, S. C., Zhou, J. H. and DeLuca, N. A. (1987) Linker-insertion nonsense and restriction-site deletion mutations of the gB glycoprotein gene of herpes simplex virus type 1. Journal of Virology. 61, 714–721.

    PubMed  CAS  Google Scholar 

  • Carel, J.-C., Myones, B. L., Frazier, B. and Holers, V. M. (1990) Structural requirements for C3d,g/Epstein-Barr virus receptor (CR2/CD21) ligand binding, internalization, and viral infection. Journal of Biological Chemistry. 265, 12293–12299.

    PubMed  CAS  Google Scholar 

  • Carfi, A., Willis, S. H., Whitbeck, J. C., Krummenacher, C., Cohen, G. H., Eisenberg, R. J. and Wiley, D. C. (2001) Herpes simplex virus glycoprotein D bound to the human receptor HveA. Molecular Cell. 8, 169–179.

    PubMed  CAS  Google Scholar 

  • Chang, Y. E., Tung, C.-H., Huang, Y.-T., Lu, J., Chen, J.-Y. and Tsai, C.-H. (1999) Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. Journal of Virology. 73, 8857–8866.

    PubMed  CAS  Google Scholar 

  • Connolly, S. A., Landsburg, D. J., Carfi, A., Wiley, D. C., Cohen, G. H. and Eisenberg, R. J. (2003) Structure-based mutagenesis of herpes simplex virus glycoprotein D defines three critical regions at the gD-HveA/HVEM binding interface. Journal of Virology. 77, 8127–8140.

    PubMed  CAS  Google Scholar 

  • Connolly, S. A., Landsburg, D. J., Carfi, A., Wiley, D. C., Eisenberg, R. J. and Cohen, G. H. (2002) Structure-based analysis of the herpes simplex virus glycoprotein D binding site present on herpesvirus entry mediator HveA (HVEM). Journal of  Virology. 76, 10894–10904.

    PubMed  CAS  Google Scholar 

  • Cresswell, P. (1994) Assembly, transport, and function of MHC class II molecules. Annual Reviews of Immunology. 12, 259–293.

    PubMed  CAS  Google Scholar 

  • D'Addario, M., Libermann, T. A., Xu, J., Ahmad, A. and Menezes, J. (2001) Epstein-Barr virus and its glycoprotein-350 upregulate IL-6 in human B cells via CDs21, involving activation of NF-κB and different signaling pathways. Journal of Molecular Biology. 308, 501–514.

    PubMed  Google Scholar 

  • Duus, K. M., Hatfield, C. and Grose, C. (1995) Cell surface expression and fusion by the varicella-zoster virus gH:gL glycoprotein complex: analysis by laser scanning confocal microscopy. Virology. 210, 429–440.

    PubMed  CAS  Google Scholar 

  • Emini, E. A., Luka, J., Armstrong, M. E., Keller, P. M., Ellis, R. W. and Pearson, G. R. (1987) Identification of an Epstein-Barr virus glycoprotein which is antigenically homologous to the varicella-zoster glycoprotein II and the herpes simplex virus glycoprotein B. Virology. 157, 552–555.

    PubMed  CAS  Google Scholar 

  • Epstein, M. A., Achong, B. G. and Barr, Y. M. (1964) Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet. 1, 702–703.

    PubMed  CAS  Google Scholar 

  • Fingeroth, J. D., Diamond, M. E., Sage, D. R., Hayman, J. and Yates, J. L. (1999) CD-21 dependent infection of an epithelial cell line, 293, by Epstein-Barr virus. Journal of Virology. 73, 2115–2125.

    PubMed  CAS  Google Scholar 

  • Fingeroth, J. D., Weis, J. J., Tedder , T. F., Strominger, J. L., Biro, P. A. and Fearon, D. T. (1984) Epstein-Barr virus receptor of human B lymphocytes is the C3d complement CR2. Proceedings of the National Academy of Sciences USA. 81, 4510–4516.

    Google Scholar 

  • Foster, T. P., Melancon, J. M. and Kousoulas, K. G. (2001) An alpha-helical domain within the carboxyl terminus of herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is associated with cell fusion and resistance to heparin inhibition of cell fusion. Virology. 287, 18–29.

    PubMed  CAS  Google Scholar 

  • Frade, R., Barel, M., Ehlin-Henricksson, B. and Klein, G. (1985) gp140 the C3d receptor of human B lymphocytes is also the Epstein-Barr virus receptor. Proceedings of the National Academy of Sciences USA. 82, 1490–1493.

    Google Scholar 

  • Gage, P. J., Levine, M. and Glorioso, J. C. (1993) Syncytium-inducing mutations localize to two discrete regions within the cytoplasmic domain of herpes simplex virus type 1 glycoprotein B. Journal of Virology. 67, 2191–2201.

    PubMed  CAS  Google Scholar 

  • Gan, Y., Chodosh, J., Morgan, A. and Sixbey, J. W. (1997) Epithelial cell polarization is a determinant in the infectious outcome of immunoglobulin A-mediated entry by Epstein-Barr virus. Journal of Virology. 71, 519–526.

    PubMed  CAS  Google Scholar 

  • Gong, M. and Kieff, E. (1990) Intracellular trafficking of two major Epstein-Barr virus glycoproteins, gp350/220 and gp110. J Virol. 64, 1507–1516.

    PubMed  CAS  Google Scholar 

  • Gong, M., Ooka, T., Matsuo, T. and Kieff, E. (1987) Epstein-Barr virus glycoprotein homologous to herpes simplex virus gB. J Virol. 61, 499–508.

    PubMed  CAS  Google Scholar 

  • Haan, K. M., Lee, S. K. and Longnecker, R. (2001) Different functional domains in the cytoplasmic tail of glycoprotein gB are involved in Epstein-Barr virus induced membrane fusion. Virology. 290, 106–114.

    PubMed  CAS  Google Scholar 

  • Haan, K. M. and Longnecker, R. (2000) Coreceptor restriction within the HLA-DQ locus for Epstein-Barr virus infection. Proceedings of the National Academy of Sciences USA. 97, 9252–9257.

    Google Scholar 

  • Haddad, R. S. and Hutt-Fletcher, L. M. (1989) Depletion of glycoprotein gp85 from virosomes made with Epstein-Barr virus proteins abolishes their ability to fuse with virus receptor-bearing cells. Journal of Virology. 63, 4998–5005.

    PubMed  CAS  Google Scholar 

  • Heineman, T., Gong, M., Sample, J. and Kieff, E. (1988) Identification of the Epstein-Barr virus gp85 gene. Journal of Virology. 62, 1101–1107.

    PubMed  CAS  Google Scholar 

  • Heldwein, E. E., Lou, H., Bender, F. C., Cohen, G. H., Eisenberg, R. J. and Harrison, S. C. (2006) Crystal structure of glycoprotein B from herpes simplex virus 1. Science. 313, 217–220.

    PubMed  CAS  Google Scholar 

  • Henle, G. and Henle, W. (1975) Serum IgA antibodies of Epstein-Barr virus (EBV)-related antigens. A new feature of nasopharyngeal carcinoma. Bibliotheca Haematologica. 322–325.

    Google Scholar 

  • Herold, B. C., WuDunn, D., Soltys, N. and Spear, P. G. (1991) Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. Journal of Virology. 65, 1090–1098.

    PubMed  CAS  Google Scholar 

  • Herrold, R. E., Marchini, A., Frueling, S. and Longnecker, R. (1995) Glycoprotein 110, the Epstein-Barr virus homolog of herpes simplex virus glycoprotein B, is essential for Epstein-Barr virus replication in vivo. Journal of Virology. 70, 2049–2054.

    Google Scholar 

  • Holers, V. M. (2005) Complement receptors and the shaping of the natural antibody repertoire. Springer Seminars in Immunopathology. 26, 405–423.

    PubMed  CAS  Google Scholar 

  • Hummel, M., Thorley-Lawson, D. and Kieff, E. (1984) An Epstein-Barr virus DNA fragment encodes messages for the two major envelope glycoproteins (gp350/300 and gp220/200). Journal of Virology. 49, 413–417.

    PubMed  CAS  Google Scholar 

  • Imai, S., Nishikawa, J. and Takada, K. (1998) Cell-to-cell contact as an efficient mode of Epstein-Barr virus infection of diverse human epithelial cells. Journal of Virology. 72, 4371–4378.

    PubMed  CAS  Google Scholar 

  • Janz, A., Oezel, M., Kurzeder, C., Mautner, J., Pich, D., Kost, M., Hammerschmidt, W. and Delecluse, H. J. (2000) Infectious Epstein-Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. Journal of Virology. 74, 10142–10152.

    PubMed  CAS  Google Scholar 

  • Jardetzky, T. S. and Lamb, R. A. (2004) Virology: a class act. Nature. 427, 307–308.

    PubMed  CAS  Google Scholar 

  • Jiang, R., Scott, R. S. and Hutt-Fletcher, L. M. (2006) Epstein-Barr virus shed in saliva is high in B cell tropic gp42. Journal of Virology. 80, 7281–7283.

    PubMed  CAS  Google Scholar 

  • Johannsen, E., Luftig, M., Chase, M. R., Weicksel, S., Cahir-McFarland, E., Illanes, D., Sarracino, D. and Kieff, E. (2004) Proteins of purified Epstein-Barr virus. Proceedings of the National Academy of Sciences USA. 101, 16286–16291.

    Google Scholar 

  • Kielian, M. and Rey, F. A. (2006) Virus membrane-fusion proteins: more than one way to make a hairpin. Nature Reviews of Microbiology. 4, 67–76.

    PubMed  CAS  Google Scholar 

  • Kirschner, A. N., Lowrey, A. S., Longnecker, R. and Jardetzky, T. S. (2007) Binding site interactions between Epstein-Barr virus fusion proteins gp42 and gH/gL reveal a peptide that inhibits both epithelial and B cell membrane fusion. Journal of Virology. 81, 9216–29.

    Google Scholar 

  • Kirschner, A. N., Omerovic, J., Popov, B., Longnecker, R. and Jardetzky, T. S. (2006) Soluble Epstein-Barr virus glycoproteins gH, gL, and gp42 form a 1:1:1 stable complex that acts like soluble gp42 in B cell fusion but not in epithelial cell fusion. Journal of Virology. 80, 9444–54.

    Google Scholar 

  • Kishishita, M., Luka, J., Vroman, B., J.F., P. and Pearson, G. R. (1984) Production of monoclonal antibodies to a late intracellular Epstein-Barr virus-induced antigen. Virology. 133, 363–375.

    PubMed  CAS  Google Scholar 

  • Klupp, B. and Mettenleiter, T. C. (1991) Sequence and expression of the glycoprotein gH gene of pseudorabies virus. Virology. 182, 732–741.

    PubMed  CAS  Google Scholar 

  • Klupp, B. G., Nixdorf, R. and Mettenleiter, T. C. (2000) Pseudorabies virus glycoprotein M inhibits membrane fusion. Journal of Virology. 74, 6760–6768.

    PubMed  CAS  Google Scholar 

  • Kopp, A., Blewett, E., Misra, V. and Mettenleiter, T. C. (1994) Proteolytic cleavage of bovine herpesvirus 1 (BHV-1) glycoprotein gB is not necessary for its function in BHV-1 or pseudorabies virus. Journal of Virology. 68, 1667–1674.

    PubMed  CAS  Google Scholar 

  • Krishnan, H. H., Sharma-Walia, N., Zeng, L., Gao, S. J. and Chandran, B. (2005) Envelope glycoprotein gB of Kaposi's sarcoma-associated herpesvirus is essential for egress from infected cells. Journal of Virology. 79, 10952–10967.

    PubMed  CAS  Google Scholar 

  • Krummenacher, C., Supekar, V. M., Whitbeck, J. C., Lazear, E., Connolly, S. A., Eisenberg, R. J., Cohen, G. H., Wiley, D. C. and Carfi, A. (2005) Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry. EMBO Journal. 24, 4144–4153.

    PubMed  CAS  Google Scholar 

  • Kurilla, M. G., Heineman, T., Davenport, L. C., Kieff, E. and Hutt-Fletcher, L. M. (1995) A novel Epstein-Barr virus glycoprotein gp150 expressed from the BDLF3 open reading frame. Virology. 209, 108–121.

    PubMed  CAS  Google Scholar 

  • Lake, C. M. and Hutt-Fletcher, L. M. (2000) Epstein-Barr virus that lacks glycoprotein gN is impaired in assembly and infection. Journal of Virology. 74, 11162–11172.

    PubMed  CAS  Google Scholar 

  • Lake, C. M., Molesworth, S. J. and Hutt-Fletcher, L. M. (1998) The Epstein-Barr virus (EBV) gN homolog BLRF1 encodes a 15 kilodalton glycoprotein that cannot be authentically processed unless it is co-expressed with the EBV gM homolog BBRF3. Journal of Virology. 72, 5559–5564.

    PubMed  CAS  Google Scholar 

  • Lee, S. K. (1999) Four consecutive arginine residues at positions 836-839 of EBV gp110 determine intracellular localization of gp110. Virology. 264, 350–358.

    PubMed  CAS  Google Scholar 

  • Lee, S. K., Compton, T. and Longnecker, R. (1997) Failure to complement infectivity of EBV and HSV-1 glycoprotein B (gB) deletion mutants with gBs from different human herpesvirus subfamilies. Virology. 237, 170–181.

    PubMed  CAS  Google Scholar 

  • Lee, S. K. and Longnecker, R. (1997) The Epstein-Barr virus glycoprotein 110 carboxy-terminal tail domain is essential for lytic virus replication. J Virol. 71, 4092–4097.

    PubMed  CAS  Google Scholar 

  • Li, Q. X., Spriggs, M. K., Kovats, S., Turk, S. M., Comeau, M. R., Nepom, B. and Hutt-Fletcher, L. M. (1997) Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. Journal of Virology. 71, 4657–4662.

    PubMed  CAS  Google Scholar 

  • Li, Q. X., Turk, S. M. and Hutt-Fletcher, L. M. (1995) The Epstein-Barr virus (EBV) BZLF2 gene product associates with the gH and gL homologs of EBV and carries an epitope critical to infection of B cells but not of epithelial cells. Journal of Virology. 69, 3987–3994.

    PubMed  CAS  Google Scholar 

  • Lowell, C. A., Klickstein, L. B., Carter, R. H., Mitchell, J. A., Fearon, D. T. and Ahearn, J. M. (1989) Mapping of the Epstein-Barr virus and C3dg binding sites to a common domain on complement receptor type 2. Journal of Experimental Medicine. 170, 1931–1946.

    PubMed  CAS  Google Scholar 

  • Mach, M., Osinski, K., Kropff, B., Schloetzer-Schrehardt, U., Krzyzaniak, M. and Britt, W. (2007) The carboxyterminal domain of glycoprotein N of human cytomegalovirus is required for virion morphogenesis. Journal of Virology. 81, 5212–24.

    Google Scholar 

  • Mackett, M., Conway, M. J., Arrand, J. R., Haddad, R. S. and Hutt-Fletcher, L. M. (1990) Characterization and expression of a glycoprotein encoded by the Epstein-Barr virus BamHI 1 fragment. Journal of Virology. 64, 2545–2552.

    PubMed  CAS  Google Scholar 

  • Martin, D. R., Yuryev, A., Kalli, K. R., Fearon, D. T. and Ahearn, J. M. (1991) Determination of the structural basis for selective binding of Epstein-Barr virus to human complement receptor type 2. Journal of Experimental Medicine. 174, 1299–1311.

    PubMed  CAS  Google Scholar 

  • McShane, M. P. and Longnecker, R. (2004) Cell-surface expression of a mutated Epstein-Barr virus glycoprotein B allows fusion independent of other viral proteins. Proceedings of the National Academy of Sciences USA. 101, 17474–17479.

    Google Scholar 

  • McShane, M. P., Mullen, M. M., Haan, K. M., Jardetzky, T. S. and Longnecker, R. (2003) Mutational analysis of the HLA class II interaction with Epstein-Barr virus glycoprotein 42. J Virol. 77, 7655–7662.

    PubMed  CAS  Google Scholar 

  • Miller, N. and Hutt-Fletcher, L. M. (1988) A monoclonal antibody to glycoprotein gp85 inhibits fusion but not attachment of Epstein-Barr virus. Journal of Virology. 62, 2366–2372.

    PubMed  CAS  Google Scholar 

  • Miller, N. and Hutt-Fletcher, L. M. (1992) Epstein-Barr virus enters B cells and epithelial cells by different routes. Journal of Virology. 66, 3409–3414.

    PubMed  CAS  Google Scholar 

  • Molesworth, S. J., Lake, C. M., Borza, C. M., Turk, S. M. and Hutt-Fletcher, L. M. (2000) Epstein-Barr virus gH is essential for penetration of B cell but also plays a role in attachment of virus to epithelial cells. Journal of Virology. 74, 6324–6332.

    PubMed  CAS  Google Scholar 

  • Muggeridge, M. I. (2000) Characterization of cell-cell fusion mediated by herpes simplex virus 2 glycoproteins gB, gD, gH and gL in transfected cells. Journal of General Virology. 81, 2017–2027.

    PubMed  CAS  Google Scholar 

  • Mullen, M. M., Haan, K. M., Longnecker, R. and Jardetzky, T. S. (2002) Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II receptor HLA-DR1. Molecular Cell. 9, 375–385.

    PubMed  CAS  Google Scholar 

  • Natarajan, K., Dimasi, N., Wang, J., Mariuzza, R. A. and Margulies, D. H. (2002) Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annual Reviews of Immunology 20, 853–885.

    PubMed  CAS  Google Scholar 

  • Nemerow, G. R. and Cooper, N. R. (1984) Early events in the infection of human B lymphocytes by Epstein-Barr virus. Virology. 132, 186–198.

    PubMed  CAS  Google Scholar 

  • Nemerow, G. R., Mold, C., Schwend, V. K., Tollefson, V. and Cooper, N. R. (1987) Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. Journal of Virology. 61, 1416–1420.

    PubMed  CAS  Google Scholar 

  • Nemerow, G. R., Wolfert, R., McNaughton, M. and Cooper, N. R. (1985) Identification and characterization of the Epstein-Barr virus receptor on human B lymphocytes and its relationship to the C3d complement receptor (CR2). Journal of Virology. 55, 347–351.

    PubMed  CAS  Google Scholar 

  • Neuhierl, B., Feederle, R., W., H. and Delecluse, H. J. (2002) Glycoprotein gp110 of Epstein-Barr virus determines viral tropism and efficiency of infection. Proceedings of the National Academy of Sciences USA. 99, 15036–15041.

    Google Scholar 

  • Nolan, L. A. and Morgan, A. J. (1995) The Epstein-Barr virus open reading frame BDLF3 codes for a 100–150 kDa glycoprotein. Journal of General Virology. 76, 1381–1392.

    PubMed  CAS  Google Scholar 

  • Oba, D. E. and Hutt-Fletcher, L. M. (1988) Induction of antibodies to the Epstein-Barr virus glycoprotein gp85 with a synthetic peptide corresponding to a sequence in the BXLF2 open reading frame. Journal of Virology. 62, 1108–1114.

    PubMed  CAS  Google Scholar 

  • Oda, T., Imai, S., Chiba, S. and Takada, K. (2000) Epstein-Barr virus lacking glycoprotein gp85 cannot infect B cells and epithelial cells. Virology. 276, 52–58.

    PubMed  CAS  Google Scholar 

  • Omerovic, J., Lev, L. and Longnecker, R. (2005) The amino terminus of Epstein-Barr virus glycoprotein gH is important for fusion with B cells and epithelial cells. Journal of Virology. 79, 12408–12415.

    PubMed  CAS  Google Scholar 

  • Pellett, P.E. and Roizman, B. (2007) The Family Herpesviridae: A Brief Introduction. In Fields Virology 5th ed. (D. M. Knipe, and P. M. Howley, Eds.), pp. 2479–2499. Lippincott Williams & Wilkins, Philadelphia, PA.

    Google Scholar 

  • Peng, T., Ponce de Leon, M., Novotny, M. J., Jiang, H., Lambris, J. D., Dubin, G., Spear, P. G., Cohen, G. and Eisenberg, R. J. (1998) Structural and antigenic analysis of a truncated from of the herpes simplex virus glycoprotein gH-gL complex. Journal of Virology. 72, 6092–6103.

    PubMed  CAS  Google Scholar 

  • Pereira, L. (1994) Function of glycoprotein B homologues of the family herpesviridae. Infectious Agents and Disease. 3, 9–28.

    PubMed  CAS  Google Scholar 

  • Pertel, P. E. (2002) Human herpesvirus 8 glycoprotein B (gB), gH, and gL can mediate cell fusion. Journal of Virology. 76, 4390–4400.

    PubMed  CAS  Google Scholar 

  • Pertel, P. E., Fridberg, A., Parish, M. L. and Spear, P. G. (2001) Cell fusion induced by herpes simplex virus glycoproteins gB, gD and gH-gL requires a gD receptor but not necessarily heparan sulfate. Virology. 279, 313–324.

    PubMed  CAS  Google Scholar 

  • Prota, A. E., Sage, D. R., Stehle, T. and Fingeroth, J. D. (2002) The crystal structure of human CD21: implications for Epstein-Barr virus and C3d binding. Proceedings of the National Academy of Sciences USA. 99, 10641–10646.

    Google Scholar 

  • Pyles, R. B., Sawtell, N. M. and Thompson, R. L. (1992) Herpes simplex virus type 1 dUTPase mutants are attenuated for neurovirulence, neuroinvasiveness, and reactivation from latency. J Virol. 66, 6706–6713.

    PubMed  CAS  Google Scholar 

  • Rickinson, A. B. and Kieff, E. (2007) Epstein-Barr Virus. In Fields Virology 5th ed. (D. M. Knipe, and P. M. Howley, Eds.), pp. 2656–2700. Lippincott Williams & Wilkins, Philadelphia, PA.

    Google Scholar 

  • Ressing, M. E., van Leeuwen, D., Verreck, F. A. W., Gomez, R., Heemskerk, B., Toebes, M., Mullen, M. M., Jardetzky, T. S., Longnecker, R., Schilham, M. W., Ottenhoff, T. H. M., Neefjes, J., Schumacher, T. N., Hutt-Fletcher, L. M. and Wiertz, E. J. H. J. (2003) Interference with T cell receptor-HLA-DR interactions by Epstein-Barr virus gp42 results in reduced T helper cell recognition. Proceedings of the National Academy of Sciences USA. 100, 11583–11588.

    Google Scholar 

  • Ressing, M. E., van Leeuwen, D., Verreck, F. A., Keating, S., Gomez, R., Franken, K. L., Ottenhoff, T. H., Spriggs, M., Schumacher, T. N., Hutt-Fletcher, L. M., Rowe, M. and Wiertz, E. J. (2005) Epstein-Barr virus gp42 is posttranslationally modified to produce soluble gp42 that mediates HLA class II immune evasion. Journal of Virology. 79, 841–852.

    PubMed  CAS  Google Scholar 

  • Rivailler, P., Cho, Y.-G. and Wang, F. (2002) Complete genomic sequence of an Epstein-Barr virus related herpesvirus naturally infecting a new world primate: a defining poin in the evolution of oncogenic lymphocryptoviruses. Journal of Virology. 76, 12055–12068.

    PubMed  CAS  Google Scholar 

  • Rivailler, P., Jiang, H., Cho, Y.-G., Quink, C. and Wang, F. (2002) Complete nucleotide sequence of the rhesus lymphocryptovirus: genetic validation for an Epstein-Barr virus animal model. Journal of Virology. 76, 421–426.

    PubMed  CAS  Google Scholar 

  • Roche, S., Bressanelli, S., Rey, F. A. and Gaudin, Y. (2006) Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science. 313, 187–191.

    PubMed  CAS  Google Scholar 

  • Roche, S., Rey, F. A., Gaudin, Y. and Bressanelli, S. (2007) Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G. Science. 315, 843–848.

    PubMed  CAS  Google Scholar 

  • Russo, J. J., Bohenzky, R. A., Chien, M.-C., Chien, J., Yang, M., Maddalena, D., Parry, J. P., Peruzzi, D., Edelman, I. S., Chang, Y. and Moore, P. S. (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpevirus (HHV8). Proc Natl Acad Sci. 93, 14862–14867.

    Google Scholar 

  • Shannon-Lowe, C. D., Neuhierl, B., Baldwin, G., Rickinson, A. B. and Delecluse, H.-J. (2006) Resting B cells as a transfer vehicle for Epstein-Barr virus infection of epithelial cells. Proceedings of the National Academy of Sciences USA. 103, 7065–7070.

    Google Scholar 

  • Sharma-Walia, N., Naranatt, P., Krishnan, H. H., Zeng, L. and Chandran, B. (2004) Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 envelope glycoprotein gB induces the integrin-dependent focal adhesion kinase-src-phophatidylinositol 3-kinase-rho GTPase signal pathways and cytoskeletal rearrangements. Journal of Virology. 78, 4207–4223.

    PubMed  CAS  Google Scholar 

  • Silva, A. L., Omerovic, J., Jardetzky, T. S. and Longnecker, R. (2004) Mutational analysis of Epstein-Barr virus glycoprotein gp42 reveals functional domains not involved in receptor binding but required for membrane fusion. Journal of Virology. 78, 5946–5956.

    PubMed  CAS  Google Scholar 

  • Sinclair, A. J. and Farrell, P. J. (1995) Host cell requirements for efficient infection of quiescent primary B lymphocytes by Epstein-Barr virus. Journal of Virology. 69, 5461–5468.

    PubMed  CAS  Google Scholar 

  • Sixbey, J. W., Davis, D. S., Young, L. S., Hutt-Fletcher, L., Tedder, T. F. and Rickinson, A. B. (1987) Human epithelial cell expression of an Epstein-Barr virus receptor. J Gen Virol. 68, 805–811.

    PubMed  Google Scholar 

  • Sixbey, J. W. and Yao, Q.-Y. (1992) Immunoglobulin A-induced shift of Epstein-Barr virus tissue tropism. Science. 255, 1578–1580.

    PubMed  CAS  Google Scholar 

  • Spear, P. G. and Longnecker, R. (2003) Herpesvirus entry: an update. Journal of Virology. 77, 10179–10185.

    Google Scholar 

  • Spriggs, M. K., Armitage, R. J., Comeau, M. R., Strockbine, L., Farrah, T., MacDuff, B., Ulrich, D., Alderson, M. R., Mullberg, J. and Cohen, J. I. (1996) The extracellular domain of the Epstein-Barr virus BZLF2 protein binds the HLA-DR beta chain and inhibits antigen presentation. Journal of Virology. 70, 5557–5563.

    PubMed  CAS  Google Scholar 

  • Steven, A. C. and Spear, P. G. (2006) Biochemistry. Viral glycoproteins and an evolutionary conundrum. Science. 313, 177–178.

    CAS  Google Scholar 

  • Strive, T., Borst, E., Messerle, M. and Radsak, K. (2002) Proteolytic processing of human cytomegalovirus glycoprotein B is dispensable for viral growth in culture. Journal of Virology. 76, 1252–1264.

    PubMed  CAS  Google Scholar 

  • Subramanian, R. P. and Geraghty, R. J. (2007) Herpes simplex virus type 1 mediates fusion through a hemifusion intermediate by sequential activity of glycoproteins D, H, L, and B. Proceedings of the National Academy of Sciences. 104, 2903–2908.

    Google Scholar 

  • Sugano, N., Chen, W., Roberts, M. L. and Cooper, N. R. (1997) Epstein-Barr virus binding to CD21 activates the initial viral promoter via NFκB induction. Journal of Experimental Medicine. 186, 731–737.

    PubMed  CAS  Google Scholar 

  • Szakonyi, G., Klein, M. G., Hannan, J. P., Young, K. A., Ma, R. Z., Asokan, R., Holers, V. M. and Chen, X. S. (2006) Structure of the Epstein-Barr virus major envelope glycoprotein. Nature Structural and Molecular Biology. 13, 996–1001.

    PubMed  CAS  Google Scholar 

  • Tanner, J., Weis, J., Fearon, D., Whang , Y. and Kieff, E. (1987) Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping and endocytosis. Cell. 50, 203–213.

    PubMed  CAS  Google Scholar 

  • Tanner, J., Whang, Y., Sample, J., Sears, A. and Keiff, E. (1988) Soluble gp350/220 and deletion mutant glycoproteins block Epstein-Barr virus adsorption to lymphocytes. Journal of Virology. 62, 4452–4464.

    PubMed  CAS  Google Scholar 

  • Tanner, J. E., Alfieri, C., Chatila, T. A. and Diaz-Mitoma, F. (1996) Induction of interleukin-6 after stimulation of human B-cell CD21 by Epstein-Barr virus glycoproteins gp350 and gp220. Journal of Virology. 70, 570–575.

    PubMed  CAS  Google Scholar 

  • Tormo, J., Natarajan, K., Margulies, D. H. and Mariuzza, R. A. (1999) Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Nature. 402, 623–631.

    PubMed  CAS  Google Scholar 

  • Tugizov, S. M., Berline, J. W. and Palefsky, J. M. (2003) Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat Med. 9, 307–314.

    Google Scholar 

  • Turk, S. M., Jiang, R., Chesnokova, L. S. and Hutt-Fletcher, L. M. (2006) Antibodies to gp350/220 enhance the ability of Epstein-Barr virus to infect epithelial cells. Journal of Virology. 80, 9623–33.

    Google Scholar 

  • Wang, F. (2005) Epstein-Barr virus related lymphocrytoviruses of old and new world nonhuman primates. In “Epstein-Barr Virus” (E.S. Robertson, Ed.). pp. 691–709. Caister Academic Press, Norfolk, England.

    Google Scholar 

  • Wang, X. and Hutt-Fletcher, L. M. (1998) Epstein-Barr virus lacking glycoprotein gp42 can bind to B cells but is not able to infect. Journal of Virology. 72, 158–163.

    PubMed  CAS  Google Scholar 

  • Wang, X., Kenyon, W. J., Li, Q. X., Mullberg, J. and Hutt-Fletcher, L. M. (1998) Epstein-Barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. Journal of Virology. 72, 5552–5558.

    PubMed  CAS  Google Scholar 

  • Wu, L., Borza, C. M. and Hutt-Fletcher, L. M. (2005) Mutations of Epstein-Barr virus gH that are differentially able to support fusion with B cells or epithelial cells. Journal of Virology. 79, 10923–10930.

    PubMed  CAS  Google Scholar 

  • Wu, L. and Hutt-Fletcher, L. M. (2007) Point mutations in EBV gH that abrogate or differentially affect B cell and epithelial cell fusion. Virology. 363, 148–55

    Google Scholar 

  • Xiao, J., Palefsky, J. M., Herrera, R. and Tugizov, S. M. (2007) Characterization of the Epstein-Barr virus glycoprotein BMRF2. Virology. 359, 382–396.

    PubMed  CAS  Google Scholar 

  • Yaswen, L. R., Stephens, E. B., Davenport, L. C. and Hutt-Fletcher, L. M. (1993) Epstein-Barr virus glycoprotein gp85 associates with the BKRF2 gene product and is incompletely processed as a recombinant protein. Virology. 195, 387–396.

    PubMed  CAS  Google Scholar 

  • Young, L. S., Clark, D., Sixbey, J. W. and Rickinson, A. B. (1986) Epstein-Barr virus receptors on human pharyngeal epithelium. Lancet. 1, 240–242.

    PubMed  CAS  Google Scholar 

  • Young, L. S., Dawson, C. W., Brown, K. W. and Rickinson, A. B. (1989) Identification of a human epithelial cell surface protein sharing an epitope with the C3d/Epstein-Barr virus receptor molecule of B lymphocytes. International Journal of Cancer. 43, 786–794.

    CAS  Google Scholar 

Download references

Acknowledgments

Research in the Jardetzky and Longnecker Laboratories was supported by Public Health Service grants CA93444 and CA117794. Work in the Hutt-Fletcher laboratory was supported by AI20662 and DE16669. The authors would like to thank current and former members of their laboratories for their contributions to the work described, as well as our many colleagues throughout the world who have contributed to understanding the entry of EBV as well as herpesviruses in general.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Longnecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Longnecker, R., Hutt-Fletcher, L., Jardetzky, T. (2009). Epstein–Barr Virus Entry. In: Damania, B., Pipas, J.M. (eds) DNA Tumor Viruses. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68945-6_15

Download citation

Publish with us

Policies and ethics