Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 30))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JB, Fahey PF (1992) Using acoustic distortion products to measure the cochlear amplifier gain on the basilar membrane. J Acoust Soc Am 92:178–188.

    Article  PubMed  CAS  Google Scholar 

  • Allen JB, Shaw G, Kimberley BP (1995) Characterization of the nonlinear ear canal impedance at low sound levels. Assoc Res Otolaryngol Abs 18:797.

    Google Scholar 

  • Bredberg G (1968) Cellular patterns and nerve supply of the human organ of Corti. Acta Otolaryngol Suppl 236:1–135.

    Google Scholar 

  • Brillouin L (1946) Wave Propagation in Periodic Structures. New York: McGraw-Hill.

    Google Scholar 

  • Cooper NP, Rhode WS (1997) Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea. J Neurophysiol 78:261–270.

    PubMed  CAS  Google Scholar 

  • Cooper NP, Shera CA (2004) Backward traveling waves in the cochlea? Comparing basilar membrane vibrations and otoacoustic emissions from individual guinea-pig ears. Assoc Res Otolaryngol Abs 27:1008.

    Google Scholar 

  • de Boer E, Nuttall AL, Hu N, Zou Y, Zheng J (2005) The Allen–Fahey experiment extended. J Acoust Soc Am 107:1260–1266.

    Article  Google Scholar 

  • Dhar S, Talmadge CL, Long GR, Tubis A (2002) Multiple internal reflections in the cochlea and their effect on DPOAE fine structure. J Acoust Soc Am 112:2882–2897.

    Article  PubMed  Google Scholar 

  • Dhar S, Long GR, Talmadge CL, Tubis A (2005) The effect of stimulus-frequency ratio on distortion product otoacoustic emission components. J Acoust Soc Am 117:3766–3776.

    Article  PubMed  Google Scholar 

  • Engström H, Ades HW, Andersson A (1966) Structural Pattern of the Organ of Corti. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Fahey PF, Stagner BB, Martin GK (2005) Mechanism responsible for DPOAE tuning. Assoc Res Otolaryngol Abs 28:319.

    Google Scholar 

  • Gold T (1948) Hearing. II. The physical basis of the action of the cochlea. Proc R Soc B 135:492–498.

    Article  Google Scholar 

  • Goldstein JL (1967) Auditory nonlinearity. J Acoust Soc Am 41:676–689.

    Article  PubMed  CAS  Google Scholar 

  • Goodman SS, Withnell RH, Shera CA (2003) The origin of SFOAE microstructure in the guinea pig. Hear Res 183:1–17.

    Article  Google Scholar 

  • Guinan JJ, Lin T, Cheng H (2005) Medial-olivocochlear-efferent inhibition of the first peak of auditory-nerve responses: Evidence for a new motion within the cochlea. J Acoust Soc Am 118:2421–2433.

    Article  PubMed  Google Scholar 

  • Heitmann J, Waldman B, Schnitzler HU, Plinkert PK, Zenner H-P (1998) Suppression of distortion product otoacoustic emissions (DPOAE) near 2f 1f 2 removes DP-gram fine structure—Evidence for a secondary generator. J Acoust Soc Am 103:1527–1531.

    Article  Google Scholar 

  • Jülicher F, Camalet S, Prost J, Duke TAJ (2003) Active amplification by critical oscillators. In: Gummer AW (ed), Biophysics of the Cochlea: From Molecules to Models. Singapore: World Scientific, pp. 16–27.

    Chapter  Google Scholar 

  • Kalluri R, Shera CA (2001) Distortion-product source unmixing: A test of the two-mechanism model for DPOAE generation. J Acoust Soc Am 109:622–637.

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R, Shera CA (2007) Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions. J Acoust soc Am 121: 2097–2110.

    Article  PubMed  Google Scholar 

  • Kanis LJ, de Boer E (1997) Frequency dependence of acoustic distortion products in a locally active model of the cochlea. J Acoust Soc Am 101:1527–1531.

    Article  PubMed  CAS  Google Scholar 

  • Keefe DH (2002) Spectral shapes of forward and reverse transfer functions between ear canal and cochlea estimated using DPOAE input/output functions. J Acoust Soc Am 111:249–260.

    Article  PubMed  Google Scholar 

  • Kemp DT (1979) Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Arch Otorhinolaryngol 224:37–45.

    Article  PubMed  CAS  Google Scholar 

  • Kemp DT, Brown AM (1983) An integrated view of cochlear mechanical nonlinearities observable from the ear canal. In: de Boer E, Viergever MA (eds) Mechanics of Hearing. The Hague: Martinus Nijhoff, pp. 75–82.

    Google Scholar 

  • Kemp DT, Knight RD (1999) Virtual DP reflector explains DPOAE “wave” and “place” fixed dichotomy. Assoc Res Otolaryngol Abs 22:396.

    Google Scholar 

  • Kiang NYS, Moxon EC (1974) Tails of tuning curves of auditory-nerve fibers. J Acoust Soc Am 55:620–630.

    Article  PubMed  CAS  Google Scholar 

  • Knight RD, Kemp DT (2000) Indications of different distortion product otoacoustic emission mechanisms from a detailed f_1,f_2 area study. J Acoust Soc Am 107:457–473.

    Article  PubMed  CAS  Google Scholar 

  • Knight RD, Kemp DT (2001) Wave and place fixed DPOAE maps of the human ear. J Acoust Soc Am 109:1513–1525.

    Article  PubMed  CAS  Google Scholar 

  • Konrad-Martin D, Neely ST, Keefe DH, Dorn PA, Gorga MP (2001) Sources of distortion product otoacoustic emissions revealed by suppression experiments and inverse fast Fourier transforms in normal ears. J Acoust Soc Am 109:2862–2869.

    Article  PubMed  CAS  Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455.

    Article  PubMed  CAS  Google Scholar 

  • Lonsbury-Martin BL, Martin GK, Probst R, Coats AC (1988) Spontaneous otoacoustic emissions in the nonhuman primate. II. Cochlear anatomy. Hear Res 33:69–94.

    Article  PubMed  CAS  Google Scholar 

  • Martin P, Hudspeth AJ (1999) Active hair-bundle movements can amplify a hair cell’s response to oscillatory mechanical stimuli. Proc Natl Acad Sci USA 96:14306–14311.

    Article  PubMed  CAS  Google Scholar 

  • Martin P, Hudspeth AJ (2001) Compressive nonlinearity in the hair bundles active response to mechanical stimulation. Proc Natl Acad Sci USA 98:14386–14391.

    Article  PubMed  CAS  Google Scholar 

  • Mauermann M, Uppenkamp S, van Hengel PWJ, Kollmeier B (1999) Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (DPOAE) fine structure in humans. I. Fine structure and higher-order DPOAE as a function of the frequency ratio f2/ f1. J Acoust Soc Am 106:3473–3483.

    Article  PubMed  CAS  Google Scholar 

  • Nobili R (2000) Otoacoustic emissions simulated by a realistic cochlear model. In: Wada H, Takasaka T, Ikeda K, Ohyama K, Koike T (eds) Recent Developments in Auditory Mechanics. Singapore: World Scientific, pp. 402–408.

    Google Scholar 

  • Nobili R, Mammano F, Ashmore J (1998) How well do we understand the cochlea? Trends Neurosci 21:159–167.

    Article  PubMed  CAS  Google Scholar 

  • Nobili R, Vetešník A, Turicchia L, Mammano F (2003a) Otoacoustic emissions from residual oscillations of the cochlear basilar membrane in a human ear model. J Assoc Res Otolaryngol 4:478–494.

    Article  Google Scholar 

  • Nobili R, Vetešník A, Turicchia L, Mammano F (2003b) Otoacoustic emissions simulated in the time domain by a hydrodynamic model of the human cochlea. In: Gummer AW (ed) Biophysics of the Cochlea: From Molecules to Models. Singapore: World Scientific, pp. 524–530.

    Chapter  Google Scholar 

  • Peterson LC, Bogert BP (1950) A dynamical theory of the cochlea. J Acoust Soc Am 22:369–381.

    Article  Google Scholar 

  • Puria S (2003) Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. J Acoust Soc Am 113:2773–2789.

    Article  PubMed  Google Scholar 

  • Ren T (2004) Reverse propagation of sound in the gerbil cochlea. Nat Neurosci 7:333–334.

    Article  PubMed  CAS  Google Scholar 

  • Ren T, He W, Nuttall AL (2006) Backward propagation of otoacoustic emissions in the cochlea. In: Nuttall AL, Ren T, Gillespie P, Grosh K, de Boer E (eds) Auditory Mechanisms: Processes and Models. Singapore: World Scientific, pp. 79–85.

    Google Scholar 

  • Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Am 49:1218–1231.

    Article  PubMed  Google Scholar 

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352.

    PubMed  CAS  Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1997) Two-tone distortion on the basilar membrane of the chinchilla cochlea. J Neurophysiol 77:2385–2399.

    PubMed  CAS  Google Scholar 

  • Ruggero MA (2004) Comparison of group delays of 2f 1f 2 distortion product otoacoustic emissions and cochlear travel times. Acoust Res Lett Online 5:143–147.

    Article  PubMed  Google Scholar 

  • Shera CA (2003a) Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J Acoust Soc Am 114:244–262.

    Article  Google Scholar 

  • Shera CA (2003b) Wave interference in the generation of reflection- and distortion-source emissions. In: Gummer AW (ed) Biophysics of the Cochlea: From Molecules to Models. Singapore: World Scientific, pp. 439–453.

    Chapter  Google Scholar 

  • Shera CA, Guinan JJ (1997) Measuring cochlear amplification and nonlinearity using distortion-product otoacoustic emissions as a calibrated intracochlear sound source. Assoc Res Otolaryngol Abs 20:51.

    Google Scholar 

  • Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798.

    Article  PubMed  CAS  Google Scholar 

  • Shera CA, Guinan JJ (2003) Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762–2772.

    Article  PubMed  Google Scholar 

  • Shera CA, Guinan JJ (2007) Cochlear travelling-wave amplification, suppression, and beamforming probed using noninvasive calibration of intracochlear distortion sources. J Acoust Soc Am 121:1003–1016.

    Article  PubMed  Google Scholar 

  • Shera CA, Tubis A, Talmadge Cl, de Boer E, Fahey PF, Guinan JJ (2007) Allen-Fahey and related experiments support the predominance of cochlear slow-wave otoacoustic emissions. J Acoust soc Am 121:1564–1575.

    Article  PubMed  Google Scholar 

  • Shera CA, Zweig G (1991) Reflection of retrograde waves within the cochlea and at the stapes. J Acoust Soc Am 89:1290–1305.

    Article  PubMed  CAS  Google Scholar 

  • Shera CA, Zweig G (1993) Order from chaos: Resolving the paradox of periodicity in evoked otoacoustic emission. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 54–63.

    Google Scholar 

  • Shera CA, Tubis A, Talmadge CL (2004a) Are there forward and reverse traveling waves in the cochlea? Countering the critique of Nobili et al. J Assoc Res Otolaryngol 5:349–359. [A version correcting JARO’s numerous typesetting errors is available from the authors upon request (see also http://mit.edu/apg/).]

    Article  Google Scholar 

  • Shera CA, Tubis A, Talmadge CL, Guinan JJ (2004b) The dual effect of “suppressor” tones on stimulus-frequency otoacoustic emissions. Assoc Res Otolaryngol Abs 27:538.

    Google Scholar 

  • Shera CA, Tubis A, Talmadge CL (2005a) Coherent reflection in a two-dimensional cochlea: Short-wave versus long-wave scattering in the generation of reflection-source otoacoustic emissions. J Acoust Soc Am 118:287–313.

    Article  Google Scholar 

  • Shera CA, Tubis A, Talmadge CL (2005b) Coherent-reflection models of reflection-source OAEs with and without slow transverse retrograde waves. Assoc Res Otolaryngol Abs 28:657.

    Google Scholar 

  • Shera CA, Tubis A, Talmadge CL (2006) Four counter-arguments for slow-wave OAEs. In: Nuttall AL, Ren T, Gillespie P, Grosh K, de Boer E (eds) Auditory Mechanisms: Processes and Models. Singapore: World Scientific, pp. 449–457.

    Google Scholar 

  • Siegel JH, Temchin AN, Ruggero MA (2003) Empirical estimates of the spatial origin of stimulus-frequency otoacoustic emissions. Assoc Res Otolaryngol Abs 26:679.

    Google Scholar 

  • Siegel JH, Cerka AJ, Temchin AN, Ruggero MA (2004) Similar two-tone suppression patterns in SFOAEs and the cochlear microphonics indicate comparable spatial summation of underlying generators. Assoc Res Otolaryngol Abs 27:539.

    Google Scholar 

  • Siegel JH, Cerka AJ, Recio-Spinoso A, Temchin AN, van Dijk P, Ruggero MA (2005) Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. J Acoust Soc Am 118:2434–2443.

    Article  PubMed  Google Scholar 

  • Talmadge CL, Tubis A (1993) On modeling the connection between spontaneous and evoked otoacoustic emissions. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 25–32.

    Google Scholar 

  • Talmadge CL, Long GR, Murphy WJ, Tubis A (1993) New off-line method for detecting spontaneous otoacoustic emission in human subjects. Hear Res 71:170–182.

    Article  PubMed  CAS  Google Scholar 

  • Talmadge CL, Long GR, Tubis A, Dhar S (1999) Experimental confirmation of the two-source interference model for the fine structure of distortion product otoacoustic emissions. J Acoust Soc Am 105:275–292.

    Article  PubMed  CAS  Google Scholar 

  • Talmadge CL, Tubis A, Long GR, Piskorski P (1998) Modeling otoacoustic emission and hearing threshold fine structures. J Acoust Soc Am 104:1517–1543.

    Article  PubMed  CAS  Google Scholar 

  • Talmadge CL, Tubis A, Long GR, Tong C (2000) Modeling the combined effects of basilar membrane nonlinearity and roughness on stimulus frequency otoacoustic emission fine structure. J Acoust Soc Am 108:2911–2932.

    Article  PubMed  CAS  Google Scholar 

  • van Hengel PWJ (1996) Emissions from cochlear modelling. PhD thesis, Rijksuniversiteit Groningen.

    Google Scholar 

  • Weinberg S (1993) The First Three Minutes. New York: Perseus Books.

    Google Scholar 

  • Wilson JP (1980a) The combination tone, 2f 1f 2, in psychophysics and ear-canal recording. In: van den Brink G, Bilsen FA (eds), Psychophysical, Physiological and Behavioural Studies in Hearing. Delft: Delft University Press, pp. 43–50.

    Google Scholar 

  • Wilson JP (1980b) Model for cochlear echoes and tinnitus based on an observed electrical correlate. Hear Res 2:527–532.

    Article  CAS  Google Scholar 

  • Wright AA (1984) Dimensions of the cochlear stereocilia in man and in guinea pig. Hear Res 13:89–98.

    Article  PubMed  CAS  Google Scholar 

  • Zweig G (1976) Basilar membrane motion. In: Cold Spring Harbor Symposia on Quantitative Biology, Vol. XL. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, pp. 619–633.

    Google Scholar 

  • Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047.

    Article  PubMed  CAS  Google Scholar 

  • Zwicker E (1980) Nonmonotonic behavior of ((2f 1f 2) explained by a saturation-feedback model. Hear Res 2:513–518.

    Article  PubMed  CAS  Google Scholar 

  • Zwicker E (1981) Dependence of level and phase of the (2f 1f 2)-cancellation tone on frequency range, frequency difference, level of primaries, and subject. J Acoust Soc Am 70:1277–1288.

    Article  Google Scholar 

  • Zwicker E, Harris FP (1990) Psychoacoustical and ear canal cancellation of (2f 1f 2)-distortion products. J Acoust Soc Am 87:2583–2591.

    Article  PubMed  CAS  Google Scholar 

  • Zwislocki JJ (1983) Sharp vibration maximum in the cochlea without wave reflection. Hear Res 9:103–111.

    Article  PubMed  CAS  Google Scholar 

  • Zwislocki JJ (2002) Auditory Sound Transmission: An Autobiographical Perspective. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shera, C.A., Guinan, J.J. (2008). Mechanisms of Mammalian Otoacoustic Emission. In: Manley, G.A., Fay, R.R., Popper, A.N. (eds) Active Processes and Otoacoustic Emissions in Hearing. Springer Handbook of Auditory Research, vol 30. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71469-1_9

Download citation

Publish with us

Policies and ethics