Skip to main content

Effects of Low Energetic Neutral Atoms on Martian and Venusian Dayside Exospheric Temperature Estimations

  • Erratum
  • Chapter
The Mars Plasma Environment

Abstract

The heating of the Upper atmospheres and the formation of the ionospheres on Venus and Mars are mainly controlled by the solar X-ray and extreme ultraviolet (EUV) radiation (λ = 0.1 − 102.7 nm and can be characterized by the 10.7 cm solar radio flux). Previous estimations of the average Martian dayside exospheric temperature inferred from topside plasma scale heights, UV airglow and Lyman-a dayglow observations of up to ∼500 K imply a stronger dependence on solar activity than that found on Venus by the Pioneer Venus Orbiter (PVO) and Magellan spacecraft. However, this dependence appears to be inconsistent with exospheric temperatures (<250 K) inferred from aerobraking maneuvers of recent spacecraft like Mars Pathfinder, Mars Global Surveyor and Mars Odyssey during different solar activity periods and at different orbital locations of the planet. In a similar way, early Lyman-α dayglow and UV airglow observations by Venera 4, Mariner 5 and 10, and Venera 9–12 at Venus also suggested much higher exospheric temperatures of up to 1000 K as compared with the average dayside exospheric temperature of about 270 K inferred from neutral gas mass spectrometry data obtained by PVO. In order to compare Venus and Mars, we estimated the dayside exobase temperature of Venus by using electron density profiles obtained from the PVO radio science experiment during the solar cycle and found the Venusian temperature to vary between 250–300 K, being in reasonable agreement with the exospheric temperatures inferred from Magellan aerobraking data and PVO mass spectrometer measurements. The same method has been applied to Mars by studying the solar cycle Variation of the ionospheric peak plasma density observed by Mars Global Surveyor during both solar minimum and maximum conditions, yielding a temperature range between 190–220 K. This result clearly indicates that the average Martian dayside temperature at the exobase does not exceed a value of about 240 K during high solar activity conditions and that the response of the Upper atmosphere temperature on Mars to solar activity near the ionization maximum is essentially the same as on Venus. The reason for this discrepancy between exospheric temperature determinations from topside plasma scale heights and electron distributions near the ionospheric maximum seems to lie in the fact that thermal and photochemical equilibrium applies only at altitudes below 170 km, whereas topside scale heights are derived for much higher altitudes where they are modified by transport processes and where local thermodynamic equilibrium (LTE) conditions are violated. Moreover, from simulating the energy density distribution of photochemically produced moderately energetic H, C and O atoms, as well as CO molecules, we argue that exospheric temperatures inferred from Lyman-α dayglow and UV airglow observations result in too high values, because these particles, as well as energetic neutral atoms, transformed from solar wind protons into hydrogen atoms via Charge exchange, may contribute to the observed planetary hot neutral gas coronae. Because the low exospheric temperatures inferred from neutral gas mass spectrometer and aerobraking data, as well as from CO +2 UV doublet emissions near 180–260 nm obtained from the Mars Express SPICAM UV spectrograph suggest rather low heating efficiencies, some hitherto unidentified additional IR-cooling mechanism in the thermospheres of both Venus and Mars is likely to exist.

The online version of the original chapter can be found at http://dx.doi.org/10.1007/978-0-387-70943-7_20

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, D. E., Jr., and Hord, C. W.: 1971, J. Geophys. Res. 76, 6666.

    Article  ADS  Google Scholar 

  • Anderson, D. E., Jr.: 1974, J. Geophys. Res. 79, 1513.

    Article  ADS  Google Scholar 

  • Anderson, D. E., Jr.: 1976, J. Geophys. Res. 81, 1213.

    Article  ADS  Google Scholar 

  • Barabash, S., Holmström, M., Lukyanov, A., and Kallio, E.: 2002, J. Geophys. Res. 107, 1280, DOI10.1029/2001JA000326.

    Article  Google Scholar 

  • Barth, C. A.: 1968, J. Atmos. Sci. 25, 564.

    Article  ADS  Google Scholar 

  • Barth, C. A., Wallace, L., and Pearce, J. B.: 1968, J. Geophys. Res. 73, 2541.

    Article  ADS  Google Scholar 

  • Barth, C. A., Fastie, W. G., Hord, C. W., Pearce, J. B., Kelly, K. K., Stewart, A. I., et al.: 1969, Science 165, 1004.

    Article  ADS  Google Scholar 

  • Barth, C. A., Hord, C. W., Pearce, J. B., Kelly, K. K., Anderson, G. P., and Stewart, A. I.: 1971, J. Geophys. Res. 76, 2213.

    Article  ADS  Google Scholar 

  • Barth, C. A., Stewart, A. I. F., Bougher, S. W., Hunten, D. M., Bauer, S. J., and Nagy, A. F.: 1992, in: Mars, Univ. Arizona Press, pp. 1054.

    Google Scholar 

  • Bauer, S. J., Donahue, T. M., Hartle, R. E., and Taylor, H. A.: 1979, Science 205, 109.

    Article  ADS  Google Scholar 

  • Bauer, S. J., and Taylor, H. A.: 1981, Geophys. Res. Lett. 8, 840.

    Article  ADS  Google Scholar 

  • Bauer, S. J., Brace, L. M., Taylor Jr., H. A., Breus, T., Kliore, A. J., et al.: 1985, in: The Venus international reference atmosphere, Kliore, A. J., Moroz, V. L, and Keating, G. M. (eds)., Adv. Space Res, Vol. 5, pp 233.

    Google Scholar 

  • Bauer, S. J.: 1999, Anz. Österreichischen Akademie der Wissenschaften, Klasse, Vol. 136, pp. 19.

    Google Scholar 

  • Bauer, S. J., and Hantsch, M. H.: 1989, Geophys. Res. Lett. 16, 373.

    Article  ADS  Google Scholar 

  • Bauer, S. J., and Lammer, H.: 2004, Planetary Aeronomy: Atmosphere Environments in Planetary Systems, Springer Verlag, Heidelberg, New York.

    Google Scholar 

  • Bertaux, J. L., Blamont, J., Marcelin, M., Kurt, V. G., Romanova, N. N., and Smirnov, A. S.: 1978, Planet. Space Sci. 26, 817.

    Article  ADS  Google Scholar 

  • Bertaux, J. L., Blamont, J., Lepine, V M., Kurt, V. G., Romanova, N. N., and Smirnov, A. S.: 1981, Planet. Space Sci. 29, 149.

    Article  ADS  Google Scholar 

  • Bertaux, J. L., Lepine, V M., Kurt, V. G., and Smirnov, A. S.: 1982, Icarus 52, 221.

    Article  ADS  Google Scholar 

  • Bougher, S. W., and Roble, R. G.: 1991, J. Geophys. Res. 96, 11045.

    Article  ADS  Google Scholar 

  • Bougher, S. W., and Keating, G. M.: 1999, The Fifth International Conference on Mars, July 19–24, 1999, Pasadena, California, abstract no. 6010.

    Google Scholar 

  • Bougher, S. W., Engel, S., Roble, R. G., and Foster, B.: 1999, J. Geophys. Res. 104, 16591.

    Article  ADS  Google Scholar 

  • Bougher, S. W. Engel, S., Roble, R. G., and Foster, B.: 2000, J. Geophys. Res. 105, 17669.

    Article  ADS  Google Scholar 

  • Breus, T. K., Krymskii, A. M., Crider, D. H., Ness, N. F., Hinson, D., and Barashyan, K. K.: 2004, J. Geophys. Res. 109, A09310, doi: 10.1029/2004JA010431.

    Article  Google Scholar 

  • Broadfoot, A. L., Kumar, S., Belton, M. J. S., and McElroy, M. B.: 1974, Science 183, 1315. Chapman, S., and T.

    Article  ADS  Google Scholar 

  • Cloutier, P. A., McElroy, M. B., and Michel, F. C.: 1969, J. Geophys. Res. 74, 6215.

    Article  ADS  Google Scholar 

  • Chapman, S., and Cowling, T. G.: 1970, The Mathematical Theory of Non-Uniform Gases, 3rd edition, Cambridge University Press, New York.

    Google Scholar 

  • Dickinson, R. E., and Bougher, S. W.: 1986, J. Geophys. Res. 91, 70.

    Article  ADS  Google Scholar 

  • Donahue, T. M.: 1969, J. Geophys. Res. 74, 1128.

    Article  ADS  Google Scholar 

  • Formisano, V., Maturilli, A., Giuranna, M., D’Aversa, E., and Lopez-Valverde, M. A.: 2006, Icarus 182, 51.

    Article  ADS  Google Scholar 

  • Fox, J. L., and Dalgarno, A.: 1979, J. Geophys. Res. 84, 7315.

    Article  ADS  Google Scholar 

  • Fox, J. L., and Dalgarno, A.: 1981, J. Geophys. Res. 86, 629.

    Article  ADS  Google Scholar 

  • Fox, J. L.: 1988, Planet. Space Sci. 36, 37.

    Article  ADS  Google Scholar 

  • Fox, J. L., and Black, J. H.: 1989, Geophys. Res. Lett. 16, 291.

    Article  ADS  Google Scholar 

  • Fox, J. L., Zhou, P., and Bougher, S. W.: 1996, Adv. Space Res., 17(11), 203.

    Article  ADS  Google Scholar 

  • Fox, J. L., and Hać, A.: 1997, J. Geophys. Res. 102, 24005.

    Article  ADS  Google Scholar 

  • Fox, J. L., and Hać, A.: 1999, J. Geophys. Res. 104, 24729.

    Article  ADS  Google Scholar 

  • Fox, J. L., and Bakalian, F. M.: 2001, J. Geophys. Res. 106, 28785.

    Article  ADS  Google Scholar 

  • Fox, J. L., and Sung, K. Y.: 2001, J. Geophys. Res. 106, 21305.

    Article  ADS  Google Scholar 

  • Galli, A., Wurz, R., Lammer, H., Lichtenegger, H. I. M., Lundin, R., and Barabash, S., et al.: Space Sci. Rev., this issue, doi: 10.1007/s11214-006-9089-7.

    Google Scholar 

  • Gordiets, B. F., Kulikov, Yu. N., Markov, M. N., and Marov, M. Ya.: 1982, J. Geophys. Res. 87, 4504.

    Article  ADS  Google Scholar 

  • Hanson, W. B., Santani, S., and Zuccaro, D. R.: 1977, J. Geophys. Res. 82, 4351.

    Article  ADS  Google Scholar 

  • Hanson, W. B., and Mantas, G. R: 1988, J. Geophys. Res. 93, 7538.

    Article  ADS  Google Scholar 

  • Hedin, A. E.: 1983, J. Geophys. Res. 88, 10170.

    Article  ADS  Google Scholar 

  • Hedin, A. E., Nieman, H. B., Kasprzak, W. T., and Seiff, A.: 1983, J. Geophys. Res. 88, 73.

    Article  ADS  Google Scholar 

  • Hodges, R., and R., Jr.: 2000, J. Geophys. Res. 105, 6971.

    Article  ADS  Google Scholar 

  • Hogan, J. S., and Stewart, R. W.: 1969, J. Atmos. Sci. 26, 332.

    Article  ADS  Google Scholar 

  • Hollenbach, D. J., Prasad, S. S., and Witten, R. C.: 1985, Icarus 64, 205.

    Article  ADS  Google Scholar 

  • Holmström, M., Barabash, S., and Kallio, E.: 2002, J. Geophys. Res. 107, 1277, DOI10.1029/2001JA000325.

    Article  Google Scholar 

  • Ip, W-H.: 1988, Icarus 76, 135.

    Article  ADS  Google Scholar 

  • Izakov, M. N., Krasitskii, O. P., and Pavlov, A. V.: 1981. Kosmicheskie Issledovaniia, 19, 733.

    ADS  Google Scholar 

  • Kasprzak, W. T., Keating, G. M., Hsu, N. C., Stewart, I. F., Coldwell, W. B., and Bougher, S. W.: 1997, in: Venus II, Bougher, S. W., Hunten, D. M., and Phillips, R. J. (eds.), Univ. Arizona Press, pp. 225.

    Google Scholar 

  • Kazeminejad, S.: 2005, Exospheric temperature estimation and atmospheric loss: A comparative study of Mars and Venus, Ms. Thesis, University of Graz, Austria.

    Google Scholar 

  • Keating, G. M., Nicholson, J. Y., and Lake, L. R.: 1980, J. Geophys. Res. 85, 7941.

    Article  ADS  Google Scholar 

  • Keating, G. M., Bertaux, J. L., Bougher, S. W., Dickinson, R. E., Cravens, T. E., and Hedin, A. E.: 1985, Adv. Space Res. 5, 117.

    Article  ADS  Google Scholar 

  • Keating, G. M., Tolson, R. H., Schellenberg, T. J., Hsu, N. C., and Bougher, S. W: 1998a. Study of Venus Upper atmosphere using Magellan drag measurements, Second Ann. Progress Rep. NAG5-6081, NASA, Washington DC.

    Google Scholar 

  • Keating, G. M., Bougher, S. W., Zurek, R. W., Tolson, R. H., Cancro, G. J., and Noll, S. N., et al.: 1998b. Science 279, 1672.

    Article  ADS  Google Scholar 

  • Kim, J., Nagy, A. F., Fox, J. L., and Craven T.: 1998, J. Geophys. Res. 103, 29339.

    Article  ADS  Google Scholar 

  • Kliore, A. J., Fjeldbo, G., Seidel, B. L., Sykes, M. J., and Woiceshyn, P. M.: 1973, J. Geophys. Res. 78, 4331.

    Article  ADS  Google Scholar 

  • Krasnopolsky, V. A., and Gladstone, G. R.: 1996, J. Geophys. Res. 101, 15765.

    Article  ADS  Google Scholar 

  • Krasnopolsky, V. A., and Feldman, P. D.: 2001, Science 294, 1914.

    Article  ADS  Google Scholar 

  • Kumar, S., and Hunten, D. M.: 1974, J. Geophys. Res. 79, 2529.

    Article  ADS  Google Scholar 

  • Lammer, H., and Bauer, S. J.: 1991, J. Geophys. Res. 96, 1819.

    Article  ADS  Google Scholar 

  • Lammer, H., Stumptner, W., and Bauer, S. J.: 2000, Planet. Space Sci. 48, 1473.

    Article  ADS  Google Scholar 

  • Lammer, H., Lichtenegger, H. I. M., Kolb, C., Ribas, L., Guinan, E. F., and Bauer, S. J.: 2003, Icarus 165, 9.

    Article  ADS  Google Scholar 

  • Leblanc, F., Chaufray, J. Y., Lilensten, J., Witasse, O., and Bertaux, J.-L.: 2006, J. Geophys. Res 111, E09S11, doi: 10.1029/2005JE002664.

    Article  Google Scholar 

  • Lichtenegger, H. I. M., Lammer, H., and Stumptner, W.: 2002, J. Geophys. Res. 107, 1279, doi: 10.1029/2001JA000322.

    Article  Google Scholar 

  • Lichtenegger H. I. M, Lammer, H., Vogl, D. F., and Bauer, S. J.: 2004, Adv. in Space Res. 33, 140.

    Article  ADS  Google Scholar 

  • Lindal, G. F., Hotz, H. B., Sweetnam, D. N., Shippony, Z., Brenkle, J. P., and Spear, R. T.: 1979, J. Geophys. Res. 84, 8443.

    Article  ADS  Google Scholar 

  • Magalhäes, J. A., Schoneid, J. T., and Seiff, A.: 1999, J. Geophys. Res. 104, 8943.

    Article  ADS  Google Scholar 

  • McElroy, M. B.: 1967, Astrophys. J. 73, 1125.

    Article  ADS  Google Scholar 

  • McElroy, M. B.: 1968, J. Geophys. Res. 73, 1513.

    Article  ADS  Google Scholar 

  • McElroy, M. B., and Hunten, D. M.: 1969, J. Geophys. Res. 74, 1720.

    Article  ADS  Google Scholar 

  • McElroy, M. B.: 1972, Science 175, 443.

    Article  ADS  Google Scholar 

  • McElroy, M. B., Prather, M. J., and Rodriguez, J. M.: 1982, Science 215, 1614.

    Article  ADS  Google Scholar 

  • Molina-Cuberos, G. J., Witasse, O., Lebreton, J.-P., Rodrigo, R., and Löpez-Moreno, J. J.: 2003, Planet. Space Sci. 51, 239.

    Article  ADS  Google Scholar 

  • Nagy, A. F., Cravens, T. E., Yee, J.-H., and Stewart, A. I. P: 1981, Geophys. Res. Lett. 8, 629.

    Article  ADS  Google Scholar 

  • Nagy, A. F., and Cravens, T. E.: 1988, Geophys. Res. Lett. 15, 433.

    Article  ADS  Google Scholar 

  • Nagy, A. F., Liemohn, M. W., Fox, J. L., and Kim, J.: 2001, J. Geophys. Res. 106, 21565.

    Article  ADS  Google Scholar 

  • Nair, H., Allen, M., Anbar, A. D., Yung, Y. L., and Clancy, R. T., 1994, Icarus 111, 124.

    Article  ADS  Google Scholar 

  • Nieman, H. B., Hartle, R. E., Kasprzak, W. T., Spencer, N. W., Hunten, D. M., and Carignan, G. R.: 1979a, Science 203, 770.

    Article  ADS  Google Scholar 

  • Nieman, H. B., Hartle, R. E., Hedin, A. E., Kasprzak, W. T., Spencer, N. W., and Hunten, D. M.: et al., 1979b, Science 205, 54.

    Article  ADS  Google Scholar 

  • Niemann, H. B., Kasprzak, W. T., Hedin, A. E., Hunten, D. M., and Spencer, N. W.: 1980, J. Geophys. Res. 85, 7817.

    Article  ADS  Google Scholar 

  • Nier, A. O., and McElroy, M. B.: 1977, J. Geophys. Res. 82, 4341.

    Article  ADS  Google Scholar 

  • Pavlov, A. V.: 1985, Kosmicheskie Issledovaniya 23, 276.

    ADS  Google Scholar 

  • Rodrigo, R., Löpez-Moreno, J. J., Löpez-Puertas, M., Moreno, F., and Molina, A.: 1986, Planet. Space Sci. 34, 723.

    Article  ADS  Google Scholar 

  • Rodrigo, R., Garcí-Älvarez, E., Löpez-González, J. J., and Löpez-Moreno, J. J.: 1990, J. Geophys. Res. 95, 14795.

    Article  ADS  Google Scholar 

  • Rosén, S., Peverall, R., Larsson, M., Le Padellec, A., Semaniak, J., and Larson, Å, et al.: 1998, Phys. Rev. A 57, 4462.

    Article  ADS  Google Scholar 

  • Saunders, R. S., Arvidson, R. E., Badhwar, G. D., Boynton, W. V., Christensen, P. R., and Cucinotta, F. A., et al.: 2004, Space Sci. Rev. 110, 1.

    Article  ADS  Google Scholar 

  • Schofield, J. T., Barnes, J. R., Crisp, D., Haberle, R. M., Larsen, S., and Magalhães, J. A., et al.: 1997, Science 278, 1752.

    Article  ADS  Google Scholar 

  • Seiff, A., and Kirk, D. B.: 1977. J. Geophys. Res. 82, 4364.

    Article  ADS  Google Scholar 

  • Soffen, G. A.: 1977, J. Geophys. Res. 82, 3959.

    Article  ADS  Google Scholar 

  • Spencer, D. A., Blanchard, R. C., Thurmann, S. W., Braun, R. D., Peng, C.-Y., and Kallemeyn, P. H.: 1998, Mars Pathfinder Atmospheric Entry Reconstruction. NASA Technical Report, AAS 98.

    Google Scholar 

  • Stewart, R. W.: 1968, J. Atmosph. Sci. 25, 578.

    Article  ADS  Google Scholar 

  • Stewart, A. L: 1972, J. Geophys. Res. 77, 54.

    Article  ADS  Google Scholar 

  • Stubbe, R: 1973, Sci. Rep., 418, Ionosphere REs. Lab., Pa. State Univ., University Park.

    Google Scholar 

  • Sze, N. D., and McElroy, M. B.: 1975, Planet. Space Sci. 23, 763.

    Article  ADS  Google Scholar 

  • Takacs, P. Z., Broadfoot, A. L., Smith, G. R., and Kumar, S.: 1980, Plant. Space Sci. 28, 687.

    Article  ADS  Google Scholar 

  • Taylor, F. W., Hunten, D. M., and Ksanfomaliti, L. V.: 1983, in: Hunten, D. M., Colin, L., Donahue, T. M., and Moroz, V. I. (eds.). University of Arizona Press, Tucson, Arizona, pp. 650.

    Google Scholar 

  • von Zahn, U., Fricke, K. H., Hunten, D. M., Krankowsky, D., Mauersberger, K., and Nier, A. O.: 1980, J. Geophys. Res. 85, 7829.

    Article  ADS  Google Scholar 

  • Wallace, L.: 1969, J. Geophys. Res. 74, 115.

    Article  ADS  Google Scholar 

  • Wallace, L., Stuart, F. E., Nagel, R. H., and Larson, M. D.: 1971, Astwphys. J. 168, L29.

    Article  ADS  Google Scholar 

  • Wallis, M. K.: 1978, Planet. Space Sci. 26, 949.

    Article  MathSciNet  ADS  Google Scholar 

  • Wallis, M. K.: 1989, Sci. Lett. 93, 321.

    Google Scholar 

  • Withers, P., Towner, M. C., Hathi, B., and Zarnecki, J. C.: 2003, Planet. Space Sci. 51, 541.

    Article  ADS  Google Scholar 

  • Withers, P., and Smith, M. D.: 2005, Submitted to Icarus.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lichtenegger, H.I.M. et al. (2007). Effects of Low Energetic Neutral Atoms on Martian and Venusian Dayside Exospheric Temperature Estimations. In: Russell, C.T. (eds) The Mars Plasma Environment. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70943-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-70943-7_21

  • Received:

  • Accepted:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-70941-3

  • Online ISBN: 978-0-387-70943-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics