Skip to main content

What Can We Learn about Breast Cancer from Stem Cells?

  • Chapter
Hormonal Carcinogenesis V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 617))

To survive into adulthood, long-lived organisms such as man need to maintain the many diverse organs and tissues that are necessary for the myriads of essential functions such as absorption of nutrients, protection from infection, and replacement of cells damaged by insults including toxins, radiation and trauma. This need to constantly replenish the mature cells of a tissue presents a particularly vexing problem for complex multicellular animals. Cells must be able to replicate in order to replace the old or damaged cells, but this replication must be tightly regulated to prevent the accumulation of errors that result in the development of tumors and eventually cancer (1,2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124:1111–5.

    Article  PubMed  CAS  Google Scholar 

  2. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767.

    Article  PubMed  CAS  Google Scholar 

  3. Smith GH, Chepko G (2001) Mammary epithelial stem cells. Microsc Res Tech 52:190–203.

    Article  PubMed  CAS  Google Scholar 

  4. Blanpain C, Lowry WE, Geoghegan A, et al. (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118:635–48.

    Article  PubMed  CAS  Google Scholar 

  5. Nilsson E, Parrott JA, Skinner MK (2001) Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell Endocrinol 175:123–30.

    Article  PubMed  CAS  Google Scholar 

  6. Vasioukhin V, Bauer C, Degenstein L, et al. (2001) Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-catenin in skin. Cell 104:605–17.

    Article  PubMed  CAS  Google Scholar 

  7. Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241:58–62.

    Article  PubMed  CAS  Google Scholar 

  8. Blyszczuk P (2004) Embryonic stem cells differentiate into insulin-producing cells without selection of nestin-expressing cells. Int J Dev Biol 48:1095–104.

    Article  PubMed  CAS  Google Scholar 

  9. Bouwens L, De Blay E (1996) Islet morphogenesis and stem cell markers in rat pancreas. J Histochem Cytochem 44:947–51.

    PubMed  CAS  Google Scholar 

  10. Doetsch F, Petreanu L, Caille I, et al. (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36:1021–34.

    Article  PubMed  CAS  Google Scholar 

  11. Chepko G, Smith GH (1999) Mammary epithelial stem cells: our current understanding. J Mammary Gland Biol Neoplasia 4:35–52.

    Article  PubMed  CAS  Google Scholar 

  12. Easterday MC (2003) Neural progenitor genes. Germinal zone expression and analysis of genetic overlap in stem cell populations. Dev Biol 264:309–22.

    Article  PubMed  CAS  Google Scholar 

  13. Taipale J, Beachy PA (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411:349–54.

    Article  PubMed  CAS  Google Scholar 

  14. van Es JH (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435:959–63.

    Article  PubMed  Google Scholar 

  15. Chan EF, Gat U, McNiff JM, Fuchs EA (1999) Common human skin tumour is caused by activating mutations in beta-catenin. Nat Genet 21:410–3.

    Article  PubMed  CAS  Google Scholar 

  16. Shackleton M (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–8.

    Article  PubMed  CAS  Google Scholar 

  17. Morrison SJ, et al. (2002) A genetic determinant that specifically regulates the frequency of hematopoietic stem cells. J Immunol 168:635–42.

    PubMed  CAS  Google Scholar 

  18. Allman D, Aster JC, Pear WS (2002) Notch signaling in hematopoiesis and early lymphocyte development. Immunol Rev 187:75–86.

    Article  PubMed  CAS  Google Scholar 

  19. Beachy PA, Karhadkar SS, Berman DM (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature 432:324–31.

    Article  PubMed  CAS  Google Scholar 

  20. Boyer LA, et al. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–56.

    Article  PubMed  CAS  Google Scholar 

  21. Cavaleri F, Scholer HR (2003) Nanog: a new recruit to the embryonic stem cell orchestra. Cell 113:551–2.

    Article  PubMed  CAS  Google Scholar 

  22. Ema H, Takano H, Sudo K, Nakauchi H (2000) In vitro self-renewal division of hematopoietic stem cells. J Exp Med 192:1281–8.

    Article  PubMed  CAS  Google Scholar 

  23. He XC, et al. (2004) BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 36:1117–21.

    Article  PubMed  CAS  Google Scholar 

  24. Hitoshi S, et al. (2002) Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 16:846–58.

    Article  PubMed  CAS  Google Scholar 

  25. Huntly BJ, et al. (2004) MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6:587–96.

    Article  PubMed  CAS  Google Scholar 

  26. Kyba M, Perlingeiro RC, Daley GQ (2002) HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109, 29–37.

    Article  PubMed  CAS  Google Scholar 

  27. Loh YH, et al. (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38:431–40.

    Article  PubMed  CAS  Google Scholar 

  28. Mitsui K, et al. (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–42.

    Article  PubMed  CAS  Google Scholar 

  29. Molofsky AV, et al. (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425:962–7.

    Article  PubMed  CAS  Google Scholar 

  30. Morrison SJ, et al. (2000) Transient notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101:499–510.

    Article  PubMed  CAS  Google Scholar 

  31. Nakamura Y, et al. (2000) The bHLH gene hes1 as a repressor of the neuronal commitment of CNS stem cells. J Neurosci 20:283–93.

    PubMed  CAS  Google Scholar 

  32. Ohta H, et al. (2002) Polycomb group gene rae28 is required for sustaining activity of hematopoietic stem cells. J Exp Med 195:759–70.

    Article  PubMed  CAS  Google Scholar 

  33. Park IK, et al. (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423:302–5.

    Article  PubMed  CAS  Google Scholar 

  34. Reya T, et al. (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423:409–14.

    Article  PubMed  CAS  Google Scholar 

  35. Xu RH, et al. (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Meth 2:185–90.

    Article  CAS  Google Scholar 

  36. Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–92.

    Article  PubMed  CAS  Google Scholar 

  37. Zaehres H, et al. (2005) High-efficiency RNA interference in human embryonic stem cells. Stem Cells 23:299–305.

    Article  PubMed  CAS  Google Scholar 

  38. Liang SH, Clarke MF (2001) Regulation of p53 localization. Eur J Biochem 268:2779–83.

    Article  PubMed  CAS  Google Scholar 

  39. Krishnamurthy J, et al. (2006) p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443:453–7.

    Article  PubMed  CAS  Google Scholar 

  40. Molofsky AV, et al. (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–52.

    Article  PubMed  CAS  Google Scholar 

  41. Janzen V, et al. (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443:421–6.

    PubMed  CAS  Google Scholar 

  42. Lee TI, et al. (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301–13.

    Article  PubMed  CAS  Google Scholar 

  43. Akala OO, Clarke MF (2006) Hematopoietic stem cell self-renewal. Curr Opin Genet Dev 16:496–501.

    Article  PubMed  CAS  Google Scholar 

  44. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–11.

    Article  PubMed  CAS  Google Scholar 

  45. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–8.

    Article  PubMed  CAS  Google Scholar 

  46. Clarke MF (2004) Neurobiology: at the root of brain cancer. Nature 432:281–2.

    Article  PubMed  CAS  Google Scholar 

  47. Fang D, et al. (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–37.

    Article  PubMed  CAS  Google Scholar 

  48. Singh SK, et al. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–8.

    PubMed  CAS  Google Scholar 

  49. Liu R, et al. (2007) The prognastic role of a gene signature from tumorigenic breast-cancers cells. N Engl J Med 356:217–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Clarke, M.F. (2008). What Can We Learn about Breast Cancer from Stem Cells?. In: Li, J.J., Li, S.A., Mohla, S., Rochefort, H., Maudelonde, T. (eds) Hormonal Carcinogenesis V. Advances in Experimental Medicine and Biology, vol 617. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69080-3_2

Download citation

Publish with us

Policies and ethics